[9562] | 1 | // This file is part of Eigen, a lightweight C++ template library |
---|
| 2 | // for linear algebra. |
---|
| 3 | // |
---|
| 4 | // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
| 5 | // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr> |
---|
| 6 | // |
---|
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
---|
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
| 10 | |
---|
| 11 | #ifndef EIGEN_QUATERNION_H |
---|
| 12 | #define EIGEN_QUATERNION_H |
---|
| 13 | namespace Eigen { |
---|
| 14 | |
---|
| 15 | |
---|
| 16 | /*************************************************************************** |
---|
| 17 | * Definition of QuaternionBase<Derived> |
---|
| 18 | * The implementation is at the end of the file |
---|
| 19 | ***************************************************************************/ |
---|
| 20 | |
---|
| 21 | namespace internal { |
---|
| 22 | template<typename Other, |
---|
| 23 | int OtherRows=Other::RowsAtCompileTime, |
---|
| 24 | int OtherCols=Other::ColsAtCompileTime> |
---|
| 25 | struct quaternionbase_assign_impl; |
---|
| 26 | } |
---|
| 27 | |
---|
| 28 | /** \geometry_module \ingroup Geometry_Module |
---|
| 29 | * \class QuaternionBase |
---|
| 30 | * \brief Base class for quaternion expressions |
---|
| 31 | * \tparam Derived derived type (CRTP) |
---|
| 32 | * \sa class Quaternion |
---|
| 33 | */ |
---|
| 34 | template<class Derived> |
---|
| 35 | class QuaternionBase : public RotationBase<Derived, 3> |
---|
| 36 | { |
---|
| 37 | typedef RotationBase<Derived, 3> Base; |
---|
| 38 | public: |
---|
| 39 | using Base::operator*; |
---|
| 40 | using Base::derived; |
---|
| 41 | |
---|
| 42 | typedef typename internal::traits<Derived>::Scalar Scalar; |
---|
| 43 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
| 44 | typedef typename internal::traits<Derived>::Coefficients Coefficients; |
---|
| 45 | enum { |
---|
| 46 | Flags = Eigen::internal::traits<Derived>::Flags |
---|
| 47 | }; |
---|
| 48 | |
---|
| 49 | // typedef typename Matrix<Scalar,4,1> Coefficients; |
---|
| 50 | /** the type of a 3D vector */ |
---|
| 51 | typedef Matrix<Scalar,3,1> Vector3; |
---|
| 52 | /** the equivalent rotation matrix type */ |
---|
| 53 | typedef Matrix<Scalar,3,3> Matrix3; |
---|
| 54 | /** the equivalent angle-axis type */ |
---|
| 55 | typedef AngleAxis<Scalar> AngleAxisType; |
---|
| 56 | |
---|
| 57 | |
---|
| 58 | |
---|
| 59 | /** \returns the \c x coefficient */ |
---|
| 60 | inline Scalar x() const { return this->derived().coeffs().coeff(0); } |
---|
| 61 | /** \returns the \c y coefficient */ |
---|
| 62 | inline Scalar y() const { return this->derived().coeffs().coeff(1); } |
---|
| 63 | /** \returns the \c z coefficient */ |
---|
| 64 | inline Scalar z() const { return this->derived().coeffs().coeff(2); } |
---|
| 65 | /** \returns the \c w coefficient */ |
---|
| 66 | inline Scalar w() const { return this->derived().coeffs().coeff(3); } |
---|
| 67 | |
---|
| 68 | /** \returns a reference to the \c x coefficient */ |
---|
| 69 | inline Scalar& x() { return this->derived().coeffs().coeffRef(0); } |
---|
| 70 | /** \returns a reference to the \c y coefficient */ |
---|
| 71 | inline Scalar& y() { return this->derived().coeffs().coeffRef(1); } |
---|
| 72 | /** \returns a reference to the \c z coefficient */ |
---|
| 73 | inline Scalar& z() { return this->derived().coeffs().coeffRef(2); } |
---|
| 74 | /** \returns a reference to the \c w coefficient */ |
---|
| 75 | inline Scalar& w() { return this->derived().coeffs().coeffRef(3); } |
---|
| 76 | |
---|
| 77 | /** \returns a read-only vector expression of the imaginary part (x,y,z) */ |
---|
| 78 | inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); } |
---|
| 79 | |
---|
| 80 | /** \returns a vector expression of the imaginary part (x,y,z) */ |
---|
| 81 | inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); } |
---|
| 82 | |
---|
| 83 | /** \returns a read-only vector expression of the coefficients (x,y,z,w) */ |
---|
| 84 | inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); } |
---|
| 85 | |
---|
| 86 | /** \returns a vector expression of the coefficients (x,y,z,w) */ |
---|
| 87 | inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); } |
---|
| 88 | |
---|
| 89 | EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other); |
---|
| 90 | template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other); |
---|
| 91 | |
---|
| 92 | // disabled this copy operator as it is giving very strange compilation errors when compiling |
---|
