1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
5 | // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
---|
6 | // |
---|
7 | // This Source Code Form is subject to the terms of the Mozilla |
---|
8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
10 | |
---|
11 | #ifndef EIGEN_HOUSEHOLDER_SEQUENCE_H |
---|
12 | #define EIGEN_HOUSEHOLDER_SEQUENCE_H |
---|
13 | |
---|
14 | namespace Eigen { |
---|
15 | |
---|
16 | /** \ingroup Householder_Module |
---|
17 | * \householder_module |
---|
18 | * \class HouseholderSequence |
---|
19 | * \brief Sequence of Householder reflections acting on subspaces with decreasing size |
---|
20 | * \tparam VectorsType type of matrix containing the Householder vectors |
---|
21 | * \tparam CoeffsType type of vector containing the Householder coefficients |
---|
22 | * \tparam Side either OnTheLeft (the default) or OnTheRight |
---|
23 | * |
---|
24 | * This class represents a product sequence of Householder reflections where the first Householder reflection |
---|
25 | * acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by |
---|
26 | * the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace |
---|
27 | * spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but |
---|
28 | * one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections |
---|
29 | * are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods |
---|
30 | * HessenbergDecomposition::matrixQ(), Tridiagonalization::matrixQ(), HouseholderQR::householderQ(), |
---|
31 | * and ColPivHouseholderQR::householderQ() all return a %HouseholderSequence. |
---|
32 | * |
---|
33 | * More precisely, the class %HouseholderSequence represents an \f$ n \times n \f$ matrix \f$ H \f$ of the |
---|
34 | * form \f$ H = \prod_{i=0}^{n-1} H_i \f$ where the i-th Householder reflection is \f$ H_i = I - h_i v_i |
---|
35 | * v_i^* \f$. The i-th Householder coefficient \f$ h_i \f$ is a scalar and the i-th Householder vector \f$ |
---|
36 | * v_i \f$ is a vector of the form |
---|
37 | * \f[ |
---|
38 | * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. |
---|
39 | * \f] |
---|
40 | * The last \f$ n-i \f$ entries of \f$ v_i \f$ are called the essential part of the Householder vector. |
---|
41 | * |
---|
42 | * Typical usages are listed below, where H is a HouseholderSequence: |
---|
43 | * \code |
---|
44 | * A.applyOnTheRight(H); // A = A * H |
---|
45 | * A.applyOnTheLeft(H); // A = H * A |
---|
46 | * A.applyOnTheRight(H.adjoint()); // A = A * H^* |
---|
47 | * A.applyOnTheLeft(H.adjoint()); // A = H^* * A |
---|
48 | * MatrixXd Q = H; // conversion to a dense matrix |
---|
49 | * \endcode |
---|
50 | * In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators. |
---|
51 | * |
---|
52 | * See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example. |
---|
53 | * |
---|
54 | * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() |
---|
55 | */ |
---|
56 | |
---|
57 | namespace internal { |
---|
58 | |
---|
59 | template<typename VectorsType, typename CoeffsType, int Side> |
---|
60 | struct traits<HouseholderSequence<VectorsType,CoeffsType,Side> > |
---|
61 | { |
---|
62 | typedef typename VectorsType::Scalar Scalar; |
---|
63 | typedef typename VectorsType::Index Index; |
---|
64 | typedef typename VectorsType::StorageKind StorageKind; |
---|
65 | enum { |
---|
66 | RowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::RowsAtCompileTime |
---|
67 | : traits<VectorsType>::ColsAtCompileTime, |
---|
68 | ColsAtCompileTime = RowsAtCompileTime, |
---|
69 | MaxRowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::MaxRowsAtCompileTime |
