1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
5 | // |
---|
6 | // This Source Code Form is subject to the terms of the Mozilla |
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
9 | |
---|
10 | #ifndef EIGEN_ANGLEAXIS_H |
---|
11 | #define EIGEN_ANGLEAXIS_H |
---|
12 | |
---|
13 | namespace Eigen { |
---|
14 | |
---|
15 | /** \geometry_module \ingroup Geometry_Module |
---|
16 | * |
---|
17 | * \class AngleAxis |
---|
18 | * |
---|
19 | * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis |
---|
20 | * |
---|
21 | * \param _Scalar the scalar type, i.e., the type of the coefficients. |
---|
22 | * |
---|
23 | * \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized. |
---|
24 | * |
---|
25 | * The following two typedefs are provided for convenience: |
---|
26 | * \li \c AngleAxisf for \c float |
---|
27 | * \li \c AngleAxisd for \c double |
---|
28 | * |
---|
29 | * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily |
---|
30 | * mimic Euler-angles. Here is an example: |
---|
31 | * \include AngleAxis_mimic_euler.cpp |
---|
32 | * Output: \verbinclude AngleAxis_mimic_euler.out |
---|
33 | * |
---|
34 | * \note This class is not aimed to be used to store a rotation transformation, |
---|
35 | * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix) |
---|
36 | * and transformation objects. |
---|
37 | * |
---|
38 | * \sa class Quaternion, class Transform, MatrixBase::UnitX() |
---|
39 | */ |
---|
40 | |
---|
41 | namespace internal { |
---|
42 | template<typename _Scalar> struct traits<AngleAxis<_Scalar> > |
---|
43 | { |
---|
44 | typedef _Scalar Scalar; |
---|
45 | }; |
---|
46 | } |
---|
47 | |
---|
48 | template<typename _Scalar> |
---|
49 | class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3> |
---|
50 | { |
---|
51 | typedef RotationBase<AngleAxis<_Scalar>,3> Base; |
---|
52 | |
---|
53 | public: |
---|
54 | |
---|
55 | using Base::operator*; |
---|
56 | |
---|
57 | enum { Dim = 3 }; |
---|
58 | /** the scalar type of the coefficients */ |
---|
59 | typedef _Scalar Scalar; |
---|
60 | typedef Matrix<Scalar,3,3> Matrix3; |
---|
61 | typedef Matrix<Scalar,3,1> Vector3; |
---|
62 | typedef Quaternion<Scalar> QuaternionType; |
---|
63 | |
---|
64 | protected: |
---|
65 | |
---|
66 | Vector3 m_axis; |
---|
67 | Scalar m_angle; |
---|
68 | |
---|
69 | public: |
---|
70 | |
---|
71 | /** Default constructor without initialization. */ |
---|
72 | AngleAxis() {} |
---|
73 | /** Constructs and initialize the angle-axis rotation from an \a angle in radian |
---|
74 | * and an \a axis which \b must \b be \b normalized. |
---|
75 | * |
---|
76 | * \warning If the \a axis vector is not normalized, then the angle-axis object |
---|
77 | * represents an invalid rotation. */ |
---|
78 | template<typename Derived> |
---|
79 | inline AngleAxis(Scalar angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {} |
---|
80 | /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */ |
---|
81 | template<typename QuatDerived> inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; } |
---|
82 | /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */ |
---|
83 | template<typename Derived> |
---|
84 | inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; } |
---|
85 | |
---|
86 | Scalar angle() const { return m_angle; } |
---|
87 | Scalar& angle() { return m_angle; } |
---|
88 | |
---|
89 | const Vector3& axis() const { return m_axis; } |
---|
90 | Vector3& axis() { return m_axis; } |
---|
91 | |
---|
92 | /** Concatenates two rotations */ |
---|
93 | inline QuaternionType operator* (const AngleAxis& other) const |
---|
94 | { return QuaternionType(*this) * QuaternionType(other); } |
---|
95 | |
---|
96 | /** Concatenates two rotations */ |
---|
97 | inline QuaternionType operator* (const QuaternionType& other) const |
---|
98 | { return QuaternionType(*this) * other; } |
---|
99 | |
---|
100 | /** Concatenates two rotations */ |
---|
101 | friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b) |
---|
102 | { return a * QuaternionType(b); } |
---|
103 | |
---|
104 | /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */ |
---|
105 | AngleAxis inverse() const |
---|
106 | { return AngleAxis(-m_angle, m_axis); } |
---|
107 | |
---|
108 | template<class QuatDerived> |
---|
109 | AngleAxis& operator=(const QuaternionBase<QuatDerived>& q); |
---|
110 | template<typename Derived> |
---|
111 | AngleAxis& operator=(const MatrixBase<Derived>& m); |
---|
112 | |
---|
113 | template<typename Derived> |
---|
114 | AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m); |
---|
115 | Matrix3 toRotationMatrix(void) const; |
