Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Eigen/Eigen/src/Geometry/Quaternion.h @ 9562

Last change on this file since 9562 was 9562, checked in by gkronber, 12 years ago

#1967 worked on Gaussian process evolution.

File size: 28.3 KB
RevLine 
[9562]1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_QUATERNION_H
12#define EIGEN_QUATERNION_H
13namespace Eigen {
14
15
16/***************************************************************************
17* Definition of QuaternionBase<Derived>
18* The implementation is at the end of the file
19***************************************************************************/
20
21namespace internal {
22template<typename Other,
23         int OtherRows=Other::RowsAtCompileTime,
24         int OtherCols=Other::ColsAtCompileTime>
25struct quaternionbase_assign_impl;
26}
27
28/** \geometry_module \ingroup Geometry_Module
29  * \class QuaternionBase
30  * \brief Base class for quaternion expressions
31  * \tparam Derived derived type (CRTP)
32  * \sa class Quaternion
33  */
34template<class Derived>
35class QuaternionBase : public RotationBase<Derived, 3>
36{
37  typedef RotationBase<Derived, 3> Base;
38public:
39  using Base::operator*;
40  using Base::derived;
41
42  typedef typename internal::traits<Derived>::Scalar Scalar;
43  typedef typename NumTraits<Scalar>::Real RealScalar;
44  typedef typename internal::traits<Derived>::Coefficients Coefficients;
45  enum {
46    Flags = Eigen::internal::traits<Derived>::Flags
47  };
48
49 // typedef typename Matrix<Scalar,4,1> Coefficients;
50  /** the type of a 3D vector */
51  typedef Matrix<Scalar,3,1> Vector3;
52  /** the equivalent rotation matrix type */
53  typedef Matrix<Scalar,3,3> Matrix3;
54  /** the equivalent angle-axis type */
55  typedef AngleAxis<Scalar> AngleAxisType;
56
57
58
59  /** \returns the \c x coefficient */
60  inline Scalar x() const { return this->derived().coeffs().coeff(0); }
61  /** \returns the \c y coefficient */
62  inline Scalar y() const { return this->derived().coeffs().coeff(1); }
63  /** \returns the \c z coefficient */
64  inline Scalar z() const { return this->derived().coeffs().coeff(2); }
65  /** \returns the \c w coefficient */
66  inline Scalar w() const { return this->derived().coeffs().coeff(3); }
67
68  /** \returns a reference to the \c x coefficient */
69  inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
70  /** \returns a reference to the \c y coefficient */
71  inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
72  /** \returns a reference to the \c z coefficient */
73  inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
74  /** \returns a reference to the \c w coefficient */
75  inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
76
77  /** \returns a read-only vector expression of the imaginary part (x,y,z) */
78  inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
79
80  /** \returns a vector expression of the imaginary part (x,y,z) */
81  inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }
82
83  /** \returns a read-only vector expression of the coefficients (x,y,z,w) */
84  inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
85
86  /** \returns a vector expression of the coefficients (x,y,z,w) */
87  inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
88
89  EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
90  template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
91
92// disabled this copy operator as it is giving very strange compilation errors when compiling
93// test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
94// useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
95// we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
96//  Derived& operator=(const QuaternionBase& other)
97//  { return operator=<Derived>(other); }
98
99  Derived& operator=(const AngleAxisType& aa);
100  template<class OtherDerived> Derived& operator=(const MatrixBase<OtherDerived>& m);
101
102  /** \returns a quaternion representing an identity rotation
103    * \sa MatrixBase::Identity()
104    */
105  static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(1, 0, 0, 0); }
106
107  /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity()
108    */
109  inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; }
110
111  /** \returns the squared norm of the quaternion's coefficients
112    * \sa QuaternionBase::norm(), MatrixBase::squaredNorm()
113    */
114  inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
115
116  /** \returns the norm of the quaternion's coefficients
117    * \sa QuaternionBase::squaredNorm(), MatrixBase::norm()
118    */
119  inline Scalar norm() const { return coeffs().norm(); }
120
121  /** Normalizes the quaternion \c *this
122    * \sa normalized(), MatrixBase::normalize() */
123  inline void normalize() { coeffs().normalize(); }
124  /** \returns a normalized copy of \c *this
125    * \sa normalize(), MatrixBase::normalized() */
126  inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
127
128    /** \returns the dot product of \c *this and \a other
129    * Geometrically speaking, the dot product of two unit quaternions
130    * corresponds to the cosine of half the angle between the two rotations.
