Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Eigen/Eigen/src/Householder/HouseholderSequence.h @ 10617

Last change on this file since 10617 was 9562, checked in by gkronber, 12 years ago

#1967 worked on Gaussian process evolution.

File size: 18.6 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_HOUSEHOLDER_SEQUENCE_H
12#define EIGEN_HOUSEHOLDER_SEQUENCE_H
13
14namespace Eigen {
15
16/** \ingroup Householder_Module
17  * \householder_module
18  * \class HouseholderSequence
19  * \brief Sequence of Householder reflections acting on subspaces with decreasing size
20  * \tparam VectorsType type of matrix containing the Householder vectors
21  * \tparam CoeffsType  type of vector containing the Householder coefficients
22  * \tparam Side        either OnTheLeft (the default) or OnTheRight
23  *
24  * This class represents a product sequence of Householder reflections where the first Householder reflection
25  * acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by
26  * the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace
27  * spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but
28  * one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections
29  * are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods
30  * HessenbergDecomposition::matrixQ(), Tridiagonalization::matrixQ(), HouseholderQR::householderQ(),
31  * and ColPivHouseholderQR::householderQ() all return a %HouseholderSequence.
32  *
33  * More precisely, the class %HouseholderSequence represents an \f$ n \times n \f$ matrix \f$ H \f$ of the
34  * form \f$ H = \prod_{i=0}^{n-1} H_i \f$ where the i-th Householder reflection is \f$ H_i = I - h_i v_i
35  * v_i^* \f$. The i-th Householder coefficient \f$ h_i \f$ is a scalar and the i-th Householder vector \f$
36  * v_i \f$ is a vector of the form
37  * \f[
38  * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ].
39  * \f]
40  * The last \f$ n-i \f$ entries of \f$ v_i \f$ are called the essential part of the Householder vector.
41  *
42  * Typical usages are listed below, where H is a HouseholderSequence:
43  * \code
44  * A.applyOnTheRight(H);             // A = A * H
45  * A.applyOnTheLeft(H);              // A = H * A
46  * A.applyOnTheRight(H.adjoint());   // A = A * H^*
47  * A.applyOnTheLeft(H.adjoint());    // A = H^* * A
48  * MatrixXd Q = H;                   // conversion to a dense matrix
49  * \endcode
50  * In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators.
51  *
52  * See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example.
53  *
54  * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
55  */
56
57namespace internal {
58
59template<typename VectorsType, typename CoeffsType, int Side>
60struct traits<HouseholderSequence<VectorsType,CoeffsType,Side> >
61{
62  typedef typename VectorsType::Scalar Scalar;
63  typedef typename VectorsType::Index Index;
64  typedef typename VectorsType::StorageKind StorageKind;
65  enum {
66    RowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::RowsAtCompileTime
67                                        : traits<VectorsType>::ColsAtCompileTime,
68    ColsAtCompileTime = RowsAtCompileTime,
69    MaxRowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::MaxRowsAtCompileTime
70                                           : traits<VectorsType>::MaxColsAtCompileTime,
71    MaxColsAtCompileTime = MaxRowsAtCompileTime,
72    Flags = 0
73  };
74};
75
76template<typename VectorsType, typename CoeffsType, int Side>
77struct hseq_side_dependent_impl
78{
79  typedef Block<const VectorsType, Dynamic, 1> EssentialVectorType;
80  typedef HouseholderSequence<VectorsType, CoeffsType, OnTheLeft> HouseholderSequenceType;
81  typedef typename VectorsType::Index Index;
82  static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k)
83  {
84    Index start = k+1+h.m_shift;
85    return Block<const VectorsType,Dynamic,1>(h.m_vectors, start, k, h.rows()-start, 1);
86  }
87};
88
89template<typename VectorsType, typename CoeffsType>
90struct hseq_side_dependent_impl<VectorsType, CoeffsType, OnTheRight>
91{
92  typedef Transpose<Block<const VectorsType, 1, Dynamic> > EssentialVectorType;
93  typedef HouseholderSequence<VectorsType, CoeffsType, OnTheRight> HouseholderSequenceType;
94  typedef typename VectorsType::Index Index;
95  static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k)
96  {
97    Index start = k+1+h.m_shift;
