1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
5 | // |
---|
6 | // This Source Code Form is subject to the terms of the Mozilla |
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
9 | |
---|
10 | #ifndef EIGEN_SCALING_H |
---|
11 | #define EIGEN_SCALING_H |
---|
12 | |
---|
13 | namespace Eigen { |
---|
14 | |
---|
15 | /** \geometry_module \ingroup Geometry_Module |
---|
16 | * |
---|
17 | * \class Scaling |
---|
18 | * |
---|
19 | * \brief Represents a generic uniform scaling transformation |
---|
20 | * |
---|
21 | * \param _Scalar the scalar type, i.e., the type of the coefficients. |
---|
22 | * |
---|
23 | * This class represent a uniform scaling transformation. It is the return |
---|
24 | * type of Scaling(Scalar), and most of the time this is the only way it |
---|
25 | * is used. In particular, this class is not aimed to be used to store a scaling transformation, |
---|
26 | * but rather to make easier the constructions and updates of Transform objects. |
---|
27 | * |
---|
28 | * To represent an axis aligned scaling, use the DiagonalMatrix class. |
---|
29 | * |
---|
30 | * \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform |
---|
31 | */ |
---|
32 | template<typename _Scalar> |
---|
33 | class UniformScaling |
---|
34 | { |
---|
35 | public: |
---|
36 | /** the scalar type of the coefficients */ |
---|
37 | typedef _Scalar Scalar; |
---|
38 | |
---|
39 | protected: |
---|
40 | |
---|
41 | Scalar m_factor; |
---|
42 | |
---|
43 | public: |
---|
44 | |
---|
45 | /** Default constructor without initialization. */ |
---|
46 | UniformScaling() {} |
---|
47 | /** Constructs and initialize a uniform scaling transformation */ |
---|
48 | explicit inline UniformScaling(const Scalar& s) : m_factor(s) {} |
---|
49 | |
---|
50 | inline const Scalar& factor() const { return m_factor; } |
---|
51 | inline Scalar& factor() { return m_factor; } |
---|
52 | |
---|
53 | /** Concatenates two uniform scaling */ |
---|
54 | inline UniformScaling operator* (const UniformScaling& other) const |
---|
55 | { return UniformScaling(m_factor * other.factor()); } |
---|
56 | |
---|
57 | /** Concatenates a uniform scaling and a translation */ |
---|
58 | template<int Dim> |
---|
59 | inline Transform<Scalar,Dim,Affine> operator* (const Translation<Scalar,Dim>& t) const; |
---|
60 | |
---|
61 | /** Concatenates a uniform scaling and an affine transformation */ |
---|
62 | template<int Dim, int Mode, int Options> |
---|
63 | inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> operator* (const Transform<Scalar,Dim, Mode, Options>& t) const |
---|
64 | { |
---|
65 | Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> res = t; |
---|
66 | res.prescale(factor()); |
---|
67 | return res; |
---|
68 | } |
---|
69 | |
---|
70 | /** Concatenates a uniform scaling and a linear transformation matrix */ |
---|
71 | // TODO returns an expression |
---|
72 | template<typename Derived> |
---|
73 | inline typename internal::plain_matrix_type<Derived>::type operator* (const MatrixBase<Derived>& other) const |
---|
74 | { return other * m_factor; } |
---|
75 | |
---|
76 | template<typename Derived,int Dim> |
---|
77 | inline Matrix<Scalar,Dim,Dim> operator*(const RotationBase<Derived,Dim>& r) const |
---|
78 | { return r.toRotationMatrix() * m_factor; } |
---|
79 | |
---|
80 | /** \returns the inverse scaling */ |
---|
81 | inline UniformScaling inverse() const |
---|
82 | { return UniformScaling(Scalar(1)/m_factor); } |
---|
83 | |
---|
84 | /** \returns \c *this with scalar type casted to \a NewScalarType |
---|
85 | * |
---|
86 | * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
---|
87 | * then this function smartly returns a const reference to \c *this. |
---|
88 | */ |
---|
89 | template<typename NewScalarType> |
---|
