1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
5 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
---|
6 | // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com> |
---|
7 | // |
---|
8 | // This Source Code Form is subject to the terms of the Mozilla |
---|
9 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
10 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
11 | |
---|
12 | #ifndef EIGEN_TRANSFORM_H |
---|
13 | #define EIGEN_TRANSFORM_H |
---|
14 | |
---|
15 | namespace Eigen { |
---|
16 | |
---|
17 | namespace internal { |
---|
18 | |
---|
19 | template<typename Transform> |
---|
20 | struct transform_traits |
---|
21 | { |
---|
22 | enum |
---|
23 | { |
---|
24 | Dim = Transform::Dim, |
---|
25 | HDim = Transform::HDim, |
---|
26 | Mode = Transform::Mode, |
---|
27 | IsProjective = (int(Mode)==int(Projective)) |
---|
28 | }; |
---|
29 | }; |
---|
30 | |
---|
31 | template< typename TransformType, |
---|
32 | typename MatrixType, |
---|
33 | int Case = transform_traits<TransformType>::IsProjective ? 0 |
---|
34 | : int(MatrixType::RowsAtCompileTime) == int(transform_traits<TransformType>::HDim) ? 1 |
---|
35 | : 2> |
---|
36 | struct transform_right_product_impl; |
---|
37 | |
---|
38 | template< typename Other, |
---|
39 | int Mode, |
---|
40 | int Options, |
---|
41 | int Dim, |
---|
42 | int HDim, |
---|
43 | int OtherRows=Other::RowsAtCompileTime, |
---|
44 | int OtherCols=Other::ColsAtCompileTime> |
---|
45 | struct transform_left_product_impl; |
---|
46 | |
---|
47 | template< typename Lhs, |
---|
48 | typename Rhs, |
---|
49 | bool AnyProjective = |
---|
50 | transform_traits<Lhs>::IsProjective || |
---|
51 | transform_traits<Rhs>::IsProjective> |
---|
52 | struct transform_transform_product_impl; |
---|
53 | |
---|
54 | template< typename Other, |
---|
55 | int Mode, |
---|
56 | int Options, |
---|
57 | int Dim, |
---|
58 | int HDim, |
---|
59 | int OtherRows=Other::RowsAtCompileTime, |
---|
60 | int OtherCols=Other::ColsAtCompileTime> |
---|
61 | struct transform_construct_from_matrix; |
---|
62 | |
---|
63 | template<typename TransformType> struct transform_take_affine_part; |
---|
64 | |
---|
65 | } // end namespace internal |
---|
66 | |
---|
67 | /** \geometry_module \ingroup Geometry_Module |
---|
68 | * |
---|
69 | * \class Transform |
---|
70 | * |
---|
71 | * \brief Represents an homogeneous transformation in a N dimensional space |
---|
72 | * |
---|
73 | * \tparam _Scalar the scalar type, i.e., the type of the coefficients |
---|
74 | * \tparam _Dim the dimension of the space |
---|
75 | * \tparam _Mode the type of the transformation. Can be: |
---|
76 | * - #Affine: the transformation is stored as a (Dim+1)^2 matrix, |
---|
77 | * where the last row is assumed to be [0 ... 0 1]. |
---|
78 | * - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix. |
---|
79 | * - #Projective: the transformation is stored as a (Dim+1)^2 matrix |
---|
80 | * without any assumption. |
---|
81 | * \tparam _Options has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor. |
---|
82 | * These Options are passed directly to the underlying matrix type. |
---|
83 | * |
---|
84 | * The homography is internally represented and stored by a matrix which |
---|
85 | * is available through the matrix() method. To understand the behavior of |
---|
86 | * this class you have to think a Transform object as its internal |
---|
87 | * matrix representation. The chosen convention is right multiply: |
---|
88 | * |
---|
89 | * \code v' = T * v \endcode |
---|
90 | * |
---|
91 | * Therefore, an affine transformation matrix M is shaped like this: |
---|
92 | * |
---|
93 | * \f$ \left( \begin{array}{cc} |
---|
94 | * linear & translation\\ |
---|
95 | * 0 ... 0 & 1 |
---|
96 | * \end{array} \right) \f$ |
---|
97 | * |
---|
98 | * Note that for a projective transformation the last row can be anything, |
---|
99 | * and then the interpretation of different parts might be sightly different. |
---|
100 | * |
---|
101 | * However, unlike a plain matrix, the Transform class provides many features |
---|
102 | * simplifying both its assembly and usage. In particular, it can be composed |
---|
103 | * with any other transformations (Transform,Translation,RotationBase,Matrix) |
---|
104 | * and can be directly used to transform implicit homogeneous vectors. All these |
---|
105 | * operations are handled via the operator*. For the composition of transformations, |
---|
106 | * its principle consists to first convert the right/left hand sides of the product |
---|
107 | * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product. |
---|
108 | * Of course, internally, operator* tries to perform the minimal number of operations |
---|
109 | * according to the nature of each terms. Likewise, when applying the transform |
---|
110 | * to non homogeneous vectors, the latters are automatically promoted to homogeneous |
---|
111 | * one before doing the matrix product. The convertions to homogeneous representations |
---|
112 | * are performed as follow: |
---|
113 | * |
---|
114 | * \b Translation t (Dim)x(1): |
---|
115 | * \f$ \left( \begin{array}{cc} |
---|
116 | * I & t \\ |
---|
117 | * 0\,...\,0 & 1 |
---|
118 | * \end{array} \right) \f$ |
---|
119 | * |
---|
120 | * \b Rotation R (Dim)x(Dim): |
---|
121 | * \f$ \left( \begin{array}{cc} |
---|
122 | * R & 0\\ |
---|
123 | * 0\,...\,0 & 1 |
---|
124 | * \end{array} \right) \f$ |
---|
125 | * |
---|
126 | * \b Linear \b Matrix L (Dim)x(Dim): |
---|
127 | * \f$ \left( \begin{array}{cc} |
---|
128 | * L & 0\\ |
---|
129 | * 0\,...\,0 & 1 |
---|
130 | * \end{array} \right) \f$ |
---|
131 | * |
---|
132 | * \b Affine \b Matrix A (Dim)x(Dim+1): |
---|
133 | * \f$ \left( \begin{array}{c} |
---|
134 | * A\\ |
---|
135 | * 0\,...\,0\,1 |
---|
136 | * \end{array} \right) \f$ |
---|
137 | * |
---|
138 | * \b Column \b vector v (Dim)x(1): |
---|
139 | * \f$ \left( \begin{array}{c} |
---|
140 | * v\\ |
---|
141 | * 1 |
---|
142 | * \end{array} \right) \f$ |
---|
143 | * |
---|
144 | * \b Set \b of \b column \b vectors V1...Vn (Dim)x(n): |
---|
145 | * \f$ \left( \begin{array}{ccc} |
---|
146 | * v_1 & ... & v_n\\ |
---|
147 | * 1 & ... & 1 |
---|
148 | * \end{array} \right) \f$ |
---|
149 | * |
---|
150 | * The concatenation of a Transform object with any kind of other transformation |
---|
151 | * always returns a Transform object. |
---|
152 | * |
---|
153 | * A little exception to the "as pure matrix product" rule is the case of the |
---|
154 | * transformation of non homogeneous vectors by an affine transformation. In |
---|
155 | * that case the last matrix row can be ignored, and the product returns non |
---|
156 | * homogeneous vectors. |
---|
157 | * |
---|
158 | * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation, |
---|
159 | * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix. |
---|
160 | * The solution is either to use a Dim x Dynamic matrix or explicitly request a |
---|
161 | * vector transformation by making the vector homogeneous: |
---|
162 | * \code |
---|
163 | * m' = T * m.colwise().homogeneous(); |
---|
164 | * \endcode |
---|
165 | * Note that there is zero overhead. |
---|
166 | * |
---|
167 | * Conversion methods from/to Qt's QMatrix and QTransform are available if the |
---|
168 | * preprocessor token EIGEN_QT_SUPPORT is defined. |
---|
169 | * |
---|
170 | * This class can be extended with the help of the plugin mechanism described on the page |
---|
171 | * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN. |
---|
172 | * |
---|
173 | * \sa class Matrix, class Quaternion |
---|
174 | */ |
---|
175 | template<typename _Scalar, int _Dim, int _Mode, int _Options> |
---|
176 | class Transform |
---|
177 | { |
---|
178 | public: |
---|
179 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1)) |
---|
180 | enum { |
---|
181 | Mode = _Mode, |
---|
182 | Options = _Options, |
---|
183 | Dim = _Dim, ///< space dimension in which the transformation holds |
---|
184 | HDim = _Dim+1, ///< size of a respective homogeneous vector |
---|
185 | Rows = int(Mode)==(AffineCompact) ? Dim : HDim |
---|
186 | }; |
---|
187 | /** the scalar type of the coefficients */ |
---|
188 | typedef _Scalar Scalar; |
---|
189 | typedef DenseIndex Index; |
---|
190 | /** type of the matrix used to represent the transformation */ |
---|
191 | typedef typename internal::make_proper_matrix_type<Scalar,Rows,HDim,Options>::type MatrixType; |
---|
192 | /** constified MatrixType */ |
