1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
5 | // |
---|
6 | // This Source Code Form is subject to the terms of the Mozilla |
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
9 | |
---|
10 | #ifndef EIGEN_EULERANGLES_H |
---|
11 | #define EIGEN_EULERANGLES_H |
---|
12 | |
---|
13 | namespace Eigen { |
---|
14 | |
---|
15 | /** \geometry_module \ingroup Geometry_Module |
---|
16 | * |
---|
17 | * |
---|
18 | * \returns the Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a a0,\a a1,\a a2) |
---|
19 | * |
---|
20 | * Each of the three parameters \a a0,\a a1,\a a2 represents the respective rotation axis as an integer in {0,1,2}. |
---|
21 | * For instance, in: |
---|
22 | * \code Vector3f ea = mat.eulerAngles(2, 0, 2); \endcode |
---|
23 | * "2" represents the z axis and "0" the x axis, etc. The returned angles are such that |
---|
24 | * we have the following equality: |
---|
25 | * \code |
---|
26 | * mat == AngleAxisf(ea[0], Vector3f::UnitZ()) |
---|
27 | * * AngleAxisf(ea[1], Vector3f::UnitX()) |
---|
28 | * * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode |
---|
29 | * This corresponds to the right-multiply conventions (with right hand side frames). |
---|
30 | */ |
---|
31 | template<typename Derived> |
---|
32 | inline Matrix<typename MatrixBase<Derived>::Scalar,3,1> |
---|
33 | MatrixBase<Derived>::eulerAngles(Index a0, Index a1, Index a2) const |
---|
34 | { |
---|
35 | /* Implemented from Graphics Gems IV */ |
---|
36 | EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived,3,3) |
---|
37 | |
---|
38 | Matrix<Scalar,3,1> res; |
---|
39 | typedef Matrix<typename Derived::Scalar,2,1> Vector2; |
---|
40 | const Scalar epsilon = NumTraits<Scalar>::dummy_precision(); |
---|
41 | |
---|
42 | const Index odd = ((a0+1)%3 == a1) ? 0 : 1; |
---|
43 | const Index i = a0; |
---|
44 | const Index j = (a0 + 1 + odd)%3; |
---|
45 | const Index k = (a0 + 2 - odd)%3; |
---|
46 | |
---|
47 | if (a0==a2) |
---|
48 | { |
---|
49 | Scalar s = Vector2(coeff(j,i) , coeff(k,i)).norm(); |
---|
50 | res[1] = internal::atan2(s, coeff(i,i)); |
---|
51 | if (s > epsilon) |
---|
52 | { |
---|
53 | res[0] = internal::atan2(coeff(j,i), coeff(k,i)); |
---|
54 | res[2] = internal::atan2(coeff(i,j),-coeff(i,k)); |
---|
55 | } |
---|
56 | else |
---|
57 | { |
---|
58 | res[0] = Scalar(0); |
---|
59 | res[2] = (coeff(i,i)>0?1:-1)*internal::atan2(-coeff(k,j), coeff(j,j)); |
---|
60 | } |
---|
61 | } |
---|
62 | else |
---|
63 | { |
---|
64 | Scalar c = Vector2(coeff(i,i) , coeff(i,j)).norm(); |
---|
65 | res[1] = internal::atan2(-coeff(i,k), c); |
---|
66 | if (c > epsilon) |
---|
67 | { |
---|
68 | res[0] = internal::atan2(coeff(j,k), coeff(k,k)); |
---|
69 | res[2] = internal::atan2(coeff(i,j), coeff(i,i)); |
---|
70 | } |
---|
71 | else |
---|
72 | { |
---|
73 | res[0] = Scalar(0); |
---|
74 | res[2] = (coeff(i,k)>0?1:-1)*internal::atan2(-coeff(k,j), coeff(j,j)); |
---|
75 | } |
---|
76 | } |
---|
77 | if (!odd) |
---|
78 | res = -res; |
---|
79 | return res; |
---|
80 | } |
---|
81 | |
---|
82 | } // end namespace Eigen |
---|
83 | |
---|
84 | #endif // EIGEN_EULERANGLES_H |
---|