131    * \sa angularDistance()
132    */
133  template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
134
135  template<class OtherDerived> Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
136
137  /** \returns an equivalent 3x3 rotation matrix */
138  Matrix3 toRotationMatrix() const;
139
140  /** \returns the quaternion which transform \a a into \a b through a rotation */
141  template<typename Derived1, typename Derived2>
142  Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
143
144  template<class OtherDerived> EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
145  template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
146
147  /** \returns the quaternion describing the inverse rotation */
148  Quaternion<Scalar> inverse() const;
149
150  /** \returns the conjugated quaternion */
151  Quaternion<Scalar> conjugate() const;
152
153  /** \returns an interpolation for a constant motion between \a other and \c *this
154    * \a t in [0;1]
155    * see http://en.wikipedia.org/wiki/Slerp
156    */
157  template<class OtherDerived> Quaternion<Scalar> slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const;
158
159  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
160    * determined by \a prec.
161    *
162    * \sa MatrixBase::isApprox() */
163  template<class OtherDerived>
164  bool isApprox(const QuaternionBase<OtherDerived>& other, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
165  { return coeffs().isApprox(other.coeffs(), prec); }
166
167  /** return the result vector of \a v through the rotation*/
168  EIGEN_STRONG_INLINE Vector3 _transformVector(Vector3 v) const;
169
170  /** \returns \c *this with scalar type casted to \a NewScalarType
171    *
172    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
173    * then this function smartly returns a const reference to \c *this.
174    */
175  template<typename NewScalarType>
176  inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
177  {
178    return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived());
179  }
180
181#ifdef EIGEN_QUATERNIONBASE_PLUGIN
182# include EIGEN_QUATERNIONBASE_PLUGIN
183#endif
184};
185
186/***************************************************************************
187* Definition/implementation of Quaternion<Scalar>
188***************************************************************************/
189
190/** \geometry_module \ingroup Geometry_Module
191  *
192  * \class Quaternion
193  *
194  * \brief The quaternion class used to represent 3D orientations and rotations
195  *
196  * \tparam _Scalar the scalar type, i.e., the type of the coefficients
197  * \tparam _Options controls the memory alignement of the coeffecients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign.
198  *
199  * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
200  * orientations and rotations of objects in three dimensions. Compared to other representations
201  * like Euler angles or 3x3 matrices, quatertions offer the following advantages:
202  * \li \b compact storage (4 scalars)
203  * \li \b efficient to compose (28 flops),
204  * \li \b stable spherical interpolation
205  *
206  * The following two typedefs are provided for convenience:
207  * \li \c Quaternionf for \c float
208  * \li \c Quaterniond for \c double
209  *
210  * \sa  class AngleAxis, class Transform
211  */
212
213namespace internal {
214template<typename _Scalar,int _Options>
215struct traits<Quaternion<_Scalar,_Options> >
216{
217  typedef Quaternion<_Scalar,_Options> PlainObject;
218  typedef _Scalar Scalar;
219  typedef Matrix<_Scalar,4,1,_Options> Coefficients;
220  enum{
221    IsAligned = internal::traits<Coefficients>::Flags & AlignedBit,
222    Flags = IsAligned ? (AlignedBit | LvalueBit) : LvalueBit
223  };
224};
225}
226
227template<typename _Scalar, int _Options>
228class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
229{
230  typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base;
231  enum { IsAligned = internal::traits<Quaternion>::IsAligned };
232
233public:
234  typedef _Scalar Scalar;
235
236  EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Quaternion)
237  using Base::operator*=;
238
239  typedef typename internal::traits<Quaternion>::Coefficients Coefficients;
240  typedef typename Base::AngleAxisType AngleAxisType;
241
242  /** Default constructor leaving the quaternion uninitialized. */
243  inline Quaternion() {}
244
245  /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
246    * its four coefficients \a w, \a x, \a y and \a z.