---|
193 | typedef const MatrixType ConstMatrixType; |
---|
194 | /** type of the matrix used to represent the linear part of the transformation */ |
---|
195 | typedef Matrix<Scalar,Dim,Dim,Options> LinearMatrixType; |
---|
196 | /** type of read/write reference to the linear part of the transformation */ |
---|
197 | typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact)> LinearPart; |
---|
198 | /** type of read reference to the linear part of the transformation */ |
---|
199 | typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact)> ConstLinearPart; |
---|
200 | /** type of read/write reference to the affine part of the transformation */ |
---|
201 | typedef typename internal::conditional<int(Mode)==int(AffineCompact), |
---|
202 | MatrixType&, |
---|
203 | Block<MatrixType,Dim,HDim> >::type AffinePart; |
---|
204 | /** type of read reference to the affine part of the transformation */ |
---|
205 | typedef typename internal::conditional<int(Mode)==int(AffineCompact), |
---|
206 | const MatrixType&, |
---|
207 | const Block<const MatrixType,Dim,HDim> >::type ConstAffinePart; |
---|
208 | /** type of a vector */ |
---|
209 | typedef Matrix<Scalar,Dim,1> VectorType; |
---|
210 | /** type of a read/write reference to the translation part of the rotation */ |
---|
211 | typedef Block<MatrixType,Dim,1,int(Mode)==(AffineCompact)> TranslationPart; |
---|
212 | /** type of a read reference to the translation part of the rotation */ |
---|
213 | typedef const Block<ConstMatrixType,Dim,1,int(Mode)==(AffineCompact)> ConstTranslationPart; |
---|
214 | /** corresponding translation type */ |
---|
215 | typedef Translation<Scalar,Dim> TranslationType; |
---|
216 | |
---|
217 | // this intermediate enum is needed to avoid an ICE with gcc 3.4 and 4.0 |
---|
218 | enum { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) }; |
---|
219 | /** The return type of the product between a diagonal matrix and a transform */ |
---|
220 | typedef Transform<Scalar,Dim,TransformTimeDiagonalMode> TransformTimeDiagonalReturnType; |
---|
221 | |
---|
222 | protected: |
---|
223 | |
---|
224 | MatrixType m_matrix; |
---|
225 | |
---|
226 | public: |
---|
227 | |
---|
228 | /** Default constructor without initialization of the meaningful coefficients. |
---|
229 | * If Mode==Affine, then the last row is set to [0 ... 0 1] */ |
---|
230 | inline Transform() |
---|
231 | { |
---|
232 | check_template_params(); |
---|
233 | if (int(Mode)==Affine) |
---|
234 | makeAffine(); |
---|
235 | } |
---|
236 | |
---|
237 | inline Transform(const Transform& other) |
---|
238 | { |
---|
239 | check_template_params(); |
---|
240 | m_matrix = other.m_matrix; |
---|
241 | } |
---|
242 | |
---|
243 | inline explicit Transform(const TranslationType& t) |
---|
244 | { |
---|
245 | check_template_params(); |
---|
246 | *this = t; |
---|
247 | } |
---|
248 | inline explicit Transform(const UniformScaling<Scalar>& s) |
---|
249 | { |
---|
250 | check_template_params(); |
---|
251 | *this = s; |
---|
252 | } |
---|
253 | template<typename Derived> |
---|
254 | inline explicit Transform(const RotationBase<Derived, Dim>& r) |
---|
255 | { |
---|
256 | check_template_params(); |
---|
257 | *this = r; |
---|
258 | } |
---|
259 | |
---|
260 | inline Transform& operator=(const Transform& other) |
---|
261 | { m_matrix = other.m_matrix; return *this; } |
---|
262 | |
---|
263 | typedef internal::transform_take_affine_part<Transform> take_affine_part; |
---|
264 | |
---|
265 | /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */ |
---|
266 | template<typename OtherDerived> |
---|
267 | inline explicit Transform(const EigenBase<OtherDerived>& other) |
---|
268 | { |
---|
269 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value), |
---|
270 | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY); |
---|
271 | |
---|
272 | check_template_params(); |
---|
273 | internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived()); |
---|
274 | } |
---|
275 | |
---|
276 | /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */ |
---|
277 | template<typename OtherDerived> |
---|
278 | inline Transform& operator=(const EigenBase<OtherDerived>& other) |
---|
279 | { |
---|
280 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value), |
---|
281 | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY); |
---|
282 | |
---|
283 | internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived()); |
---|
284 | return *this; |
---|
285 | } |
---|
286 | |
---|
287 | template<int OtherOptions> |
---|
288 | inline Transform(const Transform<Scalar,Dim,Mode,OtherOptions>& other) |
---|
289 | { |
---|
290 | check_template_params(); |
---|
291 | // only the options change, we can directly copy the matrices |
---|
292 | m_matrix = other.matrix(); |
---|
293 | } |
---|
294 | |
---|
295 | template<int OtherMode,int OtherOptions> |
---|
296 | inline Transform(const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) |
---|
297 | { |
---|
298 | check_template_params(); |
---|
299 | // prevent conversions as: |
---|
300 | // Affine | AffineCompact | Isometry = Projective |
---|
301 | EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Projective), Mode==int(Projective)), |
---|
302 | YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION) |
---|
303 | |
---|
304 | // prevent conversions as: |
---|
305 | // Isometry = Affine | AffineCompact |
---|
306 | EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)), |
---|
307 | YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION) |
---|
308 | |
---|
309 | enum { ModeIsAffineCompact = Mode == int(AffineCompact), |
---|
310 | OtherModeIsAffineCompact = OtherMode == int(AffineCompact) |
---|
311 | }; |
---|
312 | |
---|
313 | if(ModeIsAffineCompact == OtherModeIsAffineCompact) |
---|
314 | { |
---|
315 | // We need the block expression because the code is compiled for all |
---|
316 | // combinations of transformations and will trigger a compile time error |
---|
317 | // if one tries to assign the matrices directly |
---|
318 | m_matrix.template block<Dim,Dim+1>(0,0) = other.matrix().template block<Dim,Dim+1>(0,0); |
---|
319 | makeAffine(); |
---|
320 | } |
---|
321 | else if(OtherModeIsAffineCompact) |
---|
322 | { |
---|
323 | typedef typename Transform<Scalar,Dim,OtherMode,OtherOptions>::MatrixType OtherMatrixType; |
---|
324 | internal::transform_construct_from_matrix<OtherMatrixType,Mode,Options,Dim,HDim>::run(this, other.matrix()); |
---|
325 | } |
---|
326 | else |
---|
327 | { |
---|
328 | // here we know that Mode == AffineCompact and OtherMode != AffineCompact. |
---|
329 | // if OtherMode were Projective, the static assert above would already have caught it. |
---|
330 | // So the only possibility is that OtherMode == Affine |
---|
331 | linear() = other.linear(); |
---|
332 | translation() = other.translation(); |
---|
333 | } |
---|
334 | } |
---|
335 | |
---|
336 | template<typename OtherDerived> |
---|
337 | Transform(const ReturnByValue<OtherDerived>& other) |
---|
338 | { |
---|
339 | check_template_params(); |
---|
340 | other.evalTo(*this); |
---|
341 | } |
---|
342 | |
---|
343 | template<typename OtherDerived> |
---|
344 | Transform& operator=(const ReturnByValue<OtherDerived>& other) |
---|
345 | { |
---|
346 | other.evalTo(*this); |
---|
347 | return *this; |
---|
348 | } |
---|
349 | |
---|
350 | #ifdef EIGEN_QT_SUPPORT |
---|
351 | inline Transform(const QMatrix& other); |
---|
352 | inline Transform& operator=(const QMatrix& other); |
---|
353 | inline QMatrix toQMatrix(void) const; |
---|
354 | inline Transform(const QTransform& other); |
---|
355 | inline Transform& operator=(const QTransform& other); |
---|
356 | inline QTransform toQTransform(void) const; |
---|
357 | #endif |
---|
358 | |
---|
359 | /** shortcut for m_matrix(row,col); |
---|
360 | * \sa MatrixBase::operator(Index,Index) const */ |
---|
361 | inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); } |
---|
362 | /** shortcut for m_matrix(row,col); |
---|
363 | * \sa MatrixBase::operator(Index,Index) */ |
---|
364 | inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); } |
---|
365 | |
---|
366 | /** \returns a read-only expression of the transformation matrix */ |
---|
367 | inline const MatrixType& matrix() const { return m_matrix; } |
---|
368 | /** \returns a writable expression of the transformation matrix */ |
---|
369 | inline MatrixType& matrix() { return m_matrix; } |
---|
370 | |
---|