98    return Block<const VectorsType,1,Dynamic>(h.m_vectors, k, start, 1, h.rows()-start).transpose();
99  }
100};
101
102template<typename OtherScalarType, typename MatrixType> struct matrix_type_times_scalar_type
103{
104  typedef typename scalar_product_traits<OtherScalarType, typename MatrixType::Scalar>::ReturnType
105    ResultScalar;
106  typedef Matrix<ResultScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
107                 0, MatrixType::MaxRowsAtCompileTime, MatrixType::MaxColsAtCompileTime> Type;
108};
109
110} // end namespace internal
111
112template<typename VectorsType, typename CoeffsType, int Side> class HouseholderSequence
113  : public EigenBase<HouseholderSequence<VectorsType,CoeffsType,Side> >
114{
115    enum {
116      RowsAtCompileTime = internal::traits<HouseholderSequence>::RowsAtCompileTime,
117      ColsAtCompileTime = internal::traits<HouseholderSequence>::ColsAtCompileTime,
118      MaxRowsAtCompileTime = internal::traits<HouseholderSequence>::MaxRowsAtCompileTime,
119      MaxColsAtCompileTime = internal::traits<HouseholderSequence>::MaxColsAtCompileTime
120    };
121    typedef typename internal::traits<HouseholderSequence>::Scalar Scalar;
122    typedef typename VectorsType::Index Index;
123
124    typedef typename internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::EssentialVectorType
125            EssentialVectorType;
126
127  public:
128
129    typedef HouseholderSequence<
130      VectorsType,
131      typename internal::conditional<NumTraits<Scalar>::IsComplex,
132        typename internal::remove_all<typename CoeffsType::ConjugateReturnType>::type,
133        CoeffsType>::type,
134      Side
135    > ConjugateReturnType;
136
137    /** \brief Constructor.
138      * \param[in]  v      %Matrix containing the essential parts of the Householder vectors
139      * \param[in]  h      Vector containing the Householder coefficients
140      *
141      * Constructs the Householder sequence with coefficients given by \p h and vectors given by \p v. The
142      * i-th Householder coefficient \f$ h_i \f$ is given by \p h(i) and the essential part of the i-th
143      * Householder vector \f$ v_i \f$ is given by \p v(k,i) with \p k > \p i (the subdiagonal part of the
144      * i-th column). If \p v has fewer columns than rows, then the Householder sequence contains as many
145      * Householder reflections as there are columns.
146      *
147      * \note The %HouseholderSequence object stores \p v and \p h by reference.
148      *
149      * Example: \include HouseholderSequence_HouseholderSequence.cpp
150      * Output: \verbinclude HouseholderSequence_HouseholderSequence.out
151      *
152      * \sa setLength(), setShift()
153      */
154    HouseholderSequence(const VectorsType& v, const CoeffsType& h)
155      : m_vectors(v), m_coeffs(h), m_trans(false), m_length(v.diagonalSize()),
156        m_shift(0)
157    {
158    }
159
160    /** \brief Copy constructor. */
161    HouseholderSequence(const HouseholderSequence& other)
162      : m_vectors(other.m_vectors),
163        m_coeffs(other.m_coeffs),
164        m_trans(other.m_trans),
165        m_length(other.m_length),
166        m_shift(other.m_shift)
167    {
168    }
169
170    /** \brief Number of rows of transformation viewed as a matrix.
171      * \returns Number of rows
172      * \details This equals the dimension of the space that the transformation acts on.
173      */
174    Index rows() const { return Side==OnTheLeft ? m_vectors.rows() : m_vectors.cols(); }
175
176    /** \brief Number of columns of transformation viewed as a matrix.
177      * \returns Number of columns
178      * \details This equals the dimension of the space that the transformation acts on.
179      */
180    Index cols() const { return rows(); }
181
182    /** \brief Essential part of a Householder vector.
183      * \param[in]  k  Index of Householder reflection
184      * \returns    Vector containing non-trivial entries of k-th Householder vector
185      *
186      * This function returns the essential part of the Householder vector \f$ v_i \f$. This is a vector of
187      * length \f$ n-i \f$ containing the last \f$ n-i \f$ entries of the vector
188      * \f[
189      * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ].
190      * \f]
191      * The index \f$ i \f$ equals \p k + shift(), corresponding to the k-th column of the matrix \p v
192      * passed to the constructor.