| 93 | // test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's |
---|
| 94 | // useful; however notice that we already have the templated operator= above and e.g. in MatrixBase |
---|
| 95 | // we didn't have to add, in addition to templated operator=, such a non-templated copy operator. |
---|
| 96 | // Derived& operator=(const QuaternionBase& other) |
---|
| 97 | // { return operator=<Derived>(other); } |
---|
| 98 | |
---|
| 99 | Derived& operator=(const AngleAxisType& aa); |
---|
| 100 | template<class OtherDerived> Derived& operator=(const MatrixBase<OtherDerived>& m); |
---|
| 101 | |
---|
| 102 | /** \returns a quaternion representing an identity rotation |
---|
| 103 | * \sa MatrixBase::Identity() |
---|
| 104 | */ |
---|
| 105 | static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(1, 0, 0, 0); } |
---|
| 106 | |
---|
| 107 | /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity() |
---|
| 108 | */ |
---|
| 109 | inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; } |
---|
| 110 | |
---|
| 111 | /** \returns the squared norm of the quaternion's coefficients |
---|
| 112 | * \sa QuaternionBase::norm(), MatrixBase::squaredNorm() |
---|
| 113 | */ |
---|
| 114 | inline Scalar squaredNorm() const { return coeffs().squaredNorm(); } |
---|
| 115 | |
---|
| 116 | /** \returns the norm of the quaternion's coefficients |
---|
| 117 | * \sa QuaternionBase::squaredNorm(), MatrixBase::norm() |
---|
| 118 | */ |
---|
| 119 | inline Scalar norm() const { return coeffs().norm(); } |
---|
| 120 | |
---|
| 121 | /** Normalizes the quaternion \c *this |
---|
| 122 | * \sa normalized(), MatrixBase::normalize() */ |
---|
| 123 | inline void normalize() { coeffs().normalize(); } |
---|
| 124 | /** \returns a normalized copy of \c *this |
---|
| 125 | * \sa normalize(), MatrixBase::normalized() */ |
---|
| 126 | inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); } |
---|
| 127 | |
---|
| 128 | /** \returns the dot product of \c *this and \a other |
---|
| 129 | * Geometrically speaking, the dot product of two unit quaternions |
---|
| 130 | * corresponds to the cosine of half the angle between the two rotations. |
---|
| 131 | * \sa angularDistance() |
---|
| 132 | */ |
---|
| 133 | template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); } |
---|
| 134 | |
---|
| 135 | template<class OtherDerived> Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const; |
---|
| 136 | |
---|
| 137 | /** \returns an equivalent 3x3 rotation matrix */ |
---|
| 138 | Matrix3 toRotationMatrix() const; |
---|
| 139 | |
---|
| 140 | /** \returns the quaternion which transform \a a into \a b through a rotation */ |
---|
| 141 | template<typename Derived1, typename Derived2> |
---|
| 142 | Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b); |
---|
| 143 | |
---|
| 144 | template<class OtherDerived> EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const; |
---|
| 145 | template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q); |
---|
| 146 | |
---|
| 147 | /** \returns the quaternion describing the inverse rotation */ |
---|
| 148 | Quaternion<Scalar> inverse() const; |
---|
| 149 | |
---|
| 150 | /** \returns the conjugated quaternion */ |
---|
| 151 | Quaternion<Scalar> conjugate() const; |
---|
| 152 | |
---|
| 153 | /** \returns an interpolation for a constant motion between \a other and \c *this |
---|
| 154 | * \a t in [0;1] |
---|
| 155 | * see http://en.wikipedia.org/wiki/Slerp |
---|
| 156 | */ |
---|
| 157 | template<class OtherDerived> Quaternion<Scalar> slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const; |
---|
| 158 | |
---|
| 159 | /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
---|
| 160 | * determined by \a prec. |
---|
| 161 | * |
---|
| 162 | * \sa MatrixBase::isApprox() */ |
---|
| 163 | template<class OtherDerived> |
---|
| 164 | bool isApprox(const QuaternionBase<OtherDerived>& other, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const |
---|
| 165 | { return coeffs().isApprox(other.coeffs(), prec); } |
---|
| 166 | |
---|
| 167 | /** return the result vector of \a v through the rotation*/ |
---|
| 168 | EIGEN_STRONG_INLINE Vector3 _transformVector(Vector3 v) const; |
---|
| 169 | |
---|
| 170 | /** \returns \c *this with scalar type casted to \a NewScalarType |
---|
| 171 | * |
---|
| 172 | * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
---|
| 173 | * then this function smartly returns a const reference to \c *this. |
---|
| 174 | */ |
---|
| 175 | template<typename NewScalarType> |
---|
| 176 | inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const |