371 | /** \returns a read-only expression of the linear part of the transformation */ |
---|
372 | inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix,0,0); } |
---|
373 | /** \returns a writable expression of the linear part of the transformation */ |
---|
374 | inline LinearPart linear() { return LinearPart(m_matrix,0,0); } |
---|
375 | |
---|
376 | /** \returns a read-only expression of the Dim x HDim affine part of the transformation */ |
---|
377 | inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); } |
---|
378 | /** \returns a writable expression of the Dim x HDim affine part of the transformation */ |
---|
379 | inline AffinePart affine() { return take_affine_part::run(m_matrix); } |
---|
380 | |
---|
381 | /** \returns a read-only expression of the translation vector of the transformation */ |
---|
382 | inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix,0,Dim); } |
---|
383 | /** \returns a writable expression of the translation vector of the transformation */ |
---|
384 | inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); } |
---|
385 | |
---|
386 | /** \returns an expression of the product between the transform \c *this and a matrix expression \a other |
---|
387 | * |
---|
388 | * The right hand side \a other might be either: |
---|
389 | * \li a vector of size Dim, |
---|
390 | * \li an homogeneous vector of size Dim+1, |
---|
391 | * \li a set of vectors of size Dim x Dynamic, |
---|
392 | * \li a set of homogeneous vectors of size Dim+1 x Dynamic, |
---|
393 | * \li a linear transformation matrix of size Dim x Dim, |
---|
394 | * \li an affine transformation matrix of size Dim x Dim+1, |
---|
395 | * \li a transformation matrix of size Dim+1 x Dim+1. |
---|
396 | */ |
---|
397 | // note: this function is defined here because some compilers cannot find the respective declaration |
---|
398 | template<typename OtherDerived> |
---|
399 | EIGEN_STRONG_INLINE const typename internal::transform_right_product_impl<Transform, OtherDerived>::ResultType |
---|
400 | operator * (const EigenBase<OtherDerived> &other) const |
---|
401 | { return internal::transform_right_product_impl<Transform, OtherDerived>::run(*this,other.derived()); } |
---|
402 | |
---|
403 | /** \returns the product expression of a transformation matrix \a a times a transform \a b |
---|
404 | * |
---|
405 | * The left hand side \a other might be either: |
---|
406 | * \li a linear transformation matrix of size Dim x Dim, |
---|
407 | * \li an affine transformation matrix of size Dim x Dim+1, |
---|
408 | * \li a general transformation matrix of size Dim+1 x Dim+1. |
---|
409 | */ |
---|
410 | template<typename OtherDerived> friend |
---|
411 | inline const typename internal::transform_left_product_impl<OtherDerived,Mode,Options,_Dim,_Dim+1>::ResultType |
---|
412 | operator * (const EigenBase<OtherDerived> &a, const Transform &b) |
---|
413 | { return internal::transform_left_product_impl<OtherDerived,Mode,Options,Dim,HDim>::run(a.derived(),b); } |
---|
414 | |
---|
415 | /** \returns The product expression of a transform \a a times a diagonal matrix \a b |
---|
416 | * |
---|
417 | * The rhs diagonal matrix is interpreted as an affine scaling transformation. The |
---|
418 | * product results in a Transform of the same type (mode) as the lhs only if the lhs |
---|
419 | * mode is no isometry. In that case, the returned transform is an affinity. |
---|
420 | */ |
---|
421 | template<typename DiagonalDerived> |
---|
422 | inline const TransformTimeDiagonalReturnType |
---|
423 | operator * (const DiagonalBase<DiagonalDerived> &b) const |
---|
424 | { |
---|
425 | TransformTimeDiagonalReturnType res(*this); |
---|
426 | res.linear() *= b; |
---|
427 | return res; |
---|
428 | } |
---|
429 | |
---|
430 | /** \returns The product expression of a diagonal matrix \a a times a transform \a b |
---|
431 | * |
---|
432 | * The lhs diagonal matrix is interpreted as an affine scaling transformation. The |
---|
433 | * product results in a Transform of the same type (mode) as the lhs only if the lhs |
---|
434 | * mode is no isometry. In that case, the returned transform is an affinity. |
---|
435 | */ |
---|
436 | template<typename DiagonalDerived> |
---|
437 | friend inline TransformTimeDiagonalReturnType |
---|
438 | operator * (const DiagonalBase<DiagonalDerived> &a, const Transform &b) |
---|
439 | { |
---|
440 | TransformTimeDiagonalReturnType res; |
---|
441 | res.linear().noalias() = a*b.linear(); |
---|
442 | res.translation().noalias() = a*b.translation(); |
---|
443 | if (Mode!=int(AffineCompact)) |
---|
444 | res.matrix().row(Dim) = b.matrix().row(Dim); |
---|
445 | return res; |
---|
446 | } |
---|
447 | |
---|
448 | template<typename OtherDerived> |
---|
449 | inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; } |
---|
450 | |
---|
451 | /** Concatenates two transformations */ |
---|
452 | inline const Transform operator * (const Transform& other) const |
---|
453 | { |
---|
454 | return internal::transform_transform_product_impl<Transform,Transform>::run(*this,other); |
---|
455 | } |
---|
456 | |
---|
457 | #ifdef __INTEL_COMPILER |
---|
458 | private: |
---|
459 | // this intermediate structure permits to workaround a bug in ICC 11: |
---|
460 | // error: template instantiation resulted in unexpected function type of "Eigen::Transform<double, 3, 32, 0> |
---|
461 | // (const Eigen::Transform<double, 3, 2, 0> &) const" |
---|
462 | // (the meaning of a name may have changed since the template declaration -- the type of the template is: |
---|
463 | // "Eigen::internal::transform_transform_product_impl<Eigen::Transform<double, 3, 32, 0>, |
---|
464 | // Eigen::Transform<double, 3, Mode, Options>, <expression>>::ResultType (const Eigen::Transform<double, 3, Mode, Options> &) const") |
---|
465 | // |
---|
466 | template<int OtherMode,int OtherOptions> struct icc_11_workaround |
---|
467 | { |
---|
468 | typedef internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> > ProductType; |
---|
469 | typedef typename ProductType::ResultType ResultType; |
---|
470 | }; |
---|
471 | |
---|
472 | public: |
---|
473 | /** Concatenates two different transformations */ |
---|
474 | template<int OtherMode,int OtherOptions> |
---|
475 | inline typename icc_11_workaround<OtherMode,OtherOptions>::ResultType |
---|
476 | operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const |
---|
477 | { |
---|
478 | typedef typename icc_11_workaround<OtherMode,OtherOptions>::ProductType ProductType; |
---|
479 | return ProductType::run(*this,other); |
---|
480 | } |
---|
481 | #else |
---|
482 | /** Concatenates two different transformations */ |
---|
483 | template<int OtherMode,int OtherOptions> |
---|
484 | inline typename internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::ResultType |
---|
485 | operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const |
---|
486 | { |
---|
487 | return internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::run(*this,other); |
---|
488 | } |
---|
489 | #endif |
---|
490 | |
---|
491 | /** \sa MatrixBase::setIdentity() */ |
---|
492 | void setIdentity() { m_matrix.setIdentity(); } |
---|
493 | |
---|
494 | /** |
---|
495 | * \brief Returns an identity transformation. |
---|
496 | * \todo In the future this function should be returning a Transform expression. |
---|
497 | */ |
---|
498 | static const Transform Identity() |
---|
499 | { |
---|
500 | return Transform(MatrixType::Identity()); |
---|
501 | } |
---|
502 | |
---|
503 | template<typename OtherDerived> |
---|
504 | inline Transform& scale(const MatrixBase<OtherDerived> &other); |
---|
505 | |
---|
506 | template<typename OtherDerived> |
---|
507 | inline Transform& prescale(const MatrixBase<OtherDerived> &other); |
---|
508 | |
---|
509 | inline Transform& scale(Scalar s); |
---|
510 | inline Transform& prescale(Scalar s); |
---|
511 | |
---|
512 | template<typename OtherDerived> |
---|
513 | inline Transform& translate(const MatrixBase<OtherDerived> &other); |
---|
514 | |
---|
515 | template<typename OtherDerived> |
---|
516 | inline Transform& pretranslate(const MatrixBase<OtherDerived> &other); |
---|
517 | |
---|
518 | template<typename RotationType> |
---|
519 | inline Transform& rotate(const RotationType& rotation); |
---|
520 | |
---|
521 | template<typename RotationType> |
---|
522 | inline Transform& prerotate(const RotationType& rotation); |
---|
523 | |
---|
524 | Transform& shear(Scalar sx, Scalar sy); |
---|
525 | Transform& preshear(Scalar sx, Scalar sy); |
