Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Eigen/Eigen/src/Eigenvalues/Tridiagonalization.h @ 10586

Last change on this file since 10586 was 9562, checked in by gkronber, 12 years ago

#1967 worked on Gaussian process evolution.

File size: 21.9 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_TRIDIAGONALIZATION_H
12#define EIGEN_TRIDIAGONALIZATION_H
13
14namespace Eigen {
15
16namespace internal {
17 
18template<typename MatrixType> struct TridiagonalizationMatrixTReturnType;
19template<typename MatrixType>
20struct traits<TridiagonalizationMatrixTReturnType<MatrixType> >
21{
22  typedef typename MatrixType::PlainObject ReturnType;
23};
24
25template<typename MatrixType, typename CoeffVectorType>
26void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs);
27}
28
29/** \eigenvalues_module \ingroup Eigenvalues_Module
30  *
31  *
32  * \class Tridiagonalization
33  *
34  * \brief Tridiagonal decomposition of a selfadjoint matrix
35  *
36  * \tparam _MatrixType the type of the matrix of which we are computing the
37  * tridiagonal decomposition; this is expected to be an instantiation of the
38  * Matrix class template.
39  *
40  * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that:
41  * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix.
42  *
43  * A tridiagonal matrix is a matrix which has nonzero elements only on the
44  * main diagonal and the first diagonal below and above it. The Hessenberg
45  * decomposition of a selfadjoint matrix is in fact a tridiagonal
46  * decomposition. This class is used in SelfAdjointEigenSolver to compute the
47  * eigenvalues and eigenvectors of a selfadjoint matrix.
48  *
49  * Call the function compute() to compute the tridiagonal decomposition of a
50  * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&)
51  * constructor which computes the tridiagonal Schur decomposition at
52  * construction time. Once the decomposition is computed, you can use the
53  * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the
54  * decomposition.
55  *
56  * The documentation of Tridiagonalization(const MatrixType&) contains an
57  * example of the typical use of this class.
58  *
59  * \sa class HessenbergDecomposition, class SelfAdjointEigenSolver
60  */
61template<typename _MatrixType> class Tridiagonalization
62{
63  public:
64
65    /** \brief Synonym for the template parameter \p _MatrixType. */
66    typedef _MatrixType MatrixType;
67
68    typedef typename MatrixType::Scalar Scalar;
69    typedef typename NumTraits<Scalar>::Real RealScalar;
70    typedef typename MatrixType::Index Index;
71
72    enum {
73      Size = MatrixType::RowsAtCompileTime,
74      SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1),
75      Options = MatrixType::Options,
76      MaxSize = MatrixType::MaxRowsAtCompileTime,
77      MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1)
78    };
79
80    typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType;
81    typedef typename internal::plain_col_type<MatrixType, RealScalar>::type DiagonalType;
82    typedef Matrix<RealScalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> SubDiagonalType;
83    typedef typename internal::remove_all<typename MatrixType::RealReturnType>::type MatrixTypeRealView;
84    typedef internal::TridiagonalizationMatrixTReturnType<MatrixTypeRealView> MatrixTReturnType;
85
86    typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
87              typename internal::add_const_on_value_type<typename Diagonal<const MatrixType>::RealReturnType>::type,
88              const Diagonal<const MatrixType>
89            >::type DiagonalReturnType;
90
91    typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
92              typename internal::add_const_on_value_type<typename Diagonal<
93                Block<const MatrixType,SizeMinusOne,SizeMinusOne> >::RealReturnType>::type,
94              const Diagonal<
95                Block<const MatrixType,SizeMinusOne,SizeMinusOne> >
96            >::type SubDiagonalReturnType;
97
98    /** \brief Return type of matrixQ() */
99    typedef typename HouseholderSequence<MatrixType,CoeffVectorType>::ConjugateReturnType HouseholderSequenceType;
100
101    /** \brief Default constructor.
102      *
103      * \param [in]  size  Positive integer, size of the matrix whose tridiagonal
104      * decomposition will be computed.
105      *
106      * The default constructor is useful in cases in which the user intends to
