Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Eigen/Eigen/src/Geometry/Scaling.h @ 9562

Last change on this file since 9562 was 9562, checked in by gkronber, 12 years ago

#1967 worked on Gaussian process evolution.

File size: 6.1 KB
RevLine 
[9562]1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_SCALING_H
11#define EIGEN_SCALING_H
12
13namespace Eigen {
14
15/** \geometry_module \ingroup Geometry_Module
16  *
17  * \class Scaling
18  *
19  * \brief Represents a generic uniform scaling transformation
20  *
21  * \param _Scalar the scalar type, i.e., the type of the coefficients.
22  *
23  * This class represent a uniform scaling transformation. It is the return
24  * type of Scaling(Scalar), and most of the time this is the only way it
25  * is used. In particular, this class is not aimed to be used to store a scaling transformation,
26  * but rather to make easier the constructions and updates of Transform objects.
27  *
28  * To represent an axis aligned scaling, use the DiagonalMatrix class.
29  *
30  * \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform
31  */
32template<typename _Scalar>
33class UniformScaling
34{
35public:
36  /** the scalar type of the coefficients */
37  typedef _Scalar Scalar;
38
39protected:
40
41  Scalar m_factor;
42
43public:
44
45  /** Default constructor without initialization. */
46  UniformScaling() {}
47  /** Constructs and initialize a uniform scaling transformation */
48  explicit inline UniformScaling(const Scalar& s) : m_factor(s) {}
49
50  inline const Scalar& factor() const { return m_factor; }
51  inline Scalar& factor() { return m_factor; }
52
53  /** Concatenates two uniform scaling */
54  inline UniformScaling operator* (const UniformScaling& other) const
55  { return UniformScaling(m_factor * other.factor()); }
56
57  /** Concatenates a uniform scaling and a translation */
58  template<int Dim>
59  inline Transform<Scalar,Dim,Affine> operator* (const Translation<Scalar,Dim>& t) const;
60
61  /** Concatenates a uniform scaling and an affine transformation */
62  template<int Dim, int Mode, int Options>
63  inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> operator* (const Transform<Scalar,Dim, Mode, Options>& t) const
64  {
65   Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> res = t;
66   res.prescale(factor());
67   return res;
68}
69
70  /** Concatenates a uniform scaling and a linear transformation matrix */
71  // TODO returns an expression
72  template<typename Derived>
73  inline typename internal::plain_matrix_type<Derived>::type operator* (const MatrixBase<Derived>& other) const
74  { return other * m_factor; }
75
76  template<typename Derived,int Dim>
77  inline Matrix<Scalar,Dim,Dim> operator*(const RotationBase<Derived,Dim>& r) const
78  { return r.toRotationMatrix() * m_factor; }
79
80  /** \returns the inverse scaling */
81  inline UniformScaling inverse() const
82  { return UniformScaling(Scalar(1)/m_factor); }
83
84  /** \returns \c *this with scalar type casted to \a NewScalarType
85    *
86    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
87    * then this function smartly returns a const reference to \c *this.
88    */
89  template<typename NewScalarType>
90  inline UniformScaling<NewScalarType> cast() const
91  { return UniformScaling<NewScalarType>(NewScalarType(m_factor)); }
92
93  /** Copy constructor with scalar type conversion */
94  template<typename OtherScalarType>
95  inline explicit UniformScaling(const UniformScaling<OtherScalarType>& other)
96  { m_factor = Scalar(other.factor()); }
97
98  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
99    * determined by \a prec.
100    *
101    * \sa MatrixBase::isApprox() */
102  bool isApprox(const UniformScaling& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
103  { return internal::isApprox(m_factor, other.factor(), prec); }
104
105};
106
107/** Concatenates a linear transformation matrix and a uniform scaling */
108// NOTE this operator is defiend in MatrixBase and not as a friend function
109// of UniformScaling to fix an internal crash of Intel's ICC
110template<typename Derived> typename MatrixBase<Derived>::ScalarMultipleReturnType
111MatrixBase<Derived>::operator*(const UniformScaling<Scalar>& s) const
112{ return derived() * s.factor(); }
113
114/** Constructs a uniform scaling from scale factor \a s */
115static inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); }
116/** Constructs a uniform scaling from scale factor \a s */
117static inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); }
118/** Constructs a uniform scaling from scale factor \a s */
119template<typename RealScalar>
120static inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s)
121{ return UniformScaling<std::complex<RealScalar> >(s); }
122
123/** Constructs a 2D axis aligned scaling */
124template<typename Scalar>
125static inline DiagonalMatrix<Scalar,2> Scaling(Scalar sx, Scalar sy)
126{ return DiagonalMatrix<Scalar,2>(sx, sy); }
127/** Constructs a 3D axis aligned scaling */
128template<typename Scalar>
129static inline DiagonalMatrix<Scalar,3> Scaling(Scalar sx, Scalar sy, Scalar sz)
130{ return DiagonalMatrix<Scalar,3>(sx, sy, sz); }
131
132/** Constructs an axis aligned scaling expression from vector expression \a coeffs
133  * This is an alias for coeffs.asDiagonal()
134  */
135template<typename Derived>
136static inline const DiagonalWrapper<const Derived> Scaling(const MatrixBase<Derived>& coeffs)
137{ return coeffs.asDiagonal(); }
138
139/** \addtogroup Geometry_Module */
140//@{
141/** \deprecated */
142typedef DiagonalMatrix<float, 2> AlignedScaling2f;
143/** \deprecated */
144typedef DiagonalMatrix<double,2> AlignedScaling2d;
145/** \deprecated */
146typedef DiagonalMatrix<float, 3> AlignedScaling3f;
147/** \deprecated */
148typedef DiagonalMatrix<double,3> AlignedScaling3d;
149//@}
150
151template<typename Scalar>
152template<int Dim>
153inline Transform<Scalar,Dim,Affine>
154UniformScaling<Scalar>::operator* (const Translation<Scalar,Dim>& t) const
155{
156  Transform<Scalar,Dim,Affine> res;
157  res.matrix().setZero();
158  res.linear().diagonal().fill(factor());
159  res.translation() = factor() * t.vector();
160  res(Dim,Dim) = Scalar(1);
161  return res;
162}
163
164} // end namespace Eigen
165
166#endif // EIGEN_SCALING_H
Note: See TracBrowser for help on using the repository browser.