1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
5 | // |
---|
6 | // This Source Code Form is subject to the terms of the Mozilla |
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
9 | |
---|
10 | #ifndef EIGEN_ROTATION2D_H |
---|
11 | #define EIGEN_ROTATION2D_H |
---|
12 | |
---|
13 | namespace Eigen { |
---|
14 | |
---|
15 | /** \geometry_module \ingroup Geometry_Module |
---|
16 | * |
---|
17 | * \class Rotation2D |
---|
18 | * |
---|
19 | * \brief Represents a rotation/orientation in a 2 dimensional space. |
---|
20 | * |
---|
21 | * \param _Scalar the scalar type, i.e., the type of the coefficients |
---|
22 | * |
---|
23 | * This class is equivalent to a single scalar representing a counter clock wise rotation |
---|
24 | * as a single angle in radian. It provides some additional features such as the automatic |
---|
25 | * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar |
---|
26 | * interface to Quaternion in order to facilitate the writing of generic algorithms |
---|
27 | * dealing with rotations. |
---|
28 | * |
---|
29 | * \sa class Quaternion, class Transform |
---|
30 | */ |
---|
31 | |
---|
32 | namespace internal { |
---|
33 | |
---|
34 | template<typename _Scalar> struct traits<Rotation2D<_Scalar> > |
---|
35 | { |
---|
36 | typedef _Scalar Scalar; |
---|
37 | }; |
---|
38 | } // end namespace internal |
---|
39 | |
---|
40 | template<typename _Scalar> |
---|
41 | class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2> |
---|
42 | { |
---|
43 | typedef RotationBase<Rotation2D<_Scalar>,2> Base; |
---|
44 | |
---|
45 | public: |
---|
46 | |
---|
47 | using Base::operator*; |
---|
48 | |
---|
49 | enum { Dim = 2 }; |
---|
50 | /** the scalar type of the coefficients */ |
---|
51 | typedef _Scalar Scalar; |
---|
52 | typedef Matrix<Scalar,2,1> Vector2; |
---|
53 | typedef Matrix<Scalar,2,2> Matrix2; |
---|
54 | |
---|
55 | protected: |
---|
56 | |
---|
57 | Scalar m_angle; |
---|
58 | |
---|
59 | public: |
---|
60 | |
---|
61 | /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */ |
---|
62 | inline Rotation2D(Scalar a) : m_angle(a) {} |
---|
63 | |
---|
64 | /** \returns the rotation angle */ |
---|
65 | inline Scalar angle() const { return m_angle; } |
---|
66 | |
---|
67 | /** \returns a read-write reference to the rotation angle */ |
---|
68 | inline Scalar& angle() { return m_angle; } |
---|
69 | |
---|
70 | /** \returns the inverse rotation */ |
---|
71 | inline Rotation2D inverse() const { return -m_angle; } |
---|
72 | |
---|
73 | /** Concatenates two rotations */ |
---|
74 | inline Rotation2D operator*(const Rotation2D& other) const |
---|
75 | { return m_angle + other.m_angle; } |
---|
76 | |
---|
77 | /** Concatenates two rotations */ |
---|
78 | inline Rotation2D& operator*=(const Rotation2D& other) |
---|
79 | { m_angle += other.m_angle; return *this; } |
---|
80 | |
---|
81 | /** Applies the rotation to a 2D vector */ |
---|
82 | Vector2 operator* (const Vector2& vec) const |
---|
83 | { return toRotationMatrix() * vec; } |
---|
84 | |
---|
85 | template<typename Derived> |
---|
86 | Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m); |
---|
87 | Matrix2 toRotationMatrix(void) const; |
---|
88 | |
---|
89 | /** \returns the spherical interpolation between \c *this and \a other using |
---|
90 | * parameter \a t. It is in fact equivalent to a linear interpolation. |
---|
91 | */ |
---|
92 | inline Rotation2D slerp(Scalar t, const Rotation2D& other) const |
---|
93 | { return m_angle * (1-t) + other.angle() * t; } |
---|
94 | |
---|
95 | /** \returns \c *this with scalar type casted to \a NewScalarType |
---|
96 | * |
---|
97 | * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
---|
98 | * then this function smartly returns a const reference to \c *this. |
---|
99 | */ |
---|
100 | template<typename NewScalarType> |
---|
101 | inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const |
---|
102 | { return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); } |
---|
103 | |
---|
104 | /** Copy constructor with scalar type conversion */ |
---|
105 | template<typename OtherScalarType> |
---|
106 | inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other) |
---|
107 | { |
---|
108 | m_angle = Scalar(other.angle()); |
---|
109 | } |
---|
110 | |
---|
111 | static inline Rotation2D Identity() { return Rotation2D(0); } |
---|
112 | |
---|
113 | /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
---|
114 | * determined by \a prec. |
---|
115 | * |
---|
116 | * \sa MatrixBase::isApprox() */ |
---|
117 | bool isApprox(const Rotation2D& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const |
---|
118 | { return internal::isApprox(m_angle,other.m_angle, prec); } |
---|
119 | }; |
---|
120 | |
---|
121 | /** \ingroup Geometry_Module |
---|
122 | * single precision 2D rotation type */ |
---|
123 | typedef Rotation2D<float> Rotation2Df; |
---|
124 | /** \ingroup Geometry_Module |
---|
125 | * double precision 2D rotation type */ |
---|
126 | typedef Rotation2D<double> Rotation2Dd; |
---|
127 | |
---|
128 | /** Set \c *this from a 2x2 rotation matrix \a mat. |
---|
129 | * In other words, this function extract the rotation angle |
---|
130 | * from the rotation matrix. |
---|
131 | */ |
---|
132 | template<typename Scalar> |
---|
133 | template<typename Derived> |
---|
134 | Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) |
---|
135 | { |
---|
136 | EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE) |
---|
137 | m_angle = internal::atan2(mat.coeff(1,0), mat.coeff(0,0)); |
---|
138 | return *this; |
---|
139 | } |
---|
140 | |
---|
141 | /** Constructs and \returns an equivalent 2x2 rotation matrix. |
---|
142 | */ |
---|
143 | template<typename Scalar> |
---|
144 | typename Rotation2D<Scalar>::Matrix2 |
---|
145 | Rotation2D<Scalar>::toRotationMatrix(void) const |
---|
146 | { |
---|
147 | Scalar sinA = internal::sin(m_angle); |
---|
148 | Scalar cosA = internal::cos(m_angle); |
---|
149 | return (Matrix2() << cosA, -sinA, sinA, cosA).finished(); |
---|
150 | } |
---|
151 | |
---|
152 | } // end namespace Eigen |
---|
153 | |
---|
154 | #endif // EIGEN_ROTATION2D_H |
---|