---|
| 177 | { |
---|
| 178 | return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived()); |
---|
| 179 | } |
---|
| 180 | |
---|
| 181 | #ifdef EIGEN_QUATERNIONBASE_PLUGIN |
---|
| 182 | # include EIGEN_QUATERNIONBASE_PLUGIN |
---|
| 183 | #endif |
---|
| 184 | }; |
---|
| 185 | |
---|
| 186 | /*************************************************************************** |
---|
| 187 | * Definition/implementation of Quaternion<Scalar> |
---|
| 188 | ***************************************************************************/ |
---|
| 189 | |
---|
| 190 | /** \geometry_module \ingroup Geometry_Module |
---|
| 191 | * |
---|
| 192 | * \class Quaternion |
---|
| 193 | * |
---|
| 194 | * \brief The quaternion class used to represent 3D orientations and rotations |
---|
| 195 | * |
---|
| 196 | * \tparam _Scalar the scalar type, i.e., the type of the coefficients |
---|
| 197 | * \tparam _Options controls the memory alignement of the coeffecients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign. |
---|
| 198 | * |
---|
| 199 | * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of |
---|
| 200 | * orientations and rotations of objects in three dimensions. Compared to other representations |
---|
| 201 | * like Euler angles or 3x3 matrices, quatertions offer the following advantages: |
---|
| 202 | * \li \b compact storage (4 scalars) |
---|
| 203 | * \li \b efficient to compose (28 flops), |
---|
| 204 | * \li \b stable spherical interpolation |
---|
| 205 | * |
---|
| 206 | * The following two typedefs are provided for convenience: |
---|
| 207 | * \li \c Quaternionf for \c float |
---|
| 208 | * \li \c Quaterniond for \c double |
---|
| 209 | * |
---|
| 210 | * \sa class AngleAxis, class Transform |
---|
| 211 | */ |
---|
| 212 | |
---|
| 213 | namespace internal { |
---|
| 214 | template<typename _Scalar,int _Options> |
---|
| 215 | struct traits<Quaternion<_Scalar,_Options> > |
---|
| 216 | { |
---|
| 217 | typedef Quaternion<_Scalar,_Options> PlainObject; |
---|
| 218 | typedef _Scalar Scalar; |
---|
| 219 | typedef Matrix<_Scalar,4,1,_Options> Coefficients; |
---|
| 220 | enum{ |
---|
| 221 | IsAligned = internal::traits<Coefficients>::Flags & AlignedBit, |
---|
| 222 | Flags = IsAligned ? (AlignedBit | LvalueBit) : LvalueBit |
---|
| 223 | }; |
---|
| 224 | }; |
---|
| 225 | } |
---|
| 226 | |
---|
| 227 | template<typename _Scalar, int _Options> |
---|
| 228 | class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> > |
---|
| 229 | { |
---|
| 230 | typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base; |
---|
| 231 | enum { IsAligned = internal::traits<Quaternion>::IsAligned }; |
---|
| 232 | |
---|
| 233 | public: |
---|
| 234 | typedef _Scalar Scalar; |
---|
| 235 | |
---|
| 236 | EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Quaternion) |
---|
| 237 | using Base::operator*=; |
---|
| 238 | |
---|
| 239 | typedef typename internal::traits<Quaternion>::Coefficients Coefficients; |
---|
| 240 | typedef typename Base::AngleAxisType AngleAxisType; |
---|
| 241 | |
---|
| 242 | /** Default constructor leaving the quaternion uninitialized. */ |
---|
| 243 | inline Quaternion() {} |
---|
| 244 | |
---|
| 245 | /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from |
---|
| 246 | * its four coefficients \a w, \a x, \a y and \a z. |
---|
| 247 | * |
---|
| 248 | * \warning Note the order of the arguments: the real \a w coefficient first, |
---|
| 249 | * while internally the coefficients are stored in the following order: |
---|
| 250 | * [\c x, \c y, \c z, \c w] |
---|
| 251 | */ |
---|
| 252 | inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z) : m_coeffs(x, y, z, w){} |
---|
| 253 | |
---|
| 254 | /** Constructs and initialize a quaternion from the array data */ |
---|
| 255 | inline Quaternion(const Scalar* data) : m_coeffs(data) {} |
---|
| 256 | |
---|
| 257 | /** Copy constructor */ |
---|
| 258 | template<class Derived> EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); } |
---|
| 259 | |
---|
| 260 | /** Constructs and initializes a quaternion from the angle-axis \a aa */ |
---|
| 261 | explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; } |
---|
| 262 | |
---|
| 263 | /** Constructs and initializes a quaternion from either: |
---|
| 264 | * - a rotation matrix expression, |
---|
| 265 | * - a 4D vector expression representing quaternion coefficients. |
---|
| 266 | */ |
---|
| 267 | template<typename Derived> |
---|
| 268 | explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; } |
---|
| 269 | |
---|