247    *
248    * \warning Note the order of the arguments: the real \a w coefficient first,
249    * while internally the coefficients are stored in the following order:
250    * [\c x, \c y, \c z, \c w]
251    */
252  inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z) : m_coeffs(x, y, z, w){}
253
254  /** Constructs and initialize a quaternion from the array data */
255  inline Quaternion(const Scalar* data) : m_coeffs(data) {}
256
257  /** Copy constructor */
258  template<class Derived> EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
259
260  /** Constructs and initializes a quaternion from the angle-axis \a aa */
261  explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
262
263  /** Constructs and initializes a quaternion from either:
264    *  - a rotation matrix expression,
265    *  - a 4D vector expression representing quaternion coefficients.
266    */
267  template<typename Derived>
268  explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
269
270  /** Explicit copy constructor with scalar conversion */
271  template<typename OtherScalar, int OtherOptions>
272  explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other)
273  { m_coeffs = other.coeffs().template cast<Scalar>(); }
274
275  template<typename Derived1, typename Derived2>
276  static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
277
278  inline Coefficients& coeffs() { return m_coeffs;}
279  inline const Coefficients& coeffs() const { return m_coeffs;}
280
281  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(IsAligned)
282
283protected:
284  Coefficients m_coeffs;
285 
286#ifndef EIGEN_PARSED_BY_DOXYGEN
287    static EIGEN_STRONG_INLINE void _check_template_params()
288    {
289      EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options,
290        INVALID_MATRIX_TEMPLATE_PARAMETERS)
291    }
292#endif
293};
294
295/** \ingroup Geometry_Module
296  * single precision quaternion type */
297typedef Quaternion<float> Quaternionf;
298/** \ingroup Geometry_Module
299  * double precision quaternion type */
300typedef Quaternion<double> Quaterniond;
301
302/***************************************************************************
303* Specialization of Map<Quaternion<Scalar>>
304***************************************************************************/
305
306namespace internal {
307  template<typename _Scalar, int _Options>
308  struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
309  {
310    typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients;
311  };
312}
313
314namespace internal {
315  template<typename _Scalar, int _Options>
316  struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
317  {
318    typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients;
319    typedef traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase;
320    enum {
321      Flags = TraitsBase::Flags & ~LvalueBit
322    };
323  };
324}
325
326/** \ingroup Geometry_Module
327  * \brief Quaternion expression mapping a constant memory buffer
328  *
329  * \tparam _Scalar the type of the Quaternion coefficients
330  * \tparam _Options see class Map
331  *
332  * This is a specialization of class Map for Quaternion. This class allows to view
333  * a 4 scalar memory buffer as an Eigen's Quaternion object.
334  *
335  * \sa class Map, class Quaternion, class QuaternionBase
336  */
337template<typename _Scalar, int _Options>
338class Map<const Quaternion<_Scalar>, _Options >
339  : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
340{
341    typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;
342
343  public:
344    typedef _Scalar Scalar;
345    typedef typename internal::traits<Map>::Coefficients Coefficients;
346    EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map)
347    using Base::operator*=;
348
349    /** Constructs a Mapped Quaternion object from the pointer \a coeffs
350      *
351      * The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order:
352      * \code *coeffs == {x, y, z, w} \endcode
353      *
354      * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
355    EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
356
357    inline const Coefficients& coeffs() const { return m_coeffs;}
358
359  protected:
360    const Coefficients m_coeffs;
361};
362
363/** \ingroup Geometry_Module
364  * \brief Expression of a quaternion from a memory buffer
365  *
366  * \tparam _Scalar the type of the Quaternion coefficients
367  * \tparam _Options see class Map
368  *
369  * This is a specialization of class Map for Quaternion. This class allows to view
370  * a 4 scalar memory buffer as an Eigen's  Quaternion object.