---|
526 | |
---|
527 | inline Transform& operator=(const TranslationType& t); |
---|
528 | inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); } |
---|
529 | inline Transform operator*(const TranslationType& t) const; |
---|
530 | |
---|
531 | inline Transform& operator=(const UniformScaling<Scalar>& t); |
---|
532 | inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); } |
---|
533 | inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Isometry)> operator*(const UniformScaling<Scalar>& s) const |
---|
534 | { |
---|
535 | Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Isometry),Options> res = *this; |
---|
536 | res.scale(s.factor()); |
---|
537 | return res; |
---|
538 | } |
---|
539 | |
---|
540 | inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linear() *= s; return *this; } |
---|
541 | |
---|
542 | template<typename Derived> |
---|
543 | inline Transform& operator=(const RotationBase<Derived,Dim>& r); |
---|
544 | template<typename Derived> |
---|
545 | inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); } |
---|
546 | template<typename Derived> |
---|
547 | inline Transform operator*(const RotationBase<Derived,Dim>& r) const; |
---|
548 | |
---|
549 | const LinearMatrixType rotation() const; |
---|
550 | template<typename RotationMatrixType, typename ScalingMatrixType> |
---|
551 | void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const; |
---|
552 | template<typename ScalingMatrixType, typename RotationMatrixType> |
---|
553 | void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const; |
---|
554 | |
---|
555 | template<typename PositionDerived, typename OrientationType, typename ScaleDerived> |
---|
556 | Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position, |
---|
557 | const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale); |
---|
558 | |
---|
559 | inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const; |
---|
560 | |
---|
561 | /** \returns a const pointer to the column major internal matrix */ |
---|
562 | const Scalar* data() const { return m_matrix.data(); } |
---|
563 | /** \returns a non-const pointer to the column major internal matrix */ |
---|
564 | Scalar* data() { return m_matrix.data(); } |
---|
565 | |
---|
566 | /** \returns \c *this with scalar type casted to \a NewScalarType |
---|
567 | * |
---|
568 | * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
---|
569 | * then this function smartly returns a const reference to \c *this. |
---|
570 | */ |
---|
571 | template<typename NewScalarType> |
---|
572 | inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type cast() const |
---|
573 | { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type(*this); } |
---|
574 | |
---|
575 | /** Copy constructor with scalar type conversion */ |
---|
576 | template<typename OtherScalarType> |
---|
577 | inline explicit Transform(const Transform<OtherScalarType,Dim,Mode,Options>& other) |
---|
578 | { |
---|
579 | check_template_params(); |
---|
580 | m_matrix = other.matrix().template cast<Scalar>(); |
---|
581 | } |
---|
582 | |
---|
583 | /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
---|
584 | * determined by \a prec. |
---|
585 | * |
---|
586 | * \sa MatrixBase::isApprox() */ |
---|
587 | bool isApprox(const Transform& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const |
---|
588 | { return m_matrix.isApprox(other.m_matrix, prec); } |
---|
589 | |
---|
590 | /** Sets the last row to [0 ... 0 1] |
---|
591 | */ |
---|
592 | void makeAffine() |
---|
593 | { |
---|
594 | if(int(Mode)!=int(AffineCompact)) |
---|
595 | { |
---|
596 | matrix().template block<1,Dim>(Dim,0).setZero(); |
---|
597 | matrix().coeffRef(Dim,Dim) = Scalar(1); |
---|
598 | } |
---|
599 | } |
---|
600 | |
---|
601 | /** \internal |
---|
602 | * \returns the Dim x Dim linear part if the transformation is affine, |
---|
603 | * and the HDim x Dim part for projective transformations. |
---|
604 | */ |
---|
605 | inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() |
---|
606 | { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); } |
---|
607 | /** \internal |
---|
608 | * \returns the Dim x Dim linear part if the transformation is affine, |
---|
609 | * and the HDim x Dim part for projective transformations. |
---|
610 | */ |
---|
611 | inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() const |
---|
612 | { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); } |
---|
613 | |
---|
614 | /** \internal |
---|
615 | * \returns the translation part if the transformation is affine, |
---|
616 | * and the last column for projective transformations. |
---|
617 | */ |
---|
618 | inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() |
---|
619 | { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); } |
---|
620 | /** \internal |
---|
621 | * \returns the translation part if the transformation is affine, |
---|
622 | * and the last column for projective transformations. |
---|
623 | */ |
---|
624 | inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() const |
---|
625 | { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); } |
---|
626 | |
---|
627 | |
---|
628 | #ifdef EIGEN_TRANSFORM_PLUGIN |
---|
629 | #include EIGEN_TRANSFORM_PLUGIN |
---|
630 | #endif |
---|
631 | |
---|
632 | protected: |
---|
633 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
---|
634 | static EIGEN_STRONG_INLINE void check_template_params() |
---|
635 | { |
---|
636 | EIGEN_STATIC_ASSERT((Options & (DontAlign|RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS) |
---|
637 | } |
---|
638 | #endif |
---|
639 | |
---|
640 | }; |
---|
641 | |
---|
642 | /** \ingroup Geometry_Module */ |
---|
643 | typedef Transform<float,2,Isometry> Isometry2f; |
---|
644 | /** \ingroup Geometry_Module */ |
---|
645 | typedef Transform<float,3,Isometry> Isometry3f; |
---|
646 | /** \ingroup Geometry_Module */ |
---|
647 | typedef Transform<double,2,Isometry> Isometry2d; |
---|
648 | /** \ingroup Geometry_Module */ |
---|
649 | typedef Transform<double,3,Isometry> Isometry3d; |
---|
650 | |
---|
651 | /** \ingroup Geometry_Module */ |
---|
652 | typedef Transform<float,2,Affine> Affine2f; |
---|
653 | /** \ingroup Geometry_Module */ |
---|
654 | typedef Transform<float,3,Affine> Affine3f; |
---|
655 | /** \ingroup Geometry_Module */ |
---|
656 | typedef Transform<double,2,Affine> Affine2d; |
---|
657 | /** \ingroup Geometry_Module */ |
---|
658 | typedef Transform<double,3,Affine> Affine3d; |
---|
659 | |
---|
660 | /** \ingroup Geometry_Module */ |
---|
661 | typedef Transform<float,2,AffineCompact> AffineCompact2f; |
---|
662 | /** \ingroup Geometry_Module */ |
---|
663 | typedef Transform<float,3,AffineCompact> AffineCompact3f; |
---|
664 | /** \ingroup Geometry_Module */ |
---|
665 | typedef Transform<double,2,AffineCompact> AffineCompact2d; |
---|
666 | /** \ingroup Geometry_Module */ |
---|
667 | typedef Transform<double,3,AffineCompact> AffineCompact3d; |
---|
668 | |
---|
669 | /** \ingroup Geometry_Module */ |
---|
670 | typedef Transform<float,2,Projective> Projective2f; |
---|
671 | /** \ingroup Geometry_Module */ |
---|
672 | typedef Transform<float,3,Projective> Projective3f; |
---|
673 | /** \ingroup Geometry_Module */ |
---|
674 | typedef Transform<double,2,Projective> Projective2d; |
---|
675 | /** \ingroup Geometry_Module */ |
---|
676 | typedef Transform<double,3,Projective> Projective3d; |
---|
677 | |
---|
678 | /************************** |
---|
679 | *** Optional QT support *** |
---|
680 | **************************/ |
---|
681 | |
---|
682 | #ifdef EIGEN_QT_SUPPORT |
---|
683 | /** Initializes \c *this from a QMatrix assuming the dimension is 2. |
---|
684 | * |
---|
685 | * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
---|
686 | */ |
---|
687 | template<typename Scalar, int Dim, int Mode,int Options> |
---|
688 | Transform<Scalar,Dim,Mode,Options>::Transform(const QMatrix& other) |
---|
689 | { |
---|
690 | check_template_params(); |
---|
691 | *this = other; |
---|
692 | } |
---|
693 | |
---|
694 | /** Set \c *this from a QMatrix assuming the dimension is 2. |
---|
695 | * |
---|
696 | * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
---|
697 | */ |
---|
698 | template<typename Scalar, int Dim, int Mode,int Options> |
---|
699 | Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QMatrix& other) |
---|
700 | { |
---|
701 | EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
---|
702 | m_matrix << other.m11(), other.m21(), other.dx(), |