| 270 | /** Explicit copy constructor with scalar conversion */ |
---|
| 271 | template<typename OtherScalar, int OtherOptions> |
---|
| 272 | explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other) |
---|
| 273 | { m_coeffs = other.coeffs().template cast<Scalar>(); } |
---|
| 274 | |
---|
| 275 | template<typename Derived1, typename Derived2> |
---|
| 276 | static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b); |
---|
| 277 | |
---|
| 278 | inline Coefficients& coeffs() { return m_coeffs;} |
---|
| 279 | inline const Coefficients& coeffs() const { return m_coeffs;} |
---|
| 280 | |
---|
| 281 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(IsAligned) |
---|
| 282 | |
---|
| 283 | protected: |
---|
| 284 | Coefficients m_coeffs; |
---|
| 285 | |
---|
| 286 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
---|
| 287 | static EIGEN_STRONG_INLINE void _check_template_params() |
---|
| 288 | { |
---|
| 289 | EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options, |
---|
| 290 | INVALID_MATRIX_TEMPLATE_PARAMETERS) |
---|
| 291 | } |
---|
| 292 | #endif |
---|
| 293 | }; |
---|
| 294 | |
---|
| 295 | /** \ingroup Geometry_Module |
---|
| 296 | * single precision quaternion type */ |
---|
| 297 | typedef Quaternion<float> Quaternionf; |
---|
| 298 | /** \ingroup Geometry_Module |
---|
| 299 | * double precision quaternion type */ |
---|
| 300 | typedef Quaternion<double> Quaterniond; |
---|
| 301 | |
---|
| 302 | /*************************************************************************** |
---|
| 303 | * Specialization of Map<Quaternion<Scalar>> |
---|
| 304 | ***************************************************************************/ |
---|
| 305 | |
---|
| 306 | namespace internal { |
---|
| 307 | template<typename _Scalar, int _Options> |
---|
| 308 | struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > |
---|
| 309 | { |
---|
| 310 | typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients; |
---|
| 311 | }; |
---|
| 312 | } |
---|
| 313 | |
---|
| 314 | namespace internal { |
---|
| 315 | template<typename _Scalar, int _Options> |
---|
| 316 | struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > |
---|
| 317 | { |
---|
| 318 | typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients; |
---|
| 319 | typedef traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase; |
---|
| 320 | enum { |
---|
| 321 | Flags = TraitsBase::Flags & ~LvalueBit |
---|
| 322 | }; |
---|
| 323 | }; |
---|
| 324 | } |
---|
| 325 | |
---|
| 326 | /** \ingroup Geometry_Module |
---|
| 327 | * \brief Quaternion expression mapping a constant memory buffer |
---|
| 328 | * |
---|
| 329 | * \tparam _Scalar the type of the Quaternion coefficients |
---|
| 330 | * \tparam _Options see class Map |
---|
| 331 | * |
---|
| 332 | * This is a specialization of class Map for Quaternion. This class allows to view |
---|
| 333 | * a 4 scalar memory buffer as an Eigen's Quaternion object. |
---|
| 334 | * |
---|
| 335 | * \sa class Map, class Quaternion, class QuaternionBase |
---|
| 336 | */ |
---|
| 337 | template<typename _Scalar, int _Options> |
---|
| 338 | class Map<const Quaternion<_Scalar>, _Options > |
---|
| 339 | : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > |
---|
| 340 | { |
---|
| 341 | typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base; |
---|
| 342 | |
---|
| 343 | public: |
---|
| 344 | typedef _Scalar Scalar; |
---|
| 345 | typedef typename internal::traits<Map>::Coefficients Coefficients; |
---|
| 346 | EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map) |
---|
| 347 | using Base::operator*=; |
---|
| 348 | |
---|
| 349 | /** Constructs a Mapped Quaternion object from the pointer \a coeffs |
---|
| 350 | * |
---|
| 351 | * The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order: |
---|
| 352 | * \code *coeffs == {x, y, z, w} \endcode |
---|
| 353 | * |
---|
| 354 | * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */ |
---|
| 355 | EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {} |
---|
| 356 | |
---|
| 357 | inline const Coefficients& coeffs() const { return m_coeffs;} |
---|
| 358 | |
---|
| 359 | protected: |
---|
| 360 | const Coefficients m_coeffs; |
---|
| 361 | }; |
---|
| 362 | |
---|
| 363 | /** \ingroup Geometry_Module |
---|
| 364 | * \brief Expression of a quaternion from a memory buffer |
---|
| 365 | * |
---|
| 366 | * \tparam _Scalar the type of the Quaternion coefficients |
---|
| 367 | * \tparam _Options see class Map |
---|
| 368 | * |
---|
| 369 | * This is a specialization of class Map for Quaternion. This class allows to view |