371  *
372  * \sa class Map, class Quaternion, class QuaternionBase
373  */
374template<typename _Scalar, int _Options>
375class Map<Quaternion<_Scalar>, _Options >
376  : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
377{
378    typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;
379
380  public:
381    typedef _Scalar Scalar;
382    typedef typename internal::traits<Map>::Coefficients Coefficients;
383    EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map)
384    using Base::operator*=;
385
386    /** Constructs a Mapped Quaternion object from the pointer \a coeffs
387      *
388      * The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order:
389      * \code *coeffs == {x, y, z, w} \endcode
390      *
391      * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
392    EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
393
394    inline Coefficients& coeffs() { return m_coeffs; }
395    inline const Coefficients& coeffs() const { return m_coeffs; }
396
397  protected:
398    Coefficients m_coeffs;
399};
400
401/** \ingroup Geometry_Module
402  * Map an unaligned array of single precision scalar as a quaternion */
403typedef Map<Quaternion<float>, 0>         QuaternionMapf;
404/** \ingroup Geometry_Module
405  * Map an unaligned array of double precision scalar as a quaternion */
406typedef Map<Quaternion<double>, 0>        QuaternionMapd;
407/** \ingroup Geometry_Module
408  * Map a 16-bits aligned array of double precision scalars as a quaternion */
409typedef Map<Quaternion<float>, Aligned>   QuaternionMapAlignedf;
410/** \ingroup Geometry_Module
411  * Map a 16-bits aligned array of double precision scalars as a quaternion */
412typedef Map<Quaternion<double>, Aligned>  QuaternionMapAlignedd;
413
414/***************************************************************************
415* Implementation of QuaternionBase methods
416***************************************************************************/
417
418// Generic Quaternion * Quaternion product
419// This product can be specialized for a given architecture via the Arch template argument.
420namespace internal {
421template<int Arch, class Derived1, class Derived2, typename Scalar, int _Options> struct quat_product
422{
423  static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
424    return Quaternion<Scalar>
425    (
426      a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
427      a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
428      a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
429      a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
430    );
431  }
432};
433}
434
435/** \returns the concatenation of two rotations as a quaternion-quaternion product */
436template <class Derived>
437template <class OtherDerived>
438EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
439QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
440{
441  EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value),
442   YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
443  return internal::quat_product<Architecture::Target, Derived, OtherDerived,
444                         typename internal::traits<Derived>::Scalar,
445                         internal::traits<Derived>::IsAligned && internal::traits<OtherDerived>::IsAligned>::run(*this, other);
446}
447
448/** \sa operator*(Quaternion) */
449template <class Derived>
450template <class OtherDerived>
451EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
452{
453  derived() = derived() * other.derived();
454  return derived();
455}
456
457/** Rotation of a vector by a quaternion.
458  * \remarks If the quaternion is used to rotate several points (>1)
459  * then it is much more efficient to first convert it to a 3x3 Matrix.
460  * Comparison of the operation cost for n transformations:
461  *   - Quaternion2:    30n
462  *   - Via a Matrix3: 24 + 15n
463  */
464template <class Derived>
465EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
466QuaternionBase<Derived>::_transformVector(Vector3 v) const
467{
468    // Note that this algorithm comes from the optimization by hand
469    // of the conversion to a Matrix followed by a Matrix/Vector product.
470    // It appears to be much faster than the common algorithm found
471    // in the litterature (30 versus 39 flops). It also requires two
472    // Vector3 as temporaries.
473    Vector3 uv = this->vec().cross(v);
474    uv += uv;
475    return v + this->w() * uv + this->vec().cross(uv);
476}
477
478template<class Derived>
479EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
480{
481  coeffs() = other.coeffs();
482  return derived();
483}
484
485template<class Derived>
486template<class OtherDerived>
487EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
488{
489  coeffs() = other.coeffs();
490  return derived();
491}
492
493/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
494  */
495template<class Derived>
496EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
497{
498  Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
499  this->w() = internal::cos(ha);
500  this->vec() = internal::sin(ha) * aa.axis();
501  return derived();
502}
503
504/** Set \c *this from the expression \a xpr:
505  *   - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
506  *   - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
507  *     and \a xpr is converted to a quaternion
508  */
509
510template<class Derived>
511template<class MatrixDerived>
512inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
513{
514  EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value),
515   YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
516  internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
517  return derived();
518}
519
520/** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to
521  * be normalized, otherwise the result is undefined.