---|
703 | other.m12(), other.m22(), other.dy(), |
---|
704 | 0, 0, 1; |
---|
705 | return *this; |
---|
706 | } |
---|
707 | |
---|
708 | /** \returns a QMatrix from \c *this assuming the dimension is 2. |
---|
709 | * |
---|
710 | * \warning this conversion might loss data if \c *this is not affine |
---|
711 | * |
---|
712 | * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
---|
713 | */ |
---|
714 | template<typename Scalar, int Dim, int Mode, int Options> |
---|
715 | QMatrix Transform<Scalar,Dim,Mode,Options>::toQMatrix(void) const |
---|
716 | { |
---|
717 | check_template_params(); |
---|
718 | EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
---|
719 | return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0), |
---|
720 | m_matrix.coeff(0,1), m_matrix.coeff(1,1), |
---|
721 | m_matrix.coeff(0,2), m_matrix.coeff(1,2)); |
---|
722 | } |
---|
723 | |
---|
724 | /** Initializes \c *this from a QTransform assuming the dimension is 2. |
---|
725 | * |
---|
726 | * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
---|
727 | */ |
---|
728 | template<typename Scalar, int Dim, int Mode,int Options> |
---|
729 | Transform<Scalar,Dim,Mode,Options>::Transform(const QTransform& other) |
---|
730 | { |
---|
731 | check_template_params(); |
---|
732 | *this = other; |
---|
733 | } |
---|
734 | |
---|
735 | /** Set \c *this from a QTransform assuming the dimension is 2. |
---|
736 | * |
---|
737 | * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
---|
738 | */ |
---|
739 | template<typename Scalar, int Dim, int Mode, int Options> |
---|
740 | Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QTransform& other) |
---|
741 | { |
---|
742 | check_template_params(); |
---|
743 | EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
---|
744 | if (Mode == int(AffineCompact)) |
---|
745 | m_matrix << other.m11(), other.m21(), other.dx(), |
---|
746 | other.m12(), other.m22(), other.dy(); |
---|
747 | else |
---|
748 | m_matrix << other.m11(), other.m21(), other.dx(), |
---|
749 | other.m12(), other.m22(), other.dy(), |
---|
750 | other.m13(), other.m23(), other.m33(); |
---|
751 | return *this; |
---|
752 | } |
---|
753 | |
---|
754 | /** \returns a QTransform from \c *this assuming the dimension is 2. |
---|
755 | * |
---|
756 | * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
---|
757 | */ |
---|
758 | template<typename Scalar, int Dim, int Mode, int Options> |
---|
759 | QTransform Transform<Scalar,Dim,Mode,Options>::toQTransform(void) const |
---|
760 | { |
---|
761 | EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
---|
762 | if (Mode == int(AffineCompact)) |
---|
763 | return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), |
---|
764 | m_matrix.coeff(0,1), m_matrix.coeff(1,1), |
---|
765 | m_matrix.coeff(0,2), m_matrix.coeff(1,2)); |
---|
766 | else |
---|
767 | return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0), |
---|
768 | m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1), |
---|
769 | m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2)); |
---|
770 | } |
---|
771 | #endif |
---|
772 | |
---|
773 | /********************* |
---|
774 | *** Procedural API *** |
---|
775 | *********************/ |
---|
776 | |
---|
777 | /** Applies on the right the non uniform scale transformation represented |
---|
778 | * by the vector \a other to \c *this and returns a reference to \c *this. |
---|
779 | * \sa prescale() |
---|
780 | */ |
---|
781 | template<typename Scalar, int Dim, int Mode, int Options> |
---|
782 | template<typename OtherDerived> |
---|
783 | Transform<Scalar,Dim,Mode,Options>& |
---|
784 | Transform<Scalar,Dim,Mode,Options>::scale(const MatrixBase<OtherDerived> &other) |
---|
785 | { |
---|
786 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) |
---|
787 | EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) |
---|
788 | linearExt().noalias() = (linearExt() * other.asDiagonal()); |
---|
789 | return *this; |
---|
790 | } |
---|
791 | |
---|
792 | /** Applies on the right a uniform scale of a factor \a c to \c *this |
---|
793 | * and returns a reference to \c *this. |
---|
794 | * \sa prescale(Scalar) |
---|
795 | */ |
---|
796 | template<typename Scalar, int Dim, int Mode, int Options> |
---|
797 | inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::scale(Scalar s) |
---|
798 | { |
---|
799 | EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) |
---|
800 | linearExt() *= s; |
---|
801 | return *this; |
---|
802 | } |
---|
803 | |
---|
804 | /** Applies on the left the non uniform scale transformation represented |
---|
805 | * by the vector \a other to \c *this and returns a reference to \c *this. |
---|
806 | * \sa scale() |
---|
807 | */ |
---|
808 | template<typename Scalar, int Dim, int Mode, int Options> |
---|
809 | template<typename OtherDerived> |
---|
810 | Transform<Scalar,Dim,Mode,Options>& |
---|
811 | Transform<Scalar,Dim,Mode,Options>::prescale(const MatrixBase<OtherDerived> &other) |
---|
812 | { |
---|
813 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) |
---|
814 | EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) |
---|
815 | m_matrix.template block<Dim,HDim>(0,0).noalias() = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)); |
---|
816 | return *this; |
---|
817 | } |
---|
818 | |
---|
819 | /** Applies on the left a uniform scale of a factor \a c to \c *this |
---|
820 | * and returns a reference to \c *this. |
---|
821 | * \sa scale(Scalar) |
---|
822 | */ |
---|
823 | template<typename Scalar, int Dim, int Mode, int Options> |
---|
824 | inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::prescale(Scalar s) |
---|
825 | { |
---|
826 | EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) |
---|
827 | m_matrix.template topRows<Dim>() *= s; |
---|
828 | return *this; |
---|
829 | } |
---|
830 | |
---|
831 | /** Applies on the right the translation matrix represented by the vector \a other |
---|
832 | * to \c *this and returns a reference to \c *this. |
---|
833 | * \sa pretranslate() |
---|
834 | */ |
---|
835 | template<typename Scalar, int Dim, int Mode, int Options> |
---|
836 | template<typename OtherDerived> |
---|
837 | Transform<Scalar,Dim,Mode,Options>& |
---|
838 | Transform<Scalar,Dim,Mode,Options>::translate(const MatrixBase<OtherDerived> &other) |
---|
839 | { |
---|
840 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) |
---|
841 | translationExt() += linearExt() * other; |
---|
842 | return *this; |
---|
843 | } |
---|
844 | |
---|
845 | /** Applies on the left the translation matrix represented by the vector \a other |
---|
846 | * to \c *this and returns a reference to \c *this. |
---|
847 | * \sa translate() |
---|
848 | */ |
---|
849 | template<typename Scalar, int Dim, int Mode, int Options> |
---|
850 | template<typename OtherDerived> |
---|
851 | Transform<Scalar,Dim,Mode,Options>& |
---|
852 | Transform<Scalar,Dim,Mode,Options>::pretranslate(const MatrixBase<OtherDerived> &other) |
---|
853 | { |
---|
854 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) |
---|
855 | if(int(Mode)==int(Projective)) |
---|
856 | affine() += other * m_matrix.row(Dim); |
---|
857 | else |
---|
858 | translation() += other; |
---|
859 | return *this; |
---|
860 | } |
---|
861 | |
---|
862 | /** Applies on the right the rotation represented by the rotation \a rotation |
---|
863 | * to \c *this and returns a reference to \c *this. |
---|
864 | * |
---|
865 | * The template parameter \a RotationType is the type of the rotation which |
---|
866 | * must be known by internal::toRotationMatrix<>. |
---|
867 | * |
---|
868 | * Natively supported types includes: |
---|
869 | * - any scalar (2D), |
---|
870 | * - a Dim x Dim matrix expression, |
---|
871 | * - a Quaternion (3D), |
---|
872 | * - a AngleAxis (3D) |
---|
873 | * |
---|
874 | * This mechanism is easily extendable to support user types such as Euler angles, |
---|
875 | * or a pair of Quaternion for 4D rotations. |
---|
876 | * |
---|
877 | * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType) |
---|
878 | */ |
---|
879 | template<typename Scalar, int Dim, int Mode, int Options> |
---|
880 | template<typename RotationType> |
---|
881 | Transform<Scalar,Dim,Mode,Options>& |
---|
882 | Transform<Scalar,Dim,Mode,Options>::rotate(const RotationType& rotation) |
---|
883 | { |
---|
884 | linearExt() *= internal::toRotationMatrix<Scalar,Dim>(rotation); |
---|
885 | return *this; |
---|
886 | } |
---|
887 | |