---|
| 370 | * a 4 scalar memory buffer as an Eigen's Quaternion object. |
---|
| 371 | * |
---|
| 372 | * \sa class Map, class Quaternion, class QuaternionBase |
---|
| 373 | */ |
---|
| 374 | template<typename _Scalar, int _Options> |
---|
| 375 | class Map<Quaternion<_Scalar>, _Options > |
---|
| 376 | : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> > |
---|
| 377 | { |
---|
| 378 | typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base; |
---|
| 379 | |
---|
| 380 | public: |
---|
| 381 | typedef _Scalar Scalar; |
---|
| 382 | typedef typename internal::traits<Map>::Coefficients Coefficients; |
---|
| 383 | EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map) |
---|
| 384 | using Base::operator*=; |
---|
| 385 | |
---|
| 386 | /** Constructs a Mapped Quaternion object from the pointer \a coeffs |
---|
| 387 | * |
---|
| 388 | * The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order: |
---|
| 389 | * \code *coeffs == {x, y, z, w} \endcode |
---|
| 390 | * |
---|
| 391 | * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */ |
---|
| 392 | EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {} |
---|
| 393 | |
---|
| 394 | inline Coefficients& coeffs() { return m_coeffs; } |
---|
| 395 | inline const Coefficients& coeffs() const { return m_coeffs; } |
---|
| 396 | |
---|
| 397 | protected: |
---|
| 398 | Coefficients m_coeffs; |
---|
| 399 | }; |
---|
| 400 | |
---|
| 401 | /** \ingroup Geometry_Module |
---|
| 402 | * Map an unaligned array of single precision scalar as a quaternion */ |
---|
| 403 | typedef Map<Quaternion<float>, 0> QuaternionMapf; |
---|
| 404 | /** \ingroup Geometry_Module |
---|
| 405 | * Map an unaligned array of double precision scalar as a quaternion */ |
---|
| 406 | typedef Map<Quaternion<double>, 0> QuaternionMapd; |
---|
| 407 | /** \ingroup Geometry_Module |
---|
| 408 | * Map a 16-bits aligned array of double precision scalars as a quaternion */ |
---|
| 409 | typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf; |
---|
| 410 | /** \ingroup Geometry_Module |
---|
| 411 | * Map a 16-bits aligned array of double precision scalars as a quaternion */ |
---|
| 412 | typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd; |
---|
| 413 | |
---|
| 414 | /*************************************************************************** |
---|
| 415 | * Implementation of QuaternionBase methods |
---|
| 416 | ***************************************************************************/ |
---|
| 417 | |
---|
| 418 | // Generic Quaternion * Quaternion product |
---|
| 419 | // This product can be specialized for a given architecture via the Arch template argument. |
---|
| 420 | namespace internal { |
---|
| 421 | template<int Arch, class Derived1, class Derived2, typename Scalar, int _Options> struct quat_product |
---|
| 422 | { |
---|
| 423 | static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){ |
---|
| 424 | return Quaternion<Scalar> |
---|
| 425 | ( |
---|
| 426 | a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(), |
---|
| 427 | a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(), |
---|
| 428 | a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(), |
---|
| 429 | a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x() |
---|
| 430 | ); |
---|
| 431 | } |
---|
| 432 | }; |
---|
| 433 | } |
---|
| 434 | |
---|
| 435 | /** \returns the concatenation of two rotations as a quaternion-quaternion product */ |
---|
| 436 | template <class Derived> |
---|
| 437 | template <class OtherDerived> |
---|
| 438 | EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar> |
---|
| 439 | QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const |
---|
| 440 | { |
---|
| 441 | EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value), |
---|
| 442 | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) |
---|
| 443 | return internal::quat_product<Architecture::Target, Derived, OtherDerived, |
---|
| 444 | typename internal::traits<Derived>::Scalar, |
---|
| 445 | internal::traits<Derived>::IsAligned && internal::traits<OtherDerived>::IsAligned>::run(*this, other); |
---|
| 446 | } |
---|
| 447 | |
---|
| 448 | /** \sa operator*(Quaternion) */ |
---|
| 449 | template <class Derived> |
---|
| 450 | template <class OtherDerived> |
---|
| 451 | EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other) |
---|
| 452 | { |
---|
| 453 | derived() = derived() * other.derived(); |
---|
| 454 | return derived(); |
---|
| 455 | } |
---|
| 456 | |
---|
| 457 | /** Rotation of a vector by a quaternion. |
