[9562] | 1 | // This file is part of Eigen, a lightweight C++ template library |
---|
| 2 | // for linear algebra. |
---|
| 3 | // |
---|
| 4 | // Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com> |
---|
| 5 | // |
---|
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
---|
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
| 9 | |
---|
| 10 | #ifndef EIGEN_UMEYAMA_H |
---|
| 11 | #define EIGEN_UMEYAMA_H |
---|
| 12 | |
---|
| 13 | // This file requires the user to include |
---|
| 14 | // * Eigen/Core |
---|
| 15 | // * Eigen/LU |
---|
| 16 | // * Eigen/SVD |
---|
| 17 | // * Eigen/Array |
---|
| 18 | |
---|
| 19 | namespace Eigen { |
---|
| 20 | |
---|
| 21 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
---|
| 22 | |
---|
| 23 | // These helpers are required since it allows to use mixed types as parameters |
---|
| 24 | // for the Umeyama. The problem with mixed parameters is that the return type |
---|
| 25 | // cannot trivially be deduced when float and double types are mixed. |
---|
| 26 | namespace internal { |
---|
| 27 | |
---|
| 28 | // Compile time return type deduction for different MatrixBase types. |
---|
| 29 | // Different means here different alignment and parameters but the same underlying |
---|
| 30 | // real scalar type. |
---|
| 31 | template<typename MatrixType, typename OtherMatrixType> |
---|
| 32 | struct umeyama_transform_matrix_type |
---|
| 33 | { |
---|
| 34 | enum { |
---|
| 35 | MinRowsAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, OtherMatrixType::RowsAtCompileTime), |
---|
| 36 | |
---|
| 37 | // When possible we want to choose some small fixed size value since the result |
---|
| 38 | // is likely to fit on the stack. So here, EIGEN_SIZE_MIN_PREFER_DYNAMIC is not what we want. |
---|
| 39 | HomogeneousDimension = int(MinRowsAtCompileTime) == Dynamic ? Dynamic : int(MinRowsAtCompileTime)+1 |
---|
| 40 | }; |
---|
| 41 | |
---|
| 42 | typedef Matrix<typename traits<MatrixType>::Scalar, |
---|
| 43 | HomogeneousDimension, |
---|
| 44 | HomogeneousDimension, |
---|
| 45 | AutoAlign | (traits<MatrixType>::Flags & RowMajorBit ? RowMajor : ColMajor), |
---|
| 46 | HomogeneousDimension, |
---|
| 47 | HomogeneousDimension |
---|
| 48 | > type; |
---|
| 49 | }; |
---|
| 50 | |
---|
| 51 | } |
---|
| 52 | |
---|
| 53 | #endif |
---|
| 54 | |
---|
| 55 | /** |
---|
| 56 | * \geometry_module \ingroup Geometry_Module |
---|
| 57 | * |
---|
| 58 | * \brief Returns the transformation between two point sets. |
---|
| 59 | * |
---|
| 60 | * The algorithm is based on: |
---|
| 61 | * "Least-squares estimation of transformation parameters between two point patterns", |
---|
| 62 | * Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573 |
---|
| 63 | * |
---|
| 64 | * It estimates parameters \f$ c, \mathbf{R}, \f$ and \f$ \mathbf{t} \f$ such that |
---|
| 65 | * \f{align*} |
---|
| 66 | * \frac{1}{n} \sum_{i=1}^n \vert\vert y_i - (c\mathbf{R}x_i + \mathbf{t}) \vert\vert_2^2 |
---|
| 67 | * \f} |
---|
| 68 | * is minimized. |
---|
| 69 | * |
---|
| 70 | * The algorithm is based on the analysis of the covariance matrix |
---|
| 71 | * \f$ \Sigma_{\mathbf{x}\mathbf{y}} \in \mathbb{R}^{d \times d} \f$ |
---|
| 72 | * of the input point sets \f$ \mathbf{x} \f$ and \f$ \mathbf{y} \f$ where |
---|
| 73 | * \f$d\f$ is corresponding to the dimension (which is typically small). |
---|
| 74 | * The analysis is involving the SVD having a complexity of \f$O(d^3)\f$ |
---|
| 75 | * though the actual computational effort lies in the covariance |
---|
| 76 | * matrix computation which has an asymptotic lower bound of \f$O(dm)\f$ when |
---|
| 77 | * the input point sets have dimension \f$d \times m\f$. |
---|
| 78 | * |
---|
| 79 | * Currently the method is working only for floating point matrices. |
---|
| 80 | * |
---|
| 81 | * \todo Should the return type of umeyama() become a Transform? |
---|
| 82 | * |
---|
| 83 | * \param src Source points \f$ \mathbf{x} = \left( x_1, \hdots, x_n \right) \f$. |
---|
| 84 | * \param dst Destination points \f$ \mathbf{y} = \left( y_1, \hdots, y_n \right) \f$. |
---|
| 85 | * \param with_scaling Sets \f$ c=1 \f$ when <code>false</code> is passed. |
---|
| 86 | * \return The homogeneous transformation |
---|
| 87 | * \f{align*} |
---|