90 | inline UniformScaling<NewScalarType> cast() const |
---|
91 | { return UniformScaling<NewScalarType>(NewScalarType(m_factor)); } |
---|
92 | |
---|
93 | /** Copy constructor with scalar type conversion */ |
---|
94 | template<typename OtherScalarType> |
---|
95 | inline explicit UniformScaling(const UniformScaling<OtherScalarType>& other) |
---|
96 | { m_factor = Scalar(other.factor()); } |
---|
97 | |
---|
98 | /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
---|
99 | * determined by \a prec. |
---|
100 | * |
---|
101 | * \sa MatrixBase::isApprox() */ |
---|
102 | bool isApprox(const UniformScaling& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const |
---|
103 | { return internal::isApprox(m_factor, other.factor(), prec); } |
---|
104 | |
---|
105 | }; |
---|
106 | |
---|
107 | /** Concatenates a linear transformation matrix and a uniform scaling */ |
---|
108 | // NOTE this operator is defiend in MatrixBase and not as a friend function |
---|
109 | // of UniformScaling to fix an internal crash of Intel's ICC |
---|
110 | template<typename Derived> typename MatrixBase<Derived>::ScalarMultipleReturnType |
---|
111 | MatrixBase<Derived>::operator*(const UniformScaling<Scalar>& s) const |
---|
112 | { return derived() * s.factor(); } |
---|
113 | |
---|
114 | /** Constructs a uniform scaling from scale factor \a s */ |
---|
115 | static inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); } |
---|
116 | /** Constructs a uniform scaling from scale factor \a s */ |
---|
117 | static inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); } |
---|
118 | /** Constructs a uniform scaling from scale factor \a s */ |
---|
119 | template<typename RealScalar> |
---|
120 | static inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s) |
---|
121 | { return UniformScaling<std::complex<RealScalar> >(s); } |
---|
122 | |
---|
123 | /** Constructs a 2D axis aligned scaling */ |
---|
124 | template<typename Scalar> |
---|
125 | static inline DiagonalMatrix<Scalar,2> Scaling(Scalar sx, Scalar sy) |
---|
126 | { return DiagonalMatrix<Scalar,2>(sx, sy); } |
---|
127 | /** Constructs a 3D axis aligned scaling */ |
---|
128 | template<typename Scalar> |
---|
129 | static inline DiagonalMatrix<Scalar,3> Scaling(Scalar sx, Scalar sy, Scalar sz) |
---|
130 | { return DiagonalMatrix<Scalar,3>(sx, sy, sz); } |
---|
131 | |
---|
132 | /** Constructs an axis aligned scaling expression from vector expression \a coeffs |
---|
133 | * This is an alias for coeffs.asDiagonal() |
---|
134 | */ |
---|
135 | template<typename Derived> |
---|
136 | static inline const DiagonalWrapper<const Derived> Scaling(const MatrixBase<Derived>& coeffs) |
---|
137 | { return coeffs.asDiagonal(); } |
---|
138 | |
---|
139 | /** \addtogroup Geometry_Module */ |
---|
140 | //@{ |
---|
141 | /** \deprecated */ |
---|
142 | typedef DiagonalMatrix<float, 2> AlignedScaling2f; |
---|
143 | /** \deprecated */ |
---|
144 | typedef DiagonalMatrix<double,2> AlignedScaling2d; |
---|
145 | /** \deprecated */ |
---|
146 | typedef DiagonalMatrix<float, 3> AlignedScaling3f; |
---|
147 | /** \deprecated */ |
---|
148 | typedef DiagonalMatrix<double,3> AlignedScaling3d; |
---|
149 | //@} |
---|
150 | |
---|
151 | template<typename Scalar> |
---|
152 | template<int Dim> |
---|
153 | inline Transform<Scalar,Dim,Affine> |
---|
154 | UniformScaling<Scalar>::operator* (const Translation<Scalar,Dim>& t) const |
---|
155 | { |
---|
156 | Transform<Scalar,Dim,Affine> res; |
---|
157 | res.matrix().setZero(); |
---|
158 | res.linear().diagonal().fill(factor()); |
---|
159 | res.translation() = factor() * t.vector(); |
---|
160 | res(Dim,Dim) = Scalar(1); |
---|
161 | return res; |
---|
162 | } |
---|
163 | |
---|
164 | } // end namespace Eigen |
---|
165 | |
---|
166 | #endif // EIGEN_SCALING_H |
---|