---|
| 458 | * \remarks If the quaternion is used to rotate several points (>1) |
---|
| 459 | * then it is much more efficient to first convert it to a 3x3 Matrix. |
---|
| 460 | * Comparison of the operation cost for n transformations: |
---|
| 461 | * - Quaternion2: 30n |
---|
| 462 | * - Via a Matrix3: 24 + 15n |
---|
| 463 | */ |
---|
| 464 | template <class Derived> |
---|
| 465 | EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3 |
---|
| 466 | QuaternionBase<Derived>::_transformVector(Vector3 v) const |
---|
| 467 | { |
---|
| 468 | // Note that this algorithm comes from the optimization by hand |
---|
| 469 | // of the conversion to a Matrix followed by a Matrix/Vector product. |
---|
| 470 | // It appears to be much faster than the common algorithm found |
---|
| 471 | // in the litterature (30 versus 39 flops). It also requires two |
---|
| 472 | // Vector3 as temporaries. |
---|
| 473 | Vector3 uv = this->vec().cross(v); |
---|
| 474 | uv += uv; |
---|
| 475 | return v + this->w() * uv + this->vec().cross(uv); |
---|
| 476 | } |
---|
| 477 | |
---|
| 478 | template<class Derived> |
---|
| 479 | EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other) |
---|
| 480 | { |
---|
| 481 | coeffs() = other.coeffs(); |
---|
| 482 | return derived(); |
---|
| 483 | } |
---|
| 484 | |
---|
| 485 | template<class Derived> |
---|
| 486 | template<class OtherDerived> |
---|
| 487 | EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other) |
---|
| 488 | { |
---|
| 489 | coeffs() = other.coeffs(); |
---|
| 490 | return derived(); |
---|
| 491 | } |
---|
| 492 | |
---|
| 493 | /** Set \c *this from an angle-axis \a aa and returns a reference to \c *this |
---|
| 494 | */ |
---|
| 495 | template<class Derived> |
---|
| 496 | EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa) |
---|
| 497 | { |
---|
| 498 | Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings |
---|
| 499 | this->w() = internal::cos(ha); |
---|
| 500 | this->vec() = internal::sin(ha) * aa.axis(); |
---|
| 501 | return derived(); |
---|
| 502 | } |
---|
| 503 | |
---|
| 504 | /** Set \c *this from the expression \a xpr: |
---|
| 505 | * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion |
---|
| 506 | * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix |
---|
| 507 | * and \a xpr is converted to a quaternion |
---|
| 508 | */ |
---|
| 509 | |
---|
| 510 | template<class Derived> |
---|
| 511 | template<class MatrixDerived> |
---|
| 512 | inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr) |
---|
| 513 | { |
---|
| 514 | EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value), |
---|
| 515 | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) |
---|
| 516 | internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived()); |
---|
| 517 | return derived(); |
---|
| 518 | } |
---|
| 519 | |
---|
| 520 | /** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to |
---|
| 521 | * be normalized, otherwise the result is undefined. |
---|
| 522 | */ |
---|
| 523 | template<class Derived> |
---|
| 524 | inline typename QuaternionBase<Derived>::Matrix3 |
---|
| 525 | QuaternionBase<Derived>::toRotationMatrix(void) const |
---|
| 526 | { |
---|
| 527 | // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!) |
---|
| 528 | // if not inlined then the cost of the return by value is huge ~ +35%, |
---|
| 529 | // however, not inlining this function is an order of magnitude slower, so |
---|
| 530 | // it has to be inlined, and so the return by value is not an issue |
---|
| 531 | Matrix3 res; |
---|
| 532 | |
---|
| 533 | const Scalar tx = Scalar(2)*this->x(); |
---|
| 534 | const Scalar ty = Scalar(2)*this->y(); |
---|
| 535 | const Scalar tz = Scalar(2)*this->z(); |
---|
| 536 | const Scalar twx = tx*this->w(); |
---|
| 537 | const Scalar twy = ty*this->w(); |
---|
| 538 | const Scalar twz = tz*this->w(); |
---|
| 539 | const Scalar txx = tx*this->x(); |
---|
| 540 | const Scalar txy = ty*this->x(); |
---|
| 541 | const Scalar txz = tz*this->x(); |
---|
| 542 | const Scalar tyy = ty*this->y(); |
---|
| 543 | const Scalar tyz = tz*this->y(); |
---|
| 544 | const Scalar tzz = tz*this->z(); |
---|
| 545 | |
---|
| 546 | res.coeffRef(0,0) = Scalar(1)-(tyy+tzz); |
---|
| 547 | res.coeffRef(0,1) = txy-twz; |
---|
| 548 | res.coeffRef(0,2) = txz+twy; |
---|
| 549 | res.coeffRef(1,0) = txy+twz; |
---|
| 550 | res.coeffRef(1,1) = Scalar(1)-(txx+tzz); |
---|
| 551 | res.coeffRef(1,2) = tyz-twx; |
---|
| 552 | res.coeffRef(2,0) = txz-twy; |
---|
| 553 | res.coeffRef(2,1) = tyz+twx; |
---|