193      *
194      * \sa setShift(), shift()
195      */
196    const EssentialVectorType essentialVector(Index k) const
197    {
198      eigen_assert(k >= 0 && k < m_length);
199      return internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::essentialVector(*this, k);
200    }
201
202    /** \brief %Transpose of the Householder sequence. */
203    HouseholderSequence transpose() const
204    {
205      return HouseholderSequence(*this).setTrans(!m_trans);
206    }
207
208    /** \brief Complex conjugate of the Householder sequence. */
209    ConjugateReturnType conjugate() const
210    {
211      return ConjugateReturnType(m_vectors, m_coeffs.conjugate())
212             .setTrans(m_trans)
213             .setLength(m_length)
214             .setShift(m_shift);
215    }
216
217    /** \brief Adjoint (conjugate transpose) of the Householder sequence. */
218    ConjugateReturnType adjoint() const
219    {
220      return conjugate().setTrans(!m_trans);
221    }
222
223    /** \brief Inverse of the Householder sequence (equals the adjoint). */
224    ConjugateReturnType inverse() const { return adjoint(); }
225
226    /** \internal */
227    template<typename DestType> inline void evalTo(DestType& dst) const
228    {
229      Matrix<Scalar, DestType::RowsAtCompileTime, 1,
230             AutoAlign|ColMajor, DestType::MaxRowsAtCompileTime, 1> workspace(rows());
231      evalTo(dst, workspace);
232    }
233
234    /** \internal */
235    template<typename Dest, typename Workspace>
236    void evalTo(Dest& dst, Workspace& workspace) const
237    {
238      workspace.resize(rows());
239      Index vecs = m_length;
240      if(    internal::is_same<typename internal::remove_all<VectorsType>::type,Dest>::value
241          && internal::extract_data(dst) == internal::extract_data(m_vectors))
242      {
243        // in-place
244        dst.diagonal().setOnes();
245        dst.template triangularView<StrictlyUpper>().setZero();
246        for(Index k = vecs-1; k >= 0; --k)
247        {
248          Index cornerSize = rows() - k - m_shift;
249          if(m_trans)
250            dst.bottomRightCorner(cornerSize, cornerSize)
251               .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data());
252          else
253            dst.bottomRightCorner(cornerSize, cornerSize)
254               .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data());
255
256          // clear the off diagonal vector
257          dst.col(k).tail(rows()-k-1).setZero();
258        }
259        // clear the remaining columns if needed
260        for(Index k = 0; k<cols()-vecs ; ++k)
261          dst.col(k).tail(rows()-k-1).setZero();
262      }
263      else
264      {
265        dst.setIdentity(rows(), rows());
266        for(Index k = vecs-1; k >= 0; --k)
267        {
268          Index cornerSize = rows() - k - m_shift;
269          if(m_trans)
270            dst.bottomRightCorner(cornerSize, cornerSize)
271               .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0));
272          else
273            dst.bottomRightCorner(cornerSize, cornerSize)
274               .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0));
275        }
276      }
277    }
278
279    /** \internal */
280    template<typename Dest> inline void applyThisOnTheRight(Dest& dst) const
281    {
282      Matrix<Scalar,1,Dest::RowsAtCompileTime,RowMajor,1,Dest::MaxRowsAtCompileTime> workspace(dst.rows());
283      applyThisOnTheRight(dst, workspace);
284    }
285
286    /** \internal */
287    template<typename Dest, typename Workspace>
288    inline void applyThisOnTheRight(Dest& dst, Workspace& workspace) const
289    {
290      workspace.resize(dst.rows());
291      for(Index k = 0; k < m_length; ++k)
292      {
293        Index actual_k = m_trans ? m_length-k-1 : k;
294        dst.rightCols(rows()-m_shift-actual_k)
295           .applyHouseholderOnTheRight(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data());
296      }
297    }
298
299    /** \internal */
300    template<typename Dest> inline void applyThisOnTheLeft(Dest& dst) const
301    {
302      Matrix<Scalar,1,Dest::ColsAtCompileTime,RowMajor,1,Dest::MaxColsAtCompileTime> workspace(dst.cols());
303      applyThisOnTheLeft(dst, workspace);
304    }
305
306    /** \internal */
307    template<typename Dest, typename Workspace>
308    inline void applyThisOnTheLeft(Dest& dst, Workspace& workspace) const
309    {
310      workspace.resize(dst.cols());
311      for(Index k = 0; k < m_length; ++k)
312      {
313        Index actual_k = m_trans ? k : m_length-k-1;
314        dst.bottomRows(rows()-m_shift-actual_k)
315           .applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data());
316      }
317    }
318
319    /** \brief Computes the product of a Householder sequence with a matrix.
320      * \param[in]  other  %Matrix being multiplied.
321      * \returns    Expression object representing the product.
322      *
323      * This function computes \f$ HM \f$ where \f$ H \f$ is the Householder sequence represented by \p *this
324      * and \f$ M \f$ is the matrix \p other.
325      */
326    template<typename OtherDerived>
327    typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other) const
328    {
329      typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type
330        res(other.template cast<typename internal::matrix_type_times_scalar_type<Scalar,OtherDerived>::ResultScalar>());
331      applyThisOnTheLeft(res);
332      return res;
333    }
334
335    template<typename _VectorsType, typename _CoeffsType, int _Side> friend struct internal::hseq_side_dependent_impl;
336
337    /** \brief Sets the length of the Householder sequence.