---|
888 | /** Applies on the left the rotation represented by the rotation \a rotation |
---|
889 | * to \c *this and returns a reference to \c *this. |
---|
890 | * |
---|
891 | * See rotate() for further details. |
---|
892 | * |
---|
893 | * \sa rotate() |
---|
894 | */ |
---|
895 | template<typename Scalar, int Dim, int Mode, int Options> |
---|
896 | template<typename RotationType> |
---|
897 | Transform<Scalar,Dim,Mode,Options>& |
---|
898 | Transform<Scalar,Dim,Mode,Options>::prerotate(const RotationType& rotation) |
---|
899 | { |
---|
900 | m_matrix.template block<Dim,HDim>(0,0) = internal::toRotationMatrix<Scalar,Dim>(rotation) |
---|
901 | * m_matrix.template block<Dim,HDim>(0,0); |
---|
902 | return *this; |
---|
903 | } |
---|
904 | |
---|
905 | /** Applies on the right the shear transformation represented |
---|
906 | * by the vector \a other to \c *this and returns a reference to \c *this. |
---|
907 | * \warning 2D only. |
---|
908 | * \sa preshear() |
---|
909 | */ |
---|
910 | template<typename Scalar, int Dim, int Mode, int Options> |
---|
911 | Transform<Scalar,Dim,Mode,Options>& |
---|
912 | Transform<Scalar,Dim,Mode,Options>::shear(Scalar sx, Scalar sy) |
---|
913 | { |
---|
914 | EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
---|
915 | EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) |
---|
916 | VectorType tmp = linear().col(0)*sy + linear().col(1); |
---|
917 | linear() << linear().col(0) + linear().col(1)*sx, tmp; |
---|
918 | return *this; |
---|
919 | } |
---|
920 | |
---|
921 | /** Applies on the left the shear transformation represented |
---|
922 | * by the vector \a other to \c *this and returns a reference to \c *this. |
---|
923 | * \warning 2D only. |
---|
924 | * \sa shear() |
---|
925 | */ |
---|
926 | template<typename Scalar, int Dim, int Mode, int Options> |
---|
927 | Transform<Scalar,Dim,Mode,Options>& |
---|
928 | Transform<Scalar,Dim,Mode,Options>::preshear(Scalar sx, Scalar sy) |
---|
929 | { |
---|
930 | EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
---|
931 | EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) |
---|
932 | m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0); |
---|
933 | return *this; |
---|
934 | } |
---|
935 | |
---|
936 | /****************************************************** |
---|
937 | *** Scaling, Translation and Rotation compatibility *** |
---|
938 | ******************************************************/ |
---|
939 | |
---|
940 | template<typename Scalar, int Dim, int Mode, int Options> |
---|
941 | inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const TranslationType& t) |
---|
942 | { |
---|
943 | linear().setIdentity(); |
---|
944 | translation() = t.vector(); |
---|
945 | makeAffine(); |
---|
946 | return *this; |
---|
947 | } |
---|
948 | |
---|
949 | template<typename Scalar, int Dim, int Mode, int Options> |
---|
950 | inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const TranslationType& t) const |
---|
951 | { |
---|
952 | Transform res = *this; |
---|
953 | res.translate(t.vector()); |
---|
954 | return res; |
---|
955 | } |
---|
956 | |
---|
957 | template<typename Scalar, int Dim, int Mode, int Options> |
---|
958 | inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const UniformScaling<Scalar>& s) |
---|
959 | { |
---|
960 | m_matrix.setZero(); |
---|
961 | linear().diagonal().fill(s.factor()); |
---|
962 | makeAffine(); |
---|
963 | return *this; |
---|
964 | } |
---|
965 | |
---|
966 | template<typename Scalar, int Dim, int Mode, int Options> |
---|
967 | template<typename Derived> |
---|
968 | inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const RotationBase<Derived,Dim>& r) |
---|
969 | { |
---|
970 | linear() = internal::toRotationMatrix<Scalar,Dim>(r); |
---|
971 | translation().setZero(); |
---|
972 | makeAffine(); |
---|
973 | return *this; |
---|
974 | } |
---|
975 | |
---|
976 | template<typename Scalar, int Dim, int Mode, int Options> |
---|
977 | template<typename Derived> |
---|
978 | inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const RotationBase<Derived,Dim>& r) const |
---|
979 | { |
---|
980 | Transform res = *this; |
---|
981 | res.rotate(r.derived()); |
---|
982 | return res; |
---|
983 | } |
---|
984 | |
---|
985 | /************************ |
---|
986 | *** Special functions *** |
---|
987 | ************************/ |
---|
988 | |
---|
989 | /** \returns the rotation part of the transformation |
---|
990 | * |
---|
991 | * |
---|
992 | * \svd_module |
---|
993 | * |
---|
994 | * \sa computeRotationScaling(), computeScalingRotation(), class SVD |
---|
995 | */ |
---|
996 | template<typename Scalar, int Dim, int Mode, int Options> |
---|
997 | const typename Transform<Scalar,Dim,Mode,Options>::LinearMatrixType |
---|
998 | Transform<Scalar,Dim,Mode,Options>::rotation() const |
---|
999 | { |
---|
1000 | LinearMatrixType result; |
---|
1001 | computeRotationScaling(&result, (LinearMatrixType*)0); |
---|
1002 | return result; |
---|
1003 | } |
---|
1004 | |
---|
1005 | |
---|
1006 | /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being |
---|
1007 | * not necessarily positive. |
---|
1008 | * |
---|
1009 | * If either pointer is zero, the corresponding computation is skipped. |
---|
1010 | * |
---|
1011 | * |
---|
1012 | * |
---|
1013 | * \svd_module |
---|
1014 | * |
---|
1015 | * \sa computeScalingRotation(), rotation(), class SVD |
---|
1016 | */ |
---|
1017 | template<typename Scalar, int Dim, int Mode, int Options> |
---|
1018 | template<typename RotationMatrixType, typename ScalingMatrixType> |
---|
1019 | void Transform<Scalar,Dim,Mode,Options>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const |
---|
1020 | { |
---|
1021 | JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV); |
---|
1022 | |
---|
1023 | Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 |
---|
1024 | VectorType sv(svd.singularValues()); |
---|
1025 | sv.coeffRef(0) *= x; |
---|
1026 | if(scaling) scaling->lazyAssign(svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint()); |
---|
1027 | if(rotation) |
---|
1028 | { |
---|
1029 | LinearMatrixType m(svd.matrixU()); |
---|
1030 | m.col(0) /= x; |
---|
1031 | rotation->lazyAssign(m * svd.matrixV().adjoint()); |
---|
1032 | } |
---|
1033 | } |
---|
1034 | |
---|
1035 | /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being |
---|
1036 | * not necessarily positive. |
---|
1037 | * |
---|
1038 | * If either pointer is zero, the corresponding computation is skipped. |
---|
1039 | * |
---|
1040 | * |
---|
1041 | * |
---|
1042 | * \svd_module |
---|
1043 | * |
---|
1044 | * \sa computeRotationScaling(), rotation(), class SVD |
---|
1045 | */ |
---|
1046 | template<typename Scalar, int Dim, int Mode, int Options> |
---|
1047 | template<typename ScalingMatrixType, typename RotationMatrixType> |
---|
1048 | void Transform<Scalar,Dim,Mode,Options>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const |
---|
1049 | { |
---|
1050 | JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV); |
---|
1051 | |
---|
1052 | Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 |
---|
1053 | VectorType sv(svd.singularValues()); |
---|
1054 | sv.coeffRef(0) *= x; |
---|
1055 | if(scaling) scaling->lazyAssign(svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint()); |
---|
1056 | if(rotation) |
---|
1057 | { |
---|
1058 | LinearMatrixType m(svd.matrixU()); |
---|
1059 | m.col(0) /= x; |
---|
1060 | rotation->lazyAssign(m * svd.matrixV().adjoint()); |
---|
1061 | } |
---|
1062 | } |
---|
1063 | |
---|
1064 | /** Convenient method to set \c *this from a position, orientation and scale |
---|
1065 | * of a 3D object. |
---|
1066 | */ |
---|
1067 | template<typename Scalar, int Dim, int Mode, int Options> |
---|
1068 | template<typename PositionDerived, typename OrientationType, typename ScaleDerived> |
---|
1069 | Transform<Scalar,Dim,Mode,Options>& |
---|
1070 | Transform<Scalar,Dim,Mode,Options>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position, |
---|
1071 | const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale) |
---|
1072 | { |
---|
1073 | linear() = internal::toRotationMatrix<Scalar,Dim>(orientation); |
---|
1074 | linear() *= scale.asDiagonal(); |
---|
1075 | translation() = position; |
---|
1076 | makeAffine(); |
---|
1077 | return *this; |
---|
1078 | } |
---|
1079 | |
---|
1080 | namespace internal { |
---|
1081 | |
---|
1082 | // selector needed to avoid taking the inverse of a 3x4 matrix |