| 554 | res.coeffRef(2,2) = Scalar(1)-(txx+tyy); |
---|
| 555 | |
---|
| 556 | return res; |
---|
| 557 | } |
---|
| 558 | |
---|
| 559 | /** Sets \c *this to be a quaternion representing a rotation between |
---|
| 560 | * the two arbitrary vectors \a a and \a b. In other words, the built |
---|
| 561 | * rotation represent a rotation sending the line of direction \a a |
---|
| 562 | * to the line of direction \a b, both lines passing through the origin. |
---|
| 563 | * |
---|
| 564 | * \returns a reference to \c *this. |
---|
| 565 | * |
---|
| 566 | * Note that the two input vectors do \b not have to be normalized, and |
---|
| 567 | * do not need to have the same norm. |
---|
| 568 | */ |
---|
| 569 | template<class Derived> |
---|
| 570 | template<typename Derived1, typename Derived2> |
---|
| 571 | inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) |
---|
| 572 | { |
---|
| 573 | using std::max; |
---|
| 574 | Vector3 v0 = a.normalized(); |
---|
| 575 | Vector3 v1 = b.normalized(); |
---|
| 576 | Scalar c = v1.dot(v0); |
---|
| 577 | |
---|
| 578 | // if dot == -1, vectors are nearly opposites |
---|
| 579 | // => accuraletly compute the rotation axis by computing the |
---|
| 580 | // intersection of the two planes. This is done by solving: |
---|
| 581 | // x^T v0 = 0 |
---|
| 582 | // x^T v1 = 0 |
---|
| 583 | // under the constraint: |
---|
| 584 | // ||x|| = 1 |
---|
| 585 | // which yields a singular value problem |
---|
| 586 | if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision()) |
---|
| 587 | { |
---|
| 588 | c = max<Scalar>(c,-1); |
---|
| 589 | Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose(); |
---|
| 590 | JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV); |
---|
| 591 | Vector3 axis = svd.matrixV().col(2); |
---|
| 592 | |
---|
| 593 | Scalar w2 = (Scalar(1)+c)*Scalar(0.5); |
---|
| 594 | this->w() = internal::sqrt(w2); |
---|
| 595 | this->vec() = axis * internal::sqrt(Scalar(1) - w2); |
---|
| 596 | return derived(); |
---|
| 597 | } |
---|
| 598 | Vector3 axis = v0.cross(v1); |
---|
| 599 | Scalar s = internal::sqrt((Scalar(1)+c)*Scalar(2)); |
---|
| 600 | Scalar invs = Scalar(1)/s; |
---|
| 601 | this->vec() = axis * invs; |
---|
| 602 | this->w() = s * Scalar(0.5); |
---|
| 603 | |
---|
| 604 | return derived(); |
---|
| 605 | } |
---|
| 606 | |
---|
| 607 | |
---|
| 608 | /** Returns a quaternion representing a rotation between |
---|
| 609 | * the two arbitrary vectors \a a and \a b. In other words, the built |
---|
| 610 | * rotation represent a rotation sending the line of direction \a a |
---|
| 611 | * to the line of direction \a b, both lines passing through the origin. |
---|
| 612 | * |
---|
| 613 | * \returns resulting quaternion |
---|
| 614 | * |
---|
| 615 | * Note that the two input vectors do \b not have to be normalized, and |
---|
| 616 | * do not need to have the same norm. |
---|
| 617 | */ |
---|
| 618 | template<typename Scalar, int Options> |
---|
| 619 | template<typename Derived1, typename Derived2> |
---|
| 620 | Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) |
---|
| 621 | { |
---|
| 622 | Quaternion quat; |
---|
| 623 | quat.setFromTwoVectors(a, b); |
---|
| 624 | return quat; |
---|
| 625 | } |
---|
| 626 | |
---|
| 627 | |
---|
| 628 | /** \returns the multiplicative inverse of \c *this |
---|
| 629 | * Note that in most cases, i.e., if you simply want the opposite rotation, |
---|
| 630 | * and/or the quaternion is normalized, then it is enough to use the conjugate. |
---|
| 631 | * |
---|
| 632 | * \sa QuaternionBase::conjugate() |
---|
| 633 | */ |
---|
| 634 | template <class Derived> |
---|
| 635 | inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const |
---|
| 636 | { |
---|
| 637 | // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ?? |
---|
| 638 | Scalar n2 = this->squaredNorm(); |
---|
| 639 | if (n2 > 0) |
---|
| 640 | return Quaternion<Scalar>(conjugate().coeffs() / n2); |
---|
| 641 | else |
---|
| 642 | { |
---|
| 643 | // return an invalid result to flag the error |
---|
| 644 | return Quaternion<Scalar>(Coefficients::Zero()); |
---|
| 645 | } |
---|
| 646 | } |
---|
| 647 | |
---|
| 648 | /** \returns the conjugate of the \c *this which is equal to the multiplicative inverse |
---|
| 649 | * if the quaternion is normalized. |
---|
| 650 | * The conjugate of a quaternion represents the opposite rotation. |
---|
| 651 | * |
---|
| 652 | * \sa Quaternion2::inverse() |
---|
| 653 | */ |
---|
| 654 | template <class Derived> |
---|
| 655 | inline Quaternion<typename internal::traits<Derived>::Scalar> |