| 88 | * T = \begin{bmatrix} c\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} |
---|
| 89 | * \f} |
---|
| 90 | * minimizing the resudiual above. This transformation is always returned as an |
---|
| 91 | * Eigen::Matrix. |
---|
| 92 | */ |
---|
| 93 | template <typename Derived, typename OtherDerived> |
---|
| 94 | typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type |
---|
| 95 | umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, bool with_scaling = true) |
---|
| 96 | { |
---|
| 97 | typedef typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type TransformationMatrixType; |
---|
| 98 | typedef typename internal::traits<TransformationMatrixType>::Scalar Scalar; |
---|
| 99 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
| 100 | typedef typename Derived::Index Index; |
---|
| 101 | |
---|
| 102 | EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL) |
---|
| 103 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename internal::traits<OtherDerived>::Scalar>::value), |
---|
| 104 | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) |
---|
| 105 | |
---|
| 106 | enum { Dimension = EIGEN_SIZE_MIN_PREFER_DYNAMIC(Derived::RowsAtCompileTime, OtherDerived::RowsAtCompileTime) }; |
---|
| 107 | |
---|
| 108 | typedef Matrix<Scalar, Dimension, 1> VectorType; |
---|
| 109 | typedef Matrix<Scalar, Dimension, Dimension> MatrixType; |
---|
| 110 | typedef typename internal::plain_matrix_type_row_major<Derived>::type RowMajorMatrixType; |
---|
| 111 | |
---|
| 112 | const Index m = src.rows(); // dimension |
---|
| 113 | const Index n = src.cols(); // number of measurements |
---|
| 114 | |
---|
| 115 | // required for demeaning ... |
---|
| 116 | const RealScalar one_over_n = 1 / static_cast<RealScalar>(n); |
---|
| 117 | |
---|
| 118 | // computation of mean |
---|
| 119 | const VectorType src_mean = src.rowwise().sum() * one_over_n; |
---|
| 120 | const VectorType dst_mean = dst.rowwise().sum() * one_over_n; |
---|
| 121 | |
---|
| 122 | // demeaning of src and dst points |
---|
| 123 | const RowMajorMatrixType src_demean = src.colwise() - src_mean; |
---|
| 124 | const RowMajorMatrixType dst_demean = dst.colwise() - dst_mean; |
---|
| 125 | |
---|
| 126 | // Eq. (36)-(37) |
---|
| 127 | const Scalar src_var = src_demean.rowwise().squaredNorm().sum() * one_over_n; |
---|
| 128 | |
---|
| 129 | // Eq. (38) |
---|
| 130 | const MatrixType sigma = one_over_n * dst_demean * src_demean.transpose(); |
---|
| 131 | |
---|
| 132 | JacobiSVD<MatrixType> svd(sigma, ComputeFullU | ComputeFullV); |
---|
| 133 | |
---|
| 134 | // Initialize the resulting transformation with an identity matrix... |
---|
| 135 | TransformationMatrixType Rt = TransformationMatrixType::Identity(m+1,m+1); |
---|
| 136 | |
---|
| 137 | // Eq. (39) |
---|
| 138 | VectorType S = VectorType::Ones(m); |
---|
| 139 | if (sigma.determinant()<0) S(m-1) = -1; |
---|
| 140 | |
---|
| 141 | // Eq. (40) and (43) |
---|
| 142 | const VectorType& d = svd.singularValues(); |
---|
| 143 | Index rank = 0; for (Index i=0; i<m; ++i) if (!internal::isMuchSmallerThan(d.coeff(i),d.coeff(0))) ++rank; |
---|
| 144 | if (rank == m-1) { |
---|
| 145 | if ( svd.matrixU().determinant() * svd.matrixV().determinant() > 0 ) { |
---|
| 146 | Rt.block(0,0,m,m).noalias() = svd.matrixU()*svd.matrixV().transpose(); |
---|
| 147 | } else { |
---|
| 148 | const Scalar s = S(m-1); S(m-1) = -1; |
---|
| 149 | Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose(); |
---|
| 150 | S(m-1) = s; |
---|
| 151 | } |
---|
| 152 | } else { |
---|
| 153 | Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose(); |
---|
| 154 | } |
---|
| 155 | |
---|
| 156 | // Eq. (42) |
---|
| 157 | const Scalar c = 1/src_var * svd.singularValues().dot(S); |
---|
| 158 | |
---|
| 159 | // Eq. (41) |
---|
| 160 | // Note that we first assign dst_mean to the destination so that there no need |
---|
| 161 | // for a temporary. |
---|
| 162 | Rt.col(m).head(m) = dst_mean; |
---|
| 163 | Rt.col(m).head(m).noalias() -= c*Rt.topLeftCorner(m,m)*src_mean; |
---|
| 164 | |
---|
| 165 | if (with_scaling) Rt.block(0,0,m,m) *= c; |
---|
| 166 | |
---|
| 167 | return Rt; |
---|
| 168 | } |
---|
| 169 | |
---|
| 170 | } // end namespace Eigen |
---|
| 171 | |
---|
| 172 | #endif // EIGEN_UMEYAMA_H |
---|