---|
1083 | template<typename TransformType, int Mode=TransformType::Mode> |
---|
1084 | struct projective_transform_inverse |
---|
1085 | { |
---|
1086 | static inline void run(const TransformType&, TransformType&) |
---|
1087 | {} |
---|
1088 | }; |
---|
1089 | |
---|
1090 | template<typename TransformType> |
---|
1091 | struct projective_transform_inverse<TransformType, Projective> |
---|
1092 | { |
---|
1093 | static inline void run(const TransformType& m, TransformType& res) |
---|
1094 | { |
---|
1095 | res.matrix() = m.matrix().inverse(); |
---|
1096 | } |
---|
1097 | }; |
---|
1098 | |
---|
1099 | } // end namespace internal |
---|
1100 | |
---|
1101 | |
---|
1102 | /** |
---|
1103 | * |
---|
1104 | * \returns the inverse transformation according to some given knowledge |
---|
1105 | * on \c *this. |
---|
1106 | * |
---|
1107 | * \param hint allows to optimize the inversion process when the transformation |
---|
1108 | * is known to be not a general transformation (optional). The possible values are: |
---|
1109 | * - #Projective if the transformation is not necessarily affine, i.e., if the |
---|
1110 | * last row is not guaranteed to be [0 ... 0 1] |
---|
1111 | * - #Affine if the last row can be assumed to be [0 ... 0 1] |
---|
1112 | * - #Isometry if the transformation is only a concatenations of translations |
---|
1113 | * and rotations. |
---|
1114 | * The default is the template class parameter \c Mode. |
---|
1115 | * |
---|
1116 | * \warning unless \a traits is always set to NoShear or NoScaling, this function |
---|
1117 | * requires the generic inverse method of MatrixBase defined in the LU module. If |
---|
1118 | * you forget to include this module, then you will get hard to debug linking errors. |
---|
1119 | * |
---|
1120 | * \sa MatrixBase::inverse() |
---|
1121 | */ |
---|
1122 | template<typename Scalar, int Dim, int Mode, int Options> |
---|
1123 | Transform<Scalar,Dim,Mode,Options> |
---|
1124 | Transform<Scalar,Dim,Mode,Options>::inverse(TransformTraits hint) const |
---|
1125 | { |
---|
1126 | Transform res; |
---|
1127 | if (hint == Projective) |
---|
1128 | { |
---|
1129 | internal::projective_transform_inverse<Transform>::run(*this, res); |
---|
1130 | } |
---|
1131 | else |
---|
1132 | { |
---|
1133 | if (hint == Isometry) |
---|
1134 | { |
---|
1135 | res.matrix().template topLeftCorner<Dim,Dim>() = linear().transpose(); |
---|
1136 | } |
---|
1137 | else if(hint&Affine) |
---|
1138 | { |
---|
1139 | res.matrix().template topLeftCorner<Dim,Dim>() = linear().inverse(); |
---|
1140 | } |
---|
1141 | else |
---|
1142 | { |
---|
1143 | eigen_assert(false && "Invalid transform traits in Transform::Inverse"); |
---|
1144 | } |
---|
1145 | // translation and remaining parts |
---|
1146 | res.matrix().template topRightCorner<Dim,1>() |
---|
1147 | = - res.matrix().template topLeftCorner<Dim,Dim>() * translation(); |
---|
1148 | res.makeAffine(); // we do need this, because in the beginning res is uninitialized |
---|
1149 | } |
---|
1150 | return res; |
---|
1151 | } |
---|
1152 | |
---|
1153 | namespace internal { |
---|
1154 | |
---|
1155 | /***************************************************** |
---|
1156 | *** Specializations of take affine part *** |
---|
1157 | *****************************************************/ |
---|
1158 | |
---|
1159 | template<typename TransformType> struct transform_take_affine_part { |
---|
1160 | typedef typename TransformType::MatrixType MatrixType; |
---|
1161 | typedef typename TransformType::AffinePart AffinePart; |
---|
1162 | typedef typename TransformType::ConstAffinePart ConstAffinePart; |
---|
1163 | static inline AffinePart run(MatrixType& m) |
---|
1164 | { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); } |
---|
1165 | static inline ConstAffinePart run(const MatrixType& m) |
---|
1166 | { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); } |
---|
1167 | }; |
---|
1168 | |
---|
1169 | template<typename Scalar, int Dim, int Options> |
---|
1170 | struct transform_take_affine_part<Transform<Scalar,Dim,AffineCompact, Options> > { |
---|
1171 | typedef typename Transform<Scalar,Dim,AffineCompact,Options>::MatrixType MatrixType; |
---|
1172 | static inline MatrixType& run(MatrixType& m) { return m; } |
---|
1173 | static inline const MatrixType& run(const MatrixType& m) { return m; } |
---|
1174 | }; |
---|
1175 | |
---|
1176 | /***************************************************** |
---|
1177 | *** Specializations of construct from matrix *** |
---|
1178 | *****************************************************/ |
---|
1179 | |
---|
1180 | template<typename Other, int Mode, int Options, int Dim, int HDim> |
---|
1181 | struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,Dim> |
---|
1182 | { |
---|
1183 | static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other) |
---|
1184 | { |
---|
1185 | transform->linear() = other; |
---|
1186 | transform->translation().setZero(); |
---|
1187 | transform->makeAffine(); |
---|
1188 | } |
---|
1189 | }; |
---|
1190 | |
---|
1191 | template<typename Other, int Mode, int Options, int Dim, int HDim> |
---|
1192 | struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,HDim> |
---|
1193 | { |
---|
1194 | static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other) |
---|
1195 | { |
---|
1196 | transform->affine() = other; |
---|
1197 | transform->makeAffine(); |
---|
1198 | } |
---|
1199 | }; |
---|
1200 | |
---|
1201 | template<typename Other, int Mode, int Options, int Dim, int HDim> |
---|
1202 | struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, HDim,HDim> |
---|
1203 | { |
---|
1204 | static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other) |
---|
1205 | { transform->matrix() = other; } |
---|
1206 | }; |
---|
1207 | |
---|
1208 | template<typename Other, int Options, int Dim, int HDim> |
---|
1209 | struct transform_construct_from_matrix<Other, AffineCompact,Options,Dim,HDim, HDim,HDim> |
---|
1210 | { |
---|
1211 | static inline void run(Transform<typename Other::Scalar,Dim,AffineCompact,Options> *transform, const Other& other) |
---|
1212 | { transform->matrix() = other.template block<Dim,HDim>(0,0); } |
---|
1213 | }; |
---|
1214 | |
---|
1215 | /********************************************************** |
---|
1216 | *** Specializations of operator* with rhs EigenBase *** |
---|
1217 | **********************************************************/ |
---|
1218 | |
---|
1219 | template<int LhsMode,int RhsMode> |
---|
1220 | struct transform_product_result |
---|
1221 | { |
---|
1222 | enum |
---|
1223 | { |
---|
1224 | Mode = |
---|
1225 | (LhsMode == (int)Projective || RhsMode == (int)Projective ) ? Projective : |
---|
1226 | (LhsMode == (int)Affine || RhsMode == (int)Affine ) ? Affine : |
---|
1227 | (LhsMode == (int)AffineCompact || RhsMode == (int)AffineCompact ) ? AffineCompact : |
---|
1228 | (LhsMode == (int)Isometry || RhsMode == (int)Isometry ) ? Isometry : Projective |
---|
1229 | }; |
---|
1230 | }; |
---|
1231 | |
---|
1232 | template< typename TransformType, typename MatrixType > |
---|
1233 | struct transform_right_product_impl< TransformType, MatrixType, 0 > |
---|
1234 | { |
---|
1235 | typedef typename MatrixType::PlainObject ResultType; |
---|
1236 | |
---|
1237 | static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) |
---|
1238 | { |
---|
1239 | return T.matrix() * other; |
---|
1240 | } |
---|
1241 | }; |
---|
1242 | |
---|
1243 | template< typename TransformType, typename MatrixType > |
---|
1244 | struct transform_right_product_impl< TransformType, MatrixType, 1 > |
---|
1245 | { |
---|
1246 | enum { |
---|
1247 | Dim = TransformType::Dim, |
---|
1248 | HDim = TransformType::HDim, |
---|
1249 | OtherRows = MatrixType::RowsAtCompileTime, |
---|
1250 | OtherCols = MatrixType::ColsAtCompileTime |
---|
1251 | }; |
---|
1252 | |
---|
1253 | typedef typename MatrixType::PlainObject ResultType; |
---|
1254 | |
---|
1255 | static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) |
---|
1256 | { |
---|
1257 | EIGEN_STATIC_ASSERT(OtherRows==HDim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); |
---|
1258 | |
---|
1259 | typedef Block<ResultType, Dim, OtherCols, int(MatrixType::RowsAtCompileTime)==Dim> TopLeftLhs; |
---|
1260 | |
---|
1261 | ResultType res(other.rows(),other.cols()); |
---|
1262 | TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() = T.affine() * other; |
---|
1263 | res.row(OtherRows-1) = other.row(OtherRows-1); |
---|
1264 | |
