1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
5 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
---|
6 | // |
---|
7 | // This Source Code Form is subject to the terms of the Mozilla |
---|
8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
10 | |
---|
11 | #ifndef EIGEN_ORTHOMETHODS_H |
---|
12 | #define EIGEN_ORTHOMETHODS_H |
---|
13 | |
---|
14 | namespace Eigen { |
---|
15 | |
---|
16 | /** \geometry_module |
---|
17 | * |
---|
18 | * \returns the cross product of \c *this and \a other |
---|
19 | * |
---|
20 | * Here is a very good explanation of cross-product: http://xkcd.com/199/ |
---|
21 | * \sa MatrixBase::cross3() |
---|
22 | */ |
---|
23 | template<typename Derived> |
---|
24 | template<typename OtherDerived> |
---|
25 | inline typename MatrixBase<Derived>::template cross_product_return_type<OtherDerived>::type |
---|
26 | MatrixBase<Derived>::cross(const MatrixBase<OtherDerived>& other) const |
---|
27 | { |
---|
28 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,3) |
---|
29 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3) |
---|
30 | |
---|
31 | // Note that there is no need for an expression here since the compiler |
---|
32 | // optimize such a small temporary very well (even within a complex expression) |
---|
33 | typename internal::nested<Derived,2>::type lhs(derived()); |
---|
34 | typename internal::nested<OtherDerived,2>::type rhs(other.derived()); |
---|
35 | return typename cross_product_return_type<OtherDerived>::type( |
---|
36 | internal::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)), |
---|
37 | internal::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)), |
---|
38 | internal::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)) |
---|
39 | ); |
---|
40 | } |
---|
41 | |
---|
42 | namespace internal { |
---|
43 | |
---|
44 | template< int Arch,typename VectorLhs,typename VectorRhs, |
---|
45 | typename Scalar = typename VectorLhs::Scalar, |
---|
46 | bool Vectorizable = bool((VectorLhs::Flags&VectorRhs::Flags)&PacketAccessBit)> |
---|
47 | struct cross3_impl { |
---|
48 | static inline typename internal::plain_matrix_type<VectorLhs>::type |
---|
49 | run(const VectorLhs& lhs, const VectorRhs& rhs) |
---|
50 | { |
---|
51 | return typename internal::plain_matrix_type<VectorLhs>::type( |
---|
52 | internal::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)), |
---|
53 | internal::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)), |
---|
54 | internal::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)), |
---|
55 | 0 |
---|
56 | ); |
---|
57 | } |
---|
58 | }; |
---|
59 | |
---|
60 | } |
---|
61 | |
---|
62 | /** \geometry_module |
---|
63 | * |
---|
64 | * \returns the cross product of \c *this and \a other using only the x, y, and z coefficients |
---|
65 | * |
---|
66 | * The size of \c *this and \a other must be four. This function is especially useful |
---|
67 | * when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization. |
---|
68 | * |
---|
69 | * \sa MatrixBase::cross() |
---|
70 | */ |
---|
71 | template<typename Derived> |
---|
72 | template<typename OtherDerived> |
---|
73 | inline typename MatrixBase<Derived>::PlainObject |
---|
74 | MatrixBase<Derived>::cross3(const MatrixBase<OtherDerived>& other) const |
---|
75 | { |
---|
76 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,4) |
---|
77 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,4) |
---|
78 | |
---|
79 | typedef typename internal::nested<Derived,2>::type DerivedNested; |
---|
80 | typedef typename internal::nested<OtherDerived,2>::type OtherDerivedNested; |
---|
81 | const DerivedNested lhs(derived()); |
---|
82 | const OtherDerivedNested rhs(other.derived()); |
---|
83 | |
---|
84 | return internal::cross3_impl<Architecture::Target, |
---|
85 | typename internal::remove_all<DerivedNested>::type, |
---|
86 | typename internal::remove_all<OtherDerivedNested>::type>::run(lhs,rhs); |
---|
87 | } |
---|
88 | |
---|
89 | /** \returns a matrix expression of the cross product of each column or row |
---|
90 | * of the referenced expression with the \a other vector. |
---|
91 | * |
---|
92 | * The referenced matrix must have one dimension equal to 3. |
---|
93 | * The result matrix has the same dimensions than the referenced one. |
---|
94 | * |
---|
95 | * \geometry_module |
---|
96 | * |
---|
97 | * \sa MatrixBase::cross() */ |
---|
98 | template<typename ExpressionType, int Direction> |
---|
99 | template<typename OtherDerived> |
---|
100 | const typename VectorwiseOp<ExpressionType,Direction>::CrossReturnType |
---|
101 | VectorwiseOp<ExpressionType,Direction>::cross(const MatrixBase<OtherDerived>& other) const |
---|
102 | { |
---|
103 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3) |
---|
104 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value), |
---|
105 | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) |
---|
106 | |
---|
107 | CrossReturnType res(_expression().rows(),_expression().cols()); |
---|
108 | if(Direction==Vertical) |
---|