---|
70 | : traits<VectorsType>::MaxColsAtCompileTime, |
---|
71 | MaxColsAtCompileTime = MaxRowsAtCompileTime, |
---|
72 | Flags = 0 |
---|
73 | }; |
---|
74 | }; |
---|
75 | |
---|
76 | template<typename VectorsType, typename CoeffsType, int Side> |
---|
77 | struct hseq_side_dependent_impl |
---|
78 | { |
---|
79 | typedef Block<const VectorsType, Dynamic, 1> EssentialVectorType; |
---|
80 | typedef HouseholderSequence<VectorsType, CoeffsType, OnTheLeft> HouseholderSequenceType; |
---|
81 | typedef typename VectorsType::Index Index; |
---|
82 | static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k) |
---|
83 | { |
---|
84 | Index start = k+1+h.m_shift; |
---|
85 | return Block<const VectorsType,Dynamic,1>(h.m_vectors, start, k, h.rows()-start, 1); |
---|
86 | } |
---|
87 | }; |
---|
88 | |
---|
89 | template<typename VectorsType, typename CoeffsType> |
---|
90 | struct hseq_side_dependent_impl<VectorsType, CoeffsType, OnTheRight> |
---|
91 | { |
---|
92 | typedef Transpose<Block<const VectorsType, 1, Dynamic> > EssentialVectorType; |
---|
93 | typedef HouseholderSequence<VectorsType, CoeffsType, OnTheRight> HouseholderSequenceType; |
---|
94 | typedef typename VectorsType::Index Index; |
---|
95 | static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k) |
---|
96 | { |
---|
97 | Index start = k+1+h.m_shift; |
---|
98 | return Block<const VectorsType,1,Dynamic>(h.m_vectors, k, start, 1, h.rows()-start).transpose(); |
---|
99 | } |
---|
100 | }; |
---|
101 | |
---|
102 | template<typename OtherScalarType, typename MatrixType> struct matrix_type_times_scalar_type |
---|
103 | { |
---|
104 | typedef typename scalar_product_traits<OtherScalarType, typename MatrixType::Scalar>::ReturnType |
---|
105 | ResultScalar; |
---|
106 | typedef Matrix<ResultScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, |
---|
107 | 0, MatrixType::MaxRowsAtCompileTime, MatrixType::MaxColsAtCompileTime> Type; |
---|
108 | }; |
---|
109 | |
---|
110 | } // end namespace internal |
---|
111 | |
---|
112 | template<typename VectorsType, typename CoeffsType, int Side> class HouseholderSequence |
---|
113 | : public EigenBase<HouseholderSequence<VectorsType,CoeffsType,Side> > |
---|
114 | { |
---|
115 | enum { |
---|
116 | RowsAtCompileTime = internal::traits<HouseholderSequence>::RowsAtCompileTime, |
---|
117 | ColsAtCompileTime = internal::traits<HouseholderSequence>::ColsAtCompileTime, |
---|
118 | MaxRowsAtCompileTime = internal::traits<HouseholderSequence>::MaxRowsAtCompileTime, |
---|
119 | MaxColsAtCompileTime = internal::traits<HouseholderSequence>::MaxColsAtCompileTime |
---|
120 | }; |
---|
121 | typedef typename internal::traits<HouseholderSequence>::Scalar Scalar; |
---|
122 | typedef typename VectorsType::Index Index; |
---|
123 | |
---|
124 | typedef typename internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::EssentialVectorType |
---|
125 | EssentialVectorType; |
---|
126 | |
---|
127 | public: |
---|
128 | |
---|
129 | typedef HouseholderSequence< |
---|
130 | VectorsType, |
---|
131 | typename internal::conditional<NumTraits<Scalar>::IsComplex, |
---|
132 | typename internal::remove_all<typename CoeffsType::ConjugateReturnType>::type, |
---|
133 | CoeffsType>::type, |
---|
134 | Side |
---|
135 | > ConjugateReturnType; |
---|
136 | |
---|
137 | /** \brief Constructor. |
---|
138 | * \param[in] v %Matrix containing the essential parts of the Householder vectors |
---|
139 | * \param[in] h Vector containing the Householder coefficients |
---|
140 | * |
---|