---|
| 656 | QuaternionBase<Derived>::conjugate() const |
---|
| 657 | { |
---|
| 658 | return Quaternion<Scalar>(this->w(),-this->x(),-this->y(),-this->z()); |
---|
| 659 | } |
---|
| 660 | |
---|
| 661 | /** \returns the angle (in radian) between two rotations |
---|
| 662 | * \sa dot() |
---|
| 663 | */ |
---|
| 664 | template <class Derived> |
---|
| 665 | template <class OtherDerived> |
---|
| 666 | inline typename internal::traits<Derived>::Scalar |
---|
| 667 | QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const |
---|
| 668 | { |
---|
| 669 | using std::acos; |
---|
| 670 | double d = internal::abs(this->dot(other)); |
---|
| 671 | if (d>=1.0) |
---|
| 672 | return Scalar(0); |
---|
| 673 | return static_cast<Scalar>(2 * acos(d)); |
---|
| 674 | } |
---|
| 675 | |
---|
| 676 | /** \returns the spherical linear interpolation between the two quaternions |
---|
| 677 | * \c *this and \a other at the parameter \a t |
---|
| 678 | */ |
---|
| 679 | template <class Derived> |
---|
| 680 | template <class OtherDerived> |
---|
| 681 | Quaternion<typename internal::traits<Derived>::Scalar> |
---|
| 682 | QuaternionBase<Derived>::slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const |
---|
| 683 | { |
---|
| 684 | using std::acos; |
---|
| 685 | static const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon(); |
---|
| 686 | Scalar d = this->dot(other); |
---|
| 687 | Scalar absD = internal::abs(d); |
---|
| 688 | |
---|
| 689 | Scalar scale0; |
---|
| 690 | Scalar scale1; |
---|
| 691 | |
---|
| 692 | if(absD>=one) |
---|
| 693 | { |
---|
| 694 | scale0 = Scalar(1) - t; |
---|
| 695 | scale1 = t; |
---|
| 696 | } |
---|
| 697 | else |
---|
| 698 | { |
---|
| 699 | // theta is the angle between the 2 quaternions |
---|
| 700 | Scalar theta = acos(absD); |
---|
| 701 | Scalar sinTheta = internal::sin(theta); |
---|
| 702 | |
---|
| 703 | scale0 = internal::sin( ( Scalar(1) - t ) * theta) / sinTheta; |
---|
| 704 | scale1 = internal::sin( ( t * theta) ) / sinTheta; |
---|
| 705 | } |
---|
| 706 | if(d<0) scale1 = -scale1; |
---|
| 707 | |
---|
| 708 | return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs()); |
---|
| 709 | } |
---|
| 710 | |
---|
| 711 | namespace internal { |
---|
| 712 | |
---|
| 713 | // set from a rotation matrix |
---|
| 714 | template<typename Other> |
---|
| 715 | struct quaternionbase_assign_impl<Other,3,3> |
---|
| 716 | { |
---|
| 717 | typedef typename Other::Scalar Scalar; |
---|
| 718 | typedef DenseIndex Index; |
---|
| 719 | template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& mat) |
---|
| 720 | { |
---|
| 721 | // This algorithm comes from "Quaternion Calculus and Fast Animation", |
---|
| 722 | // Ken Shoemake, 1987 SIGGRAPH course notes |
---|
| 723 | Scalar t = mat.trace(); |
---|
| 724 | if (t > Scalar(0)) |
---|
| 725 | { |
---|
| 726 | t = sqrt(t + Scalar(1.0)); |
---|
| 727 | q.w() = Scalar(0.5)*t; |
---|
| 728 | t = Scalar(0.5)/t; |
---|
| 729 | q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t; |
---|
| 730 | q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t; |
---|
| 731 | q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t; |
---|
| 732 | } |
---|
| 733 | else |
---|
| 734 | { |
---|
| 735 | DenseIndex i = 0; |
---|
| 736 | if (mat.coeff(1,1) > mat.coeff(0,0)) |
---|
| 737 | i = 1; |
---|
| 738 | if (mat.coeff(2,2) > mat.coeff(i,i)) |
---|
| 739 | i = 2; |
---|
| 740 | DenseIndex j = (i+1)%3; |
---|
| 741 | DenseIndex k = (j+1)%3; |
---|
| 742 | |
---|
| 743 | t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0)); |
---|
| 744 | q.coeffs().coeffRef(i) = Scalar(0.5) * t; |
---|
| 745 | t = Scalar(0.5)/t; |
---|
| 746 | q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t; |
---|
| 747 | q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t; |
---|
| 748 | q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t; |
---|
| 749 | } |
---|
| 750 | } |
---|
| 751 | }; |
---|
| 752 | |
---|
| 753 | // set from a vector of coefficients assumed to be a quaternion |
---|
| 754 | template<typename Other> |
---|
| 755 | struct quaternionbase_assign_impl<Other,4,1> |
---|
| 756 | { |
---|
| 757 | typedef typename Other::Scalar Scalar; |
---|
| 758 | template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& vec) |
---|
| 759 | { |
---|
| 760 | q.coeffs() = vec; |
---|
| 761 | } |
---|
| 762 | }; |
---|
| 763 | |
---|
| 764 | } // end namespace internal |
---|
| 765 | |
---|
| 766 | } // end namespace Eigen |
---|
| 767 | |
---|
| 768 | #endif // EIGEN_QUATERNION_H |
---|