109 | { |
---|
110 | eigen_assert(CrossReturnType::RowsAtCompileTime==3 && "the matrix must have exactly 3 rows"); |
---|
111 | res.row(0) = (_expression().row(1) * other.coeff(2) - _expression().row(2) * other.coeff(1)).conjugate(); |
---|
112 | res.row(1) = (_expression().row(2) * other.coeff(0) - _expression().row(0) * other.coeff(2)).conjugate(); |
---|
113 | res.row(2) = (_expression().row(0) * other.coeff(1) - _expression().row(1) * other.coeff(0)).conjugate(); |
---|
114 | } |
---|
115 | else |
---|
116 | { |
---|
117 | eigen_assert(CrossReturnType::ColsAtCompileTime==3 && "the matrix must have exactly 3 columns"); |
---|
118 | res.col(0) = (_expression().col(1) * other.coeff(2) - _expression().col(2) * other.coeff(1)).conjugate(); |
---|
119 | res.col(1) = (_expression().col(2) * other.coeff(0) - _expression().col(0) * other.coeff(2)).conjugate(); |
---|
120 | res.col(2) = (_expression().col(0) * other.coeff(1) - _expression().col(1) * other.coeff(0)).conjugate(); |
---|
121 | } |
---|
122 | return res; |
---|
123 | } |
---|
124 | |
---|
125 | namespace internal { |
---|
126 | |
---|
127 | template<typename Derived, int Size = Derived::SizeAtCompileTime> |
---|
128 | struct unitOrthogonal_selector |
---|
129 | { |
---|
130 | typedef typename plain_matrix_type<Derived>::type VectorType; |
---|
131 | typedef typename traits<Derived>::Scalar Scalar; |
---|
132 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
133 | typedef typename Derived::Index Index; |
---|
134 | typedef Matrix<Scalar,2,1> Vector2; |
---|
135 | static inline VectorType run(const Derived& src) |
---|
136 | { |
---|
137 | VectorType perp = VectorType::Zero(src.size()); |
---|
138 | Index maxi = 0; |
---|
139 | Index sndi = 0; |
---|
140 | src.cwiseAbs().maxCoeff(&maxi); |
---|
141 | if (maxi==0) |
---|
142 | sndi = 1; |
---|
143 | RealScalar invnm = RealScalar(1)/(Vector2() << src.coeff(sndi),src.coeff(maxi)).finished().norm(); |
---|
144 | perp.coeffRef(maxi) = -conj(src.coeff(sndi)) * invnm; |
---|
145 | perp.coeffRef(sndi) = conj(src.coeff(maxi)) * invnm; |
---|
146 | |
---|
147 | return perp; |
---|
148 | } |
---|
149 | }; |
---|
150 | |
---|
151 | template<typename Derived> |
---|
152 | struct unitOrthogonal_selector<Derived,3> |
---|
153 | { |
---|
154 | typedef typename plain_matrix_type<Derived>::type VectorType; |
---|
155 | typedef typename traits<Derived>::Scalar Scalar; |
---|
156 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
157 | static inline VectorType run(const Derived& src) |
---|
158 | { |
---|
159 | VectorType perp; |
---|
160 | /* Let us compute the crossed product of *this with a vector |
---|
161 | * that is not too close to being colinear to *this. |
---|
162 | */ |
---|
163 | |
---|
164 | /* unless the x and y coords are both close to zero, we can |
---|
165 | * simply take ( -y, x, 0 ) and normalize it. |
---|
166 | */ |
---|
167 | if((!isMuchSmallerThan(src.x(), src.z())) |
---|
168 | || (!isMuchSmallerThan(src.y(), src.z()))) |
---|
169 | { |
---|
170 | RealScalar invnm = RealScalar(1)/src.template head<2>().norm(); |
---|
171 | perp.coeffRef(0) = -conj(src.y())*invnm; |
---|
172 | perp.coeffRef(1) = conj(src.x())*invnm; |
---|
173 | perp.coeffRef(2) = 0; |
---|
174 | } |
---|
175 | /* if both x and y are close to zero, then the vector is close |
---|
176 | * to the z-axis, so it's far from colinear to the x-axis for instance. |
---|
177 | * So we take the crossed product with (1,0,0) and normalize it. |
---|
178 | */ |
---|
179 | else |
---|
180 | { |
---|
181 | RealScalar invnm = RealScalar(1)/src.template tail<2>().norm(); |
---|
182 | perp.coeffRef(0) = 0; |
---|
183 | perp.coeffRef(1) = -conj(src.z())*invnm; |
---|
184 | perp.coeffRef(2) = conj(src.y())*invnm; |
---|
185 | } |
---|
186 | |
---|
187 | return perp; |
---|
188 | } |
---|
189 | }; |
---|
190 | |
---|
191 | template<typename Derived> |
---|
192 | struct unitOrthogonal_selector<Derived,2> |
---|
193 | { |
---|
194 | typedef typename plain_matrix_type<Derived>::type VectorType; |
---|
195 | static inline VectorType run(const Derived& src) |
---|
196 | { return VectorType(-conj(src.y()), conj(src.x())).normalized(); } |
---|
197 | }; |
---|
198 | |
---|
199 | } // end namespace internal |
---|
200 | |
---|
201 | /** \returns a unit vector which is orthogonal to \c *this |
---|
202 | * |
---|
203 | * The size of \c *this must be at least 2. If the size is exactly 2, |
---|
204 | * then the returned vector is a counter clock wise rotation of \c *this, i.e., (-y,x).normalized(). |
---|
205 | * |
---|
206 | * \sa cross() |
---|
207 | */ |
---|
208 | template<typename Derived> |
---|
209 | typename MatrixBase<Derived>::PlainObject |
---|
210 | MatrixBase<Derived>::unitOrthogonal() const |
---|
211 | { |
---|
212 | EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) |
---|
213 | return internal::unitOrthogonal_selector<Derived>::run(derived()); |
---|
214 | } |
---|
215 | |
---|
216 | } // end namespace Eigen |
---|
217 | |
---|
218 | #endif // EIGEN_ORTHOMETHODS_H |
---|