141 | * Constructs the Householder sequence with coefficients given by \p h and vectors given by \p v. The |
---|
142 | * i-th Householder coefficient \f$ h_i \f$ is given by \p h(i) and the essential part of the i-th |
---|
143 | * Householder vector \f$ v_i \f$ is given by \p v(k,i) with \p k > \p i (the subdiagonal part of the |
---|
144 | * i-th column). If \p v has fewer columns than rows, then the Householder sequence contains as many |
---|
145 | * Householder reflections as there are columns. |
---|
146 | * |
---|
147 | * \note The %HouseholderSequence object stores \p v and \p h by reference. |
---|
148 | * |
---|
149 | * Example: \include HouseholderSequence_HouseholderSequence.cpp |
---|
150 | * Output: \verbinclude HouseholderSequence_HouseholderSequence.out |
---|
151 | * |
---|
152 | * \sa setLength(), setShift() |
---|
153 | */ |
---|
154 | HouseholderSequence(const VectorsType& v, const CoeffsType& h) |
---|
155 | : m_vectors(v), m_coeffs(h), m_trans(false), m_length(v.diagonalSize()), |
---|
156 | m_shift(0) |
---|
157 | { |
---|
158 | } |
---|
159 | |
---|
160 | /** \brief Copy constructor. */ |
---|
161 | HouseholderSequence(const HouseholderSequence& other) |
---|
162 | : m_vectors(other.m_vectors), |
---|
163 | m_coeffs(other.m_coeffs), |
---|
164 | m_trans(other.m_trans), |
---|
165 | m_length(other.m_length), |
---|
166 | m_shift(other.m_shift) |
---|
167 | { |
---|
168 | } |
---|
169 | |
---|
170 | /** \brief Number of rows of transformation viewed as a matrix. |
---|
171 | * \returns Number of rows |
---|
172 | * \details This equals the dimension of the space that the transformation acts on. |
---|
173 | */ |
---|
174 | Index rows() const { return Side==OnTheLeft ? m_vectors.rows() : m_vectors.cols(); } |
---|
175 | |
---|
176 | /** \brief Number of columns of transformation viewed as a matrix. |
---|
177 | * \returns Number of columns |
---|
178 | * \details This equals the dimension of the space that the transformation acts on. |
---|
179 | */ |
---|
180 | Index cols() const { return rows(); } |
---|
181 | |
---|
182 | /** \brief Essential part of a Householder vector. |
---|
183 | * \param[in] k Index of Householder reflection |
---|
184 | * \returns Vector containing non-trivial entries of k-th Householder vector |
---|
185 | * |
---|
186 | * This function returns the essential part of the Householder vector \f$ v_i \f$. This is a vector of |
---|
187 | * length \f$ n-i \f$ containing the last \f$ n-i \f$ entries of the vector |
---|
188 | * \f[ |
---|
189 | * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. |
---|
190 | * \f] |
---|
191 | * The index \f$ i \f$ equals \p k + shift(), corresponding to the k-th column of the matrix \p v |
---|
192 | * passed to the constructor. |
---|
193 | * |
---|
194 | * \sa setShift(), shift() |
---|
195 | */ |
---|
196 | const EssentialVectorType essentialVector(Index k) const |
---|
197 | { |
---|
198 | eigen_assert(k >= 0 && k < m_length); |
---|
199 | return internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::essentialVector(*this, k); |
---|
200 | } |
---|
201 | |
---|
202 | /** \brief %Transpose of the Householder sequence. */ |
---|
203 | HouseholderSequence transpose() const |
---|
204 | { |
---|
205 | return HouseholderSequence(*this).setTrans(!m_trans); |
---|
206 | } |
---|
207 | |
---|
208 | /** \brief Complex conjugate of the Householder sequence. */ |
---|
209 | ConjugateReturnType conjugate() const |
---|
210 | { |
---|
211 | return ConjugateReturnType(m_vectors, m_coeffs.conjugate()) |
---|
212 | .setTrans(m_trans) |