---|
1265 | return res; |
---|
1266 | } |
---|
1267 | }; |
---|
1268 | |
---|
1269 | template< typename TransformType, typename MatrixType > |
---|
1270 | struct transform_right_product_impl< TransformType, MatrixType, 2 > |
---|
1271 | { |
---|
1272 | enum { |
---|
1273 | Dim = TransformType::Dim, |
---|
1274 | HDim = TransformType::HDim, |
---|
1275 | OtherRows = MatrixType::RowsAtCompileTime, |
---|
1276 | OtherCols = MatrixType::ColsAtCompileTime |
---|
1277 | }; |
---|
1278 | |
---|
1279 | typedef typename MatrixType::PlainObject ResultType; |
---|
1280 | |
---|
1281 | static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) |
---|
1282 | { |
---|
1283 | EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); |
---|
1284 | |
---|
1285 | typedef Block<ResultType, Dim, OtherCols, true> TopLeftLhs; |
---|
1286 | ResultType res(Replicate<typename TransformType::ConstTranslationPart, 1, OtherCols>(T.translation(),1,other.cols())); |
---|
1287 | TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() += T.linear() * other; |
---|
1288 | |
---|
1289 | return res; |
---|
1290 | } |
---|
1291 | }; |
---|
1292 | |
---|
1293 | /********************************************************** |
---|
1294 | *** Specializations of operator* with lhs EigenBase *** |
---|
1295 | **********************************************************/ |
---|
1296 | |
---|
1297 | // generic HDim x HDim matrix * T => Projective |
---|
1298 | template<typename Other,int Mode, int Options, int Dim, int HDim> |
---|
1299 | struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, HDim,HDim> |
---|
1300 | { |
---|
1301 | typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType; |
---|
1302 | typedef typename TransformType::MatrixType MatrixType; |
---|
1303 | typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType; |
---|
1304 | static ResultType run(const Other& other,const TransformType& tr) |
---|
1305 | { return ResultType(other * tr.matrix()); } |
---|
1306 | }; |
---|
1307 | |
---|
1308 | // generic HDim x HDim matrix * AffineCompact => Projective |
---|
1309 | template<typename Other, int Options, int Dim, int HDim> |
---|
1310 | struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, HDim,HDim> |
---|
1311 | { |
---|
1312 | typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType; |
---|
1313 | typedef typename TransformType::MatrixType MatrixType; |
---|
1314 | typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType; |
---|
1315 | static ResultType run(const Other& other,const TransformType& tr) |
---|
1316 | { |
---|
1317 | ResultType res; |
---|
1318 | res.matrix().noalias() = other.template block<HDim,Dim>(0,0) * tr.matrix(); |
---|
1319 | res.matrix().col(Dim) += other.col(Dim); |
---|
1320 | return res; |
---|
1321 | } |
---|
1322 | }; |
---|
1323 | |
---|
1324 | // affine matrix * T |
---|
1325 | template<typename Other,int Mode, int Options, int Dim, int HDim> |
---|
1326 | struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,HDim> |
---|
1327 | { |
---|
1328 | typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType; |
---|
1329 | typedef typename TransformType::MatrixType MatrixType; |
---|
1330 | typedef TransformType ResultType; |
---|
1331 | static ResultType run(const Other& other,const TransformType& tr) |
---|
1332 | { |
---|
1333 | ResultType res; |
---|
1334 | res.affine().noalias() = other * tr.matrix(); |
---|
1335 | res.matrix().row(Dim) = tr.matrix().row(Dim); |
---|
1336 | return res; |
---|
1337 | } |
---|
1338 | }; |
---|
1339 | |
---|
1340 | // affine matrix * AffineCompact |
---|
1341 | template<typename Other, int Options, int Dim, int HDim> |
---|
1342 | struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, Dim,HDim> |
---|
1343 | { |
---|
1344 | typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType; |
---|
1345 | typedef typename TransformType::MatrixType MatrixType; |
---|
1346 | typedef TransformType ResultType; |
---|
1347 | static ResultType run(const Other& other,const TransformType& tr) |
---|
1348 | { |
---|
1349 | ResultType res; |
---|
1350 | res.matrix().noalias() = other.template block<Dim,Dim>(0,0) * tr.matrix(); |
---|
1351 | res.translation() += other.col(Dim); |
---|
1352 | return res; |
---|
1353 | } |
---|
1354 | }; |
---|
1355 | |
---|
1356 | // linear matrix * T |
---|
1357 | template<typename Other,int Mode, int Options, int Dim, int HDim> |
---|
1358 | struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,Dim> |
---|
1359 | { |
---|
1360 | typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType; |
---|
1361 | typedef typename TransformType::MatrixType MatrixType; |
---|
1362 | typedef TransformType ResultType; |
---|
1363 | static ResultType run(const Other& other, const TransformType& tr) |
---|
1364 | { |
---|
1365 | TransformType res; |
---|
1366 | if(Mode!=int(AffineCompact)) |
---|
1367 | res.matrix().row(Dim) = tr.matrix().row(Dim); |
---|
1368 | res.matrix().template topRows<Dim>().noalias() |
---|
1369 | = other * tr.matrix().template topRows<Dim>(); |
---|
1370 | return res; |
---|
1371 | } |
---|
1372 | }; |
---|
1373 | |
---|
1374 | /********************************************************** |
---|
1375 | *** Specializations of operator* with another Transform *** |
---|
1376 | **********************************************************/ |
---|
1377 | |
---|
1378 | template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions> |
---|
1379 | struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,false > |
---|
1380 | { |
---|
1381 | enum { ResultMode = transform_product_result<LhsMode,RhsMode>::Mode }; |
---|
1382 | typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs; |
---|
1383 | typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs; |
---|
1384 | typedef Transform<Scalar,Dim,ResultMode,LhsOptions> ResultType; |
---|
1385 | static ResultType run(const Lhs& lhs, const Rhs& rhs) |
---|
1386 | { |
---|
1387 | ResultType res; |
---|
1388 | res.linear() = lhs.linear() * rhs.linear(); |
---|
1389 | res.translation() = lhs.linear() * rhs.translation() + lhs.translation(); |
---|
1390 | res.makeAffine(); |
---|
1391 | return res; |
---|
1392 | } |
---|
1393 | }; |
---|
1394 | |
---|
1395 | template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions> |
---|
1396 | struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,true > |
---|
1397 | { |
---|
1398 | typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs; |
---|
1399 | typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs; |
---|
1400 | typedef Transform<Scalar,Dim,Projective> ResultType; |
---|
1401 | static ResultType run(const Lhs& lhs, const Rhs& rhs) |
---|
1402 | { |
---|
1403 | return ResultType( lhs.matrix() * rhs.matrix() ); |
---|
1404 | } |
---|
1405 | }; |
---|
1406 | |
---|
1407 | template<typename Scalar, int Dim, int LhsOptions, int RhsOptions> |
---|
1408 | struct transform_transform_product_impl<Transform<Scalar,Dim,AffineCompact,LhsOptions>,Transform<Scalar,Dim,Projective,RhsOptions>,true > |
---|
1409 | { |
---|
1410 | typedef Transform<Scalar,Dim,AffineCompact,LhsOptions> Lhs; |
---|
1411 | typedef Transform<Scalar,Dim,Projective,RhsOptions> Rhs; |
---|
1412 | typedef Transform<Scalar,Dim,Projective> ResultType; |
---|
1413 | static ResultType run(const Lhs& lhs, const Rhs& rhs) |
---|
1414 | { |
---|
1415 | ResultType res; |
---|
1416 | res.matrix().template topRows<Dim>() = lhs.matrix() * rhs.matrix(); |
---|
1417 | res.matrix().row(Dim) = rhs.matrix().row(Dim); |
---|
1418 | return res; |
---|
1419 | } |
---|
1420 | }; |
---|
1421 | |
---|
1422 | template<typename Scalar, int Dim, int LhsOptions, int RhsOptions> |
---|
1423 | struct transform_transform_product_impl<Transform<Scalar,Dim,Projective,LhsOptions>,Transform<Scalar,Dim,AffineCompact,RhsOptions>,true > |
---|
1424 | { |
---|
1425 | typedef Transform<Scalar,Dim,Projective,LhsOptions> Lhs; |
---|
1426 | typedef Transform<Scalar,Dim,AffineCompact,RhsOptions> Rhs; |
---|
1427 | typedef Transform<Scalar,Dim,Projective> ResultType; |
---|
1428 | static ResultType run(const Lhs& lhs, const Rhs& rhs) |
---|
1429 | { |
---|
1430 | ResultType res(lhs.matrix().template leftCols<Dim>() * rhs.matrix()); |
---|
1431 | res.matrix().col(Dim) += lhs.matrix().col(Dim); |
---|
1432 | return res; |
---|
1433 | } |
---|
1434 | }; |
---|
1435 | |
---|
1436 | } // end namespace internal |
---|
1437 | |
---|
1438 | } // end namespace Eigen |
---|
1439 | |
---|
1440 | #endif // EIGEN_TRANSFORM_H |
---|