522  */
523template<class Derived>
524inline typename QuaternionBase<Derived>::Matrix3
525QuaternionBase<Derived>::toRotationMatrix(void) const
526{
527  // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
528  // if not inlined then the cost of the return by value is huge ~ +35%,
529  // however, not inlining this function is an order of magnitude slower, so
530  // it has to be inlined, and so the return by value is not an issue
531  Matrix3 res;
532
533  const Scalar tx  = Scalar(2)*this->x();
534  const Scalar ty  = Scalar(2)*this->y();
535  const Scalar tz  = Scalar(2)*this->z();
536  const Scalar twx = tx*this->w();
537  const Scalar twy = ty*this->w();
538  const Scalar twz = tz*this->w();
539  const Scalar txx = tx*this->x();
540  const Scalar txy = ty*this->x();
541  const Scalar txz = tz*this->x();
542  const Scalar tyy = ty*this->y();
543  const Scalar tyz = tz*this->y();
544  const Scalar tzz = tz*this->z();
545
546  res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
547  res.coeffRef(0,1) = txy-twz;
548  res.coeffRef(0,2) = txz+twy;
549  res.coeffRef(1,0) = txy+twz;
550  res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
551  res.coeffRef(1,2) = tyz-twx;
552  res.coeffRef(2,0) = txz-twy;
553  res.coeffRef(2,1) = tyz+twx;
554  res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
555
556  return res;
557}
558
559/** Sets \c *this to be a quaternion representing a rotation between
560  * the two arbitrary vectors \a a and \a b. In other words, the built
561  * rotation represent a rotation sending the line of direction \a a
562  * to the line of direction \a b, both lines passing through the origin.
563  *
564  * \returns a reference to \c *this.
565  *
566  * Note that the two input vectors do \b not have to be normalized, and
567  * do not need to have the same norm.
568  */
569template<class Derived>
570template<typename Derived1, typename Derived2>
571inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
572{
573  using std::max;
574  Vector3 v0 = a.normalized();
575  Vector3 v1 = b.normalized();
576  Scalar c = v1.dot(v0);
577
578  // if dot == -1, vectors are nearly opposites
579  // => accuraletly compute the rotation axis by computing the
580  //    intersection of the two planes. This is done by solving:
581  //       x^T v0 = 0
582  //       x^T v1 = 0
583  //    under the constraint:
584  //       ||x|| = 1
585  //    which yields a singular value problem
586  if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
587  {
588    c = max<Scalar>(c,-1);
589    Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
590    JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
591    Vector3 axis = svd.matrixV().col(2);
592
593    Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
594    this->w() = internal::sqrt(w2);
595    this->vec() = axis * internal::sqrt(Scalar(1) - w2);
596    return derived();
597  }
598  Vector3 axis = v0.cross(v1);
599  Scalar s = internal::sqrt((Scalar(1)+c)*Scalar(2));
600  Scalar invs = Scalar(1)/s;
601  this->vec() = axis * invs;
602  this->w() = s * Scalar(0.5);
603
604  return derived();
605}
606
607
608/** Returns a quaternion representing a rotation between
609  * the two arbitrary vectors \a a and \a b. In other words, the built
610  * rotation represent a rotation sending the line of direction \a a
611  * to the line of direction \a b, both lines passing through the origin.
612  *
613  * \returns resulting quaternion
614  *
615  * Note that the two input vectors do \b not have to be normalized, and
616  * do not need to have the same norm.
617  */
618template<typename Scalar, int Options>
619template<typename Derived1, typename Derived2>
620Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
621{
622    Quaternion quat;
623    quat.setFromTwoVectors(a, b);
624    return quat;
625}
626
627
628/** \returns the multiplicative inverse of \c *this
629  * Note that in most cases, i.e., if you simply want the opposite rotation,
630  * and/or the quaternion is normalized, then it is enough to use the conjugate.