---|
213 | .setLength(m_length) |
---|
214 | .setShift(m_shift); |
---|
215 | } |
---|
216 | |
---|
217 | /** \brief Adjoint (conjugate transpose) of the Householder sequence. */ |
---|
218 | ConjugateReturnType adjoint() const |
---|
219 | { |
---|
220 | return conjugate().setTrans(!m_trans); |
---|
221 | } |
---|
222 | |
---|
223 | /** \brief Inverse of the Householder sequence (equals the adjoint). */ |
---|
224 | ConjugateReturnType inverse() const { return adjoint(); } |
---|
225 | |
---|
226 | /** \internal */ |
---|
227 | template<typename DestType> inline void evalTo(DestType& dst) const |
---|
228 | { |
---|
229 | Matrix<Scalar, DestType::RowsAtCompileTime, 1, |
---|
230 | AutoAlign|ColMajor, DestType::MaxRowsAtCompileTime, 1> workspace(rows()); |
---|
231 | evalTo(dst, workspace); |
---|
232 | } |
---|
233 | |
---|
234 | /** \internal */ |
---|
235 | template<typename Dest, typename Workspace> |
---|
236 | void evalTo(Dest& dst, Workspace& workspace) const |
---|
237 | { |
---|
238 | workspace.resize(rows()); |
---|
239 | Index vecs = m_length; |
---|
240 | if( internal::is_same<typename internal::remove_all<VectorsType>::type,Dest>::value |
---|
241 | && internal::extract_data(dst) == internal::extract_data(m_vectors)) |
---|
242 | { |
---|
243 | // in-place |
---|
244 | dst.diagonal().setOnes(); |
---|
245 | dst.template triangularView<StrictlyUpper>().setZero(); |
---|
246 | for(Index k = vecs-1; k >= 0; --k) |
---|
247 | { |
---|
248 | Index cornerSize = rows() - k - m_shift; |
---|
249 | if(m_trans) |
---|
250 | dst.bottomRightCorner(cornerSize, cornerSize) |
---|
251 | .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data()); |
---|
252 | else |
---|
253 | dst.bottomRightCorner(cornerSize, cornerSize) |
---|
254 | .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data()); |
---|
255 | |
---|
256 | // clear the off diagonal vector |
---|
257 | dst.col(k).tail(rows()-k-1).setZero(); |
---|
258 | } |
---|
259 | // clear the remaining columns if needed |
---|
260 | for(Index k = 0; k<cols()-vecs ; ++k) |
---|
261 | dst.col(k).tail(rows()-k-1).setZero(); |
---|
262 | } |
---|
263 | else |
---|
264 | { |
---|
265 | dst.setIdentity(rows(), rows()); |
---|
266 | for(Index k = vecs-1; k >= 0; --k) |
---|
267 | { |
---|
268 | Index cornerSize = rows() - k - m_shift; |
---|
269 | if(m_trans) |
---|
270 | dst.bottomRightCorner(cornerSize, cornerSize) |
---|
271 | .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0)); |
---|
272 | else |
---|
273 | dst.bottomRightCorner(cornerSize, cornerSize) |
---|
274 | .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0)); |
---|
275 | } |
---|
276 | } |
---|
277 | } |
---|
278 | |
---|
279 | /** \internal */ |
---|
280 | template<typename Dest> inline void applyThisOnTheRight(Dest& dst) const |
---|
281 | { |
---|
282 | Matrix<Scalar,1,Dest::RowsAtCompileTime,RowMajor,1,Dest::MaxRowsAtCompileTime> workspace(dst.rows()); |
---|
283 | applyThisOnTheRight(dst, workspace); |
---|
284 | } |
---|
285 | |
---|
286 | /** \internal */ |
---|
287 | template<typename Dest, typename Workspace> |
---|
288 | inline void applyThisOnTheRight(Dest& dst, Workspace& workspace) const |
---|
289 | { |
---|
290 | workspace.resize(dst.rows()); |
---|
291 | for(Index k = 0; k < m_length; ++k) |
---|
292 | { |
---|
293 | Index actual_k = m_trans ? m_length-k-1 : k; |
---|
294 | dst.rightCols(rows()-m_shift-actual_k) |
---|
295 | .applyHouseholderOnTheRight(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data()); |
---|
296 | } |
---|
297 | } |
---|
298 | |
---|