---|
116 | |
---|
117 | /** \returns \c *this with scalar type casted to \a NewScalarType |
---|
118 | * |
---|
119 | * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
---|
120 | * then this function smartly returns a const reference to \c *this. |
---|
121 | */ |
---|
122 | template<typename NewScalarType> |
---|
123 | inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const |
---|
124 | { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); } |
---|
125 | |
---|
126 | /** Copy constructor with scalar type conversion */ |
---|
127 | template<typename OtherScalarType> |
---|
128 | inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other) |
---|
129 | { |
---|
130 | m_axis = other.axis().template cast<Scalar>(); |
---|
131 | m_angle = Scalar(other.angle()); |
---|
132 | } |
---|
133 | |
---|
134 | static inline const AngleAxis Identity() { return AngleAxis(0, Vector3::UnitX()); } |
---|
135 | |
---|
136 | /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
---|
137 | * determined by \a prec. |
---|
138 | * |
---|
139 | * \sa MatrixBase::isApprox() */ |
---|
140 | bool isApprox(const AngleAxis& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const |
---|
141 | { return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); } |
---|
142 | }; |
---|
143 | |
---|
144 | /** \ingroup Geometry_Module |
---|
145 | * single precision angle-axis type */ |
---|
146 | typedef AngleAxis<float> AngleAxisf; |
---|
147 | /** \ingroup Geometry_Module |
---|
148 | * double precision angle-axis type */ |
---|
149 | typedef AngleAxis<double> AngleAxisd; |
---|
150 | |
---|
151 | /** Set \c *this from a \b unit quaternion. |
---|
152 | * The axis is normalized. |
---|
153 | * |
---|
154 | * \warning As any other method dealing with quaternion, if the input quaternion |
---|
155 | * is not normalized then the result is undefined. |
---|
156 | */ |
---|
157 | template<typename Scalar> |
---|
158 | template<typename QuatDerived> |
---|
159 | AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q) |
---|
160 | { |
---|
161 | using std::acos; |
---|
162 | using std::min; |
---|
163 | using std::max; |
---|
164 | Scalar n2 = q.vec().squaredNorm(); |
---|
165 | if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision()) |
---|
166 | { |
---|
167 | m_angle = 0; |
---|
168 | m_axis << 1, 0, 0; |
---|
169 | } |
---|
170 | else |
---|
171 | { |
---|
172 | m_angle = Scalar(2)*acos((min)((max)(Scalar(-1),q.w()),Scalar(1))); |
---|
173 | m_axis = q.vec() / internal::sqrt(n2); |
---|
174 | } |
---|
175 | return *this; |
---|
176 | } |
---|
177 | |
---|
178 | /** Set \c *this from a 3x3 rotation matrix \a mat. |
---|
179 | */ |
---|
180 | template<typename Scalar> |
---|
181 | template<typename Derived> |
---|
182 | AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat) |
---|
183 | { |
---|
184 | // Since a direct conversion would not be really faster, |
---|
185 | // let's use the robust Quaternion implementation: |
---|
186 | return *this = QuaternionType(mat); |
---|
187 | } |
---|
188 | |
---|
189 | /** |
---|
190 | * \brief Sets \c *this from a 3x3 rotation matrix. |
---|
191 | **/ |
---|
192 | template<typename Scalar> |
---|
193 | template<typename Derived> |
---|
194 | AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) |
---|
195 | { |
---|
196 | return *this = QuaternionType(mat); |
---|
197 | } |
---|
198 | |
---|
199 | /** Constructs and \returns an equivalent 3x3 rotation matrix. |
---|
200 | */ |
---|
201 | template<typename Scalar> |
---|
202 | typename AngleAxis<Scalar>::Matrix3 |
---|
203 | AngleAxis<Scalar>::toRotationMatrix(void) const |
---|
204 | { |
---|
205 | Matrix3 res; |
---|
206 | Vector3 sin_axis = internal::sin(m_angle) * m_axis; |
---|
207 | Scalar c = internal::cos(m_angle); |
---|
208 | Vector3 cos1_axis = (Scalar(1)-c) * m_axis; |
---|
209 | |
---|
210 | Scalar tmp; |
---|
211 | tmp = cos1_axis.x() * m_axis.y(); |
---|
212 | res.coeffRef(0,1) = tmp - sin_axis.z(); |
---|
213 | res.coeffRef(1,0) = tmp + sin_axis.z(); |
---|
214 | |
---|
215 | tmp = cos1_axis.x() * m_axis.z(); |
---|
216 | res.coeffRef(0,2) = tmp + sin_axis.y(); |
---|
217 | res.coeffRef(2,0) = tmp - sin_axis.y(); |
---|
218 | |
---|
219 | tmp = cos1_axis.y() * m_axis.z(); |
---|
220 | res.coeffRef(1,2) = tmp - sin_axis.x(); |
---|
221 | res.coeffRef(2,1) = tmp + sin_axis.x(); |
---|
222 | |
---|
223 | res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c; |
---|
224 | |
---|
225 | return res; |
---|
226 | } |
---|
227 | |
---|
228 | } // end namespace Eigen |
---|
229 | |
---|
230 | #endif // EIGEN_ANGLEAXIS_H |
---|