338      * \param [in]  length  New value for the length.
339      *
340      * By default, the length \f$ n \f$ of the Householder sequence \f$ H = H_0 H_1 \ldots H_{n-1} \f$ is set
341      * to the number of columns of the matrix \p v passed to the constructor, or the number of rows if that
342      * is smaller. After this function is called, the length equals \p length.
343      *
344      * \sa length()
345      */
346    HouseholderSequence& setLength(Index length)
347    {
348      m_length = length;
349      return *this;
350    }
351
352    /** \brief Sets the shift of the Householder sequence.
353      * \param [in]  shift  New value for the shift.
354      *
355      * By default, a %HouseholderSequence object represents \f$ H = H_0 H_1 \ldots H_{n-1} \f$ and the i-th
356      * column of the matrix \p v passed to the constructor corresponds to the i-th Householder
357      * reflection. After this function is called, the object represents \f$ H = H_{\mathrm{shift}}
358      * H_{\mathrm{shift}+1} \ldots H_{n-1} \f$ and the i-th column of \p v corresponds to the (shift+i)-th
359      * Householder reflection.
360      *
361      * \sa shift()
362      */
363    HouseholderSequence& setShift(Index shift)
364    {
365      m_shift = shift;
366      return *this;
367    }
368
369    Index length() const { return m_length; }  /**< \brief Returns the length of the Householder sequence. */
370    Index shift() const { return m_shift; }    /**< \brief Returns the shift of the Householder sequence. */
371
372    /* Necessary for .adjoint() and .conjugate() */
373    template <typename VectorsType2, typename CoeffsType2, int Side2> friend class HouseholderSequence;
374
375  protected:
376
377    /** \brief Sets the transpose flag.
378      * \param [in]  trans  New value of the transpose flag.
379      *
380      * By default, the transpose flag is not set. If the transpose flag is set, then this object represents
381      * \f$ H^T = H_{n-1}^T \ldots H_1^T H_0^T \f$ instead of \f$ H = H_0 H_1 \ldots H_{n-1} \f$.
382      *
383      * \sa trans()
384      */
385    HouseholderSequence& setTrans(bool trans)
386    {
387      m_trans = trans;
388      return *this;
389    }
390
391    bool trans() const { return m_trans; }     /**< \brief Returns the transpose flag. */
392
393    typename VectorsType::Nested m_vectors;
394    typename CoeffsType::Nested m_coeffs;
395    bool m_trans;
396    Index m_length;
397    Index m_shift;
398};
399
400/** \brief Computes the product of a matrix with a Householder sequence.
401  * \param[in]  other  %Matrix being multiplied.
402  * \param[in]  h      %HouseholderSequence being multiplied.
403  * \returns    Expression object representing the product.
404  *
405  * This function computes \f$ MH \f$ where \f$ M \f$ is the matrix \p other and \f$ H \f$ is the
406  * Householder sequence represented by \p h.
407  */
408template<typename OtherDerived, typename VectorsType, typename CoeffsType, int Side>
409typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other, const HouseholderSequence<VectorsType,CoeffsType,Side>& h)
410{
411  typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type
412    res(other.template cast<typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::ResultScalar>());
413  h.applyThisOnTheRight(res);
414  return res;
415}
416
417/** \ingroup Householder_Module \householder_module
418  * \brief Convenience function for constructing a Householder sequence.
419  * \returns A HouseholderSequence constructed from the specified arguments.
420  */
421template<typename VectorsType, typename CoeffsType>
422HouseholderSequence<VectorsType,CoeffsType> householderSequence(const VectorsType& v, const CoeffsType& h)
423{
424  return HouseholderSequence<VectorsType,CoeffsType,OnTheLeft>(v, h);
425}
426
427/** \ingroup Householder_Module \householder_module
428  * \brief Convenience function for constructing a Householder sequence.
429  * \returns A HouseholderSequence constructed from the specified arguments.
430  * \details This function differs from householderSequence() in that the template argument \p OnTheSide of
431  * the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft.
432  */
433template<typename VectorsType, typename CoeffsType>
434HouseholderSequence<VectorsType,CoeffsType,OnTheRight> rightHouseholderSequence(const VectorsType& v, const CoeffsType& h)
435{
436  return HouseholderSequence<VectorsType,CoeffsType,OnTheRight>(v, h);
437}
438
439} // end namespace Eigen
440
441#endif // EIGEN_HOUSEHOLDER_SEQUENCE_H
Note: See TracBrowser for help on using the repository browser.