299 | /** \internal */ |
---|
300 | template<typename Dest> inline void applyThisOnTheLeft(Dest& dst) const |
---|
301 | { |
---|
302 | Matrix<Scalar,1,Dest::ColsAtCompileTime,RowMajor,1,Dest::MaxColsAtCompileTime> workspace(dst.cols()); |
---|
303 | applyThisOnTheLeft(dst, workspace); |
---|
304 | } |
---|
305 | |
---|
306 | /** \internal */ |
---|
307 | template<typename Dest, typename Workspace> |
---|
308 | inline void applyThisOnTheLeft(Dest& dst, Workspace& workspace) const |
---|
309 | { |
---|
310 | workspace.resize(dst.cols()); |
---|
311 | for(Index k = 0; k < m_length; ++k) |
---|
312 | { |
---|
313 | Index actual_k = m_trans ? k : m_length-k-1; |
---|
314 | dst.bottomRows(rows()-m_shift-actual_k) |
---|
315 | .applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data()); |
---|
316 | } |
---|
317 | } |
---|
318 | |
---|
319 | /** \brief Computes the product of a Householder sequence with a matrix. |
---|
320 | * \param[in] other %Matrix being multiplied. |
---|
321 | * \returns Expression object representing the product. |
---|
322 | * |
---|
323 | * This function computes \f$ HM \f$ where \f$ H \f$ is the Householder sequence represented by \p *this |
---|
324 | * and \f$ M \f$ is the matrix \p other. |
---|
325 | */ |
---|
326 | template<typename OtherDerived> |
---|
327 | typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other) const |
---|
328 | { |
---|
329 | typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type |
---|
330 | res(other.template cast<typename internal::matrix_type_times_scalar_type<Scalar,OtherDerived>::ResultScalar>()); |
---|
331 | applyThisOnTheLeft(res); |
---|
332 | return res; |
---|
333 | } |
---|
334 | |
---|
335 | template<typename _VectorsType, typename _CoeffsType, int _Side> friend struct internal::hseq_side_dependent_impl; |
---|
336 | |
---|
337 | /** \brief Sets the length of the Householder sequence. |
---|
338 | * \param [in] length New value for the length. |
---|
339 | * |
---|
340 | * By default, the length \f$ n \f$ of the Householder sequence \f$ H = H_0 H_1 \ldots H_{n-1} \f$ is set |
---|
341 | * to the number of columns of the matrix \p v passed to the constructor, or the number of rows if that |
---|
342 | * is smaller. After this function is called, the length equals \p length. |
---|
343 | * |
---|
344 | * \sa length() |
---|
345 | */ |
---|
346 | HouseholderSequence& setLength(Index length) |
---|
347 | { |
---|
348 | m_length = length; |
---|
349 | return *this; |
---|
350 | } |
---|
351 | |
---|
352 | /** \brief Sets the shift of the Householder sequence. |
---|
353 | * \param [in] shift New value for the shift. |
---|
354 | * |
---|
355 | * By default, a %HouseholderSequence object represents \f$ H = H_0 H_1 \ldots H_{n-1} \f$ and the i-th |
---|
356 | * column of the matrix \p v passed to the constructor corresponds to the i-th Householder |
---|
357 | * reflection. After this function is called, the object represents \f$ H = H_{\mathrm{shift}} |
---|
358 | * H_{\mathrm{shift}+1} \ldots H_{n-1} \f$ and the i-th column of \p v corresponds to the (shift+i)-th |
---|
359 | * Householder reflection. |
---|
360 | * |
---|
361 | * \sa shift() |
---|
362 | */ |
---|
363 | HouseholderSequence& setShift(Index shift) |
---|
364 | { |
---|
365 | m_shift = shift; |
---|
366 | return *this; |
---|
367 | } |
---|
368 | |
---|
369 | Index length() const { return m_length; } /**< \brief Returns the length of the Householder sequence. */ |
---|
370 | Index shift() const { return m_shift; } /**< \brief Returns the shift of the Householder sequence. */ |
