Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Eigen/Eigen/src/Geometry/Rotation2D.h @ 9562

Last change on this file since 9562 was 9562, checked in by gkronber, 12 years ago

#1967 worked on Gaussian process evolution.

File size: 5.0 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_ROTATION2D_H
11#define EIGEN_ROTATION2D_H
12
13namespace Eigen {
14
15/** \geometry_module \ingroup Geometry_Module
16  *
17  * \class Rotation2D
18  *
19  * \brief Represents a rotation/orientation in a 2 dimensional space.
20  *
21  * \param _Scalar the scalar type, i.e., the type of the coefficients
22  *
23  * This class is equivalent to a single scalar representing a counter clock wise rotation
24  * as a single angle in radian. It provides some additional features such as the automatic
25  * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar
26  * interface to Quaternion in order to facilitate the writing of generic algorithms
27  * dealing with rotations.
28  *
29  * \sa class Quaternion, class Transform
30  */
31
32namespace internal {
33
34template<typename _Scalar> struct traits<Rotation2D<_Scalar> >
35{
36  typedef _Scalar Scalar;
37};
38} // end namespace internal
39
40template<typename _Scalar>
41class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2>
42{
43  typedef RotationBase<Rotation2D<_Scalar>,2> Base;
44
45public:
46
47  using Base::operator*;
48
49  enum { Dim = 2 };
50  /** the scalar type of the coefficients */
51  typedef _Scalar Scalar;
52  typedef Matrix<Scalar,2,1> Vector2;
53  typedef Matrix<Scalar,2,2> Matrix2;
54
55protected:
56
57  Scalar m_angle;
58
59public:
60
61  /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
62  inline Rotation2D(Scalar a) : m_angle(a) {}
63
64  /** \returns the rotation angle */
65  inline Scalar angle() const { return m_angle; }
66
67  /** \returns a read-write reference to the rotation angle */
68  inline Scalar& angle() { return m_angle; }
69
70  /** \returns the inverse rotation */
71  inline Rotation2D inverse() const { return -m_angle; }
72
73  /** Concatenates two rotations */
74  inline Rotation2D operator*(const Rotation2D& other) const
75  { return m_angle + other.m_angle; }
76
77  /** Concatenates two rotations */
78  inline Rotation2D& operator*=(const Rotation2D& other)
79  { m_angle += other.m_angle; return *this; }
80
81  /** Applies the rotation to a 2D vector */
82  Vector2 operator* (const Vector2& vec) const
83  { return toRotationMatrix() * vec; }
84
85  template<typename Derived>
86  Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
87  Matrix2 toRotationMatrix(void) const;
88
89  /** \returns the spherical interpolation between \c *this and \a other using
90    * parameter \a t. It is in fact equivalent to a linear interpolation.
91    */
92  inline Rotation2D slerp(Scalar t, const Rotation2D& other) const
93  { return m_angle * (1-t) + other.angle() * t; }
94
95  /** \returns \c *this with scalar type casted to \a NewScalarType
96    *
97    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
98    * then this function smartly returns a const reference to \c *this.
99    */
100  template<typename NewScalarType>
101  inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
102  { return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); }
103
104  /** Copy constructor with scalar type conversion */
105  template<typename OtherScalarType>
106  inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
107  {
108    m_angle = Scalar(other.angle());
109  }
110
111  static inline Rotation2D Identity() { return Rotation2D(0); }
112
113  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
114    * determined by \a prec.
115    *
116    * \sa MatrixBase::isApprox() */
117  bool isApprox(const Rotation2D& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
118  { return internal::isApprox(m_angle,other.m_angle, prec); }
119};
120
121/** \ingroup Geometry_Module
122  * single precision 2D rotation type */
123typedef Rotation2D<float> Rotation2Df;
124/** \ingroup Geometry_Module
125  * double precision 2D rotation type */
126typedef Rotation2D<double> Rotation2Dd;
127
128/** Set \c *this from a 2x2 rotation matrix \a mat.
129  * In other words, this function extract the rotation angle
130  * from the rotation matrix.
131  */
132template<typename Scalar>
133template<typename Derived>
134Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
135{
136  EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
137  m_angle = internal::atan2(mat.coeff(1,0), mat.coeff(0,0));
138  return *this;
139}
140
141/** Constructs and \returns an equivalent 2x2 rotation matrix.
142  */
143template<typename Scalar>
144typename Rotation2D<Scalar>::Matrix2
145Rotation2D<Scalar>::toRotationMatrix(void) const
146{
147  Scalar sinA = internal::sin(m_angle);
148  Scalar cosA = internal::cos(m_angle);
149  return (Matrix2() << cosA, -sinA, sinA, cosA).finished();
150}
151
152} // end namespace Eigen
153
154#endif // EIGEN_ROTATION2D_H
Note: See TracBrowser for help on using the repository browser.