631  *
632  * \sa QuaternionBase::conjugate()
633  */
634template <class Derived>
635inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
636{
637  // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite()  ??
638  Scalar n2 = this->squaredNorm();
639  if (n2 > 0)
640    return Quaternion<Scalar>(conjugate().coeffs() / n2);
641  else
642  {
643    // return an invalid result to flag the error
644    return Quaternion<Scalar>(Coefficients::Zero());
645  }
646}
647
648/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
649  * if the quaternion is normalized.
650  * The conjugate of a quaternion represents the opposite rotation.
651  *
652  * \sa Quaternion2::inverse()
653  */
654template <class Derived>
655inline Quaternion<typename internal::traits<Derived>::Scalar>
656QuaternionBase<Derived>::conjugate() const
657{
658  return Quaternion<Scalar>(this->w(),-this->x(),-this->y(),-this->z());
659}
660
661/** \returns the angle (in radian) between two rotations
662  * \sa dot()
663  */
664template <class Derived>
665template <class OtherDerived>
666inline typename internal::traits<Derived>::Scalar
667QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
668{
669  using std::acos;
670  double d = internal::abs(this->dot(other));
671  if (d>=1.0)
672    return Scalar(0);
673  return static_cast<Scalar>(2 * acos(d));
674}
675
676/** \returns the spherical linear interpolation between the two quaternions
677  * \c *this and \a other at the parameter \a t
678  */
679template <class Derived>
680template <class OtherDerived>
681Quaternion<typename internal::traits<Derived>::Scalar>
682QuaternionBase<Derived>::slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const
683{
684  using std::acos;
685  static const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
686  Scalar d = this->dot(other);
687  Scalar absD = internal::abs(d);
688
689  Scalar scale0;
690  Scalar scale1;
691
692  if(absD>=one)
693  {
694    scale0 = Scalar(1) - t;
695    scale1 = t;
696  }
697  else
698  {
699    // theta is the angle between the 2 quaternions
700    Scalar theta = acos(absD);
701    Scalar sinTheta = internal::sin(theta);
702
703    scale0 = internal::sin( ( Scalar(1) - t ) * theta) / sinTheta;
704    scale1 = internal::sin( ( t * theta) ) / sinTheta;
705  }
706  if(d<0) scale1 = -scale1;
707
708  return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
709}
710
711namespace internal {
712
713// set from a rotation matrix
714template<typename Other>
715struct quaternionbase_assign_impl<Other,3,3>
716{
717  typedef typename Other::Scalar Scalar;
718  typedef DenseIndex Index;
719  template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& mat)
720  {
721    // This algorithm comes from  "Quaternion Calculus and Fast Animation",
722    // Ken Shoemake, 1987 SIGGRAPH course notes
723    Scalar t = mat.trace();
724    if (t > Scalar(0))
725    {
726      t = sqrt(t + Scalar(1.0));
727      q.w() = Scalar(0.5)*t;
728      t = Scalar(0.5)/t;
729      q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
730      q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
731      q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
732    }
733    else
734    {
735      DenseIndex i = 0;
736      if (mat.coeff(1,1) > mat.coeff(0,0))
737        i = 1;
738      if (mat.coeff(2,2) > mat.coeff(i,i))
739        i = 2;
740      DenseIndex j = (i+1)%3;
741      DenseIndex k = (j+1)%3;
742
743      t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
744      q.coeffs().coeffRef(i) = Scalar(0.5) * t;
745      t = Scalar(0.5)/t;
746      q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
747      q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
748      q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
749    }
750  }
751};
752
753// set from a vector of coefficients assumed to be a quaternion
754template<typename Other>
755struct quaternionbase_assign_impl<Other,4,1>
756{
757  typedef typename Other::Scalar Scalar;
758  template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& vec)
759  {
760    q.coeffs() = vec;
761  }
762};
763
764} // end namespace internal
765
766} // end namespace Eigen
767
768#endif // EIGEN_QUATERNION_H
Note: See TracBrowser for help on using the repository browser.