---|
371 | |
---|
372 | /* Necessary for .adjoint() and .conjugate() */ |
---|
373 | template <typename VectorsType2, typename CoeffsType2, int Side2> friend class HouseholderSequence; |
---|
374 | |
---|
375 | protected: |
---|
376 | |
---|
377 | /** \brief Sets the transpose flag. |
---|
378 | * \param [in] trans New value of the transpose flag. |
---|
379 | * |
---|
380 | * By default, the transpose flag is not set. If the transpose flag is set, then this object represents |
---|
381 | * \f$ H^T = H_{n-1}^T \ldots H_1^T H_0^T \f$ instead of \f$ H = H_0 H_1 \ldots H_{n-1} \f$. |
---|
382 | * |
---|
383 | * \sa trans() |
---|
384 | */ |
---|
385 | HouseholderSequence& setTrans(bool trans) |
---|
386 | { |
---|
387 | m_trans = trans; |
---|
388 | return *this; |
---|
389 | } |
---|
390 | |
---|
391 | bool trans() const { return m_trans; } /**< \brief Returns the transpose flag. */ |
---|
392 | |
---|
393 | typename VectorsType::Nested m_vectors; |
---|
394 | typename CoeffsType::Nested m_coeffs; |
---|
395 | bool m_trans; |
---|
396 | Index m_length; |
---|
397 | Index m_shift; |
---|
398 | }; |
---|
399 | |
---|
400 | /** \brief Computes the product of a matrix with a Householder sequence. |
---|
401 | * \param[in] other %Matrix being multiplied. |
---|
402 | * \param[in] h %HouseholderSequence being multiplied. |
---|
403 | * \returns Expression object representing the product. |
---|
404 | * |
---|
405 | * This function computes \f$ MH \f$ where \f$ M \f$ is the matrix \p other and \f$ H \f$ is the |
---|
406 | * Householder sequence represented by \p h. |
---|
407 | */ |
---|
408 | template<typename OtherDerived, typename VectorsType, typename CoeffsType, int Side> |
---|
409 | typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other, const HouseholderSequence<VectorsType,CoeffsType,Side>& h) |
---|
410 | { |
---|
411 | typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type |
---|
412 | res(other.template cast<typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::ResultScalar>()); |
---|
413 | h.applyThisOnTheRight(res); |
---|
414 | return res; |
---|
415 | } |
---|
416 | |
---|
417 | /** \ingroup Householder_Module \householder_module |
---|
418 | * \brief Convenience function for constructing a Householder sequence. |
---|
419 | * \returns A HouseholderSequence constructed from the specified arguments. |
---|
420 | */ |
---|
421 | template<typename VectorsType, typename CoeffsType> |
---|
422 | HouseholderSequence<VectorsType,CoeffsType> householderSequence(const VectorsType& v, const CoeffsType& h) |
---|
423 | { |
---|
424 | return HouseholderSequence<VectorsType,CoeffsType,OnTheLeft>(v, h); |
---|
425 | } |
---|
426 | |
---|
427 | /** \ingroup Householder_Module \householder_module |
---|
428 | * \brief Convenience function for constructing a Householder sequence. |
---|
429 | * \returns A HouseholderSequence constructed from the specified arguments. |
---|
430 | * \details This function differs from householderSequence() in that the template argument \p OnTheSide of |
---|
431 | * the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft. |
---|
432 | */ |
---|
433 | template<typename VectorsType, typename CoeffsType> |
---|
434 | HouseholderSequence<VectorsType,CoeffsType,OnTheRight> rightHouseholderSequence(const VectorsType& v, const CoeffsType& h) |
---|
435 | { |
---|
436 | return HouseholderSequence<VectorsType,CoeffsType,OnTheRight>(v, h); |
---|
437 | } |
---|
438 | |
---|
439 | } // end namespace Eigen |
---|
440 | |
---|
441 | #endif // EIGEN_HOUSEHOLDER_SEQUENCE_H |
---|