107      * perform decompositions via compute().  The \p size parameter is only
108      * used as a hint. It is not an error to give a wrong \p size, but it may
109      * impair performance.
110      *
111      * \sa compute() for an example.
112      */
113    Tridiagonalization(Index size = Size==Dynamic ? 2 : Size)
114      : m_matrix(size,size),
115        m_hCoeffs(size > 1 ? size-1 : 1),
116        m_isInitialized(false)
117    {}
118
119    /** \brief Constructor; computes tridiagonal decomposition of given matrix.
120      *
121      * \param[in]  matrix  Selfadjoint matrix whose tridiagonal decomposition
122      * is to be computed.
123      *
124      * This constructor calls compute() to compute the tridiagonal decomposition.
125      *
126      * Example: \include Tridiagonalization_Tridiagonalization_MatrixType.cpp
127      * Output: \verbinclude Tridiagonalization_Tridiagonalization_MatrixType.out
128      */
129    Tridiagonalization(const MatrixType& matrix)
130      : m_matrix(matrix),
131        m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1),
132        m_isInitialized(false)
133    {
134      internal::tridiagonalization_inplace(m_matrix, m_hCoeffs);
135      m_isInitialized = true;
136    }
137
138    /** \brief Computes tridiagonal decomposition of given matrix.
139      *
140      * \param[in]  matrix  Selfadjoint matrix whose tridiagonal decomposition
141      * is to be computed.
142      * \returns    Reference to \c *this
143      *
144      * The tridiagonal decomposition is computed by bringing the columns of
145      * the matrix successively in the required form using Householder
146      * reflections. The cost is \f$ 4n^3/3 \f$ flops, where \f$ n \f$ denotes
147      * the size of the given matrix.
148      *
149      * This method reuses of the allocated data in the Tridiagonalization
150      * object, if the size of the matrix does not change.
151      *
152      * Example: \include Tridiagonalization_compute.cpp
153      * Output: \verbinclude Tridiagonalization_compute.out
154      */
155    Tridiagonalization& compute(const MatrixType& matrix)
156    {
157      m_matrix = matrix;
158      m_hCoeffs.resize(matrix.rows()-1, 1);
159      internal::tridiagonalization_inplace(m_matrix, m_hCoeffs);
160      m_isInitialized = true;
161      return *this;
162    }
163
164    /** \brief Returns the Householder coefficients.
165      *
166      * \returns a const reference to the vector of Householder coefficients
167      *
168      * \pre Either the constructor Tridiagonalization(const MatrixType&) or
169      * the member function compute(const MatrixType&) has been called before
170      * to compute the tridiagonal decomposition of a matrix.
171      *
172      * The Householder coefficients allow the reconstruction of the matrix
173      * \f$ Q \f$ in the tridiagonal decomposition from the packed data.
174      *
175      * Example: \include Tridiagonalization_householderCoefficients.cpp
176      * Output: \verbinclude Tridiagonalization_householderCoefficients.out
177      *
178      * \sa packedMatrix(), \ref Householder_Module "Householder module"
179      */
180    inline CoeffVectorType householderCoefficients() const
181    {
182      eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
183      return m_hCoeffs;
184    }
185
186    /** \brief Returns the internal representation of the decomposition
187      *
188      * \returns a const reference to a matrix with the internal representation
189      *          of the decomposition.
190      *
191      * \pre Either the constructor Tridiagonalization(const MatrixType&) or
192      * the member function compute(const MatrixType&) has been called before
193      * to compute the tridiagonal decomposition of a matrix.
194      *
195      * The returned matrix contains the following information:
196      *  - the strict upper triangular part is equal to the input matrix A.
197      *  - the diagonal and lower sub-diagonal represent the real tridiagonal
198      *    symmetric matrix T.
199      *  - the rest of the lower part contains the Householder vectors that,
200      *    combined with Householder coefficients returned by
201      *    householderCoefficients(), allows to reconstruct the matrix Q as
202      *       \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
203      *    Here, the matrices \f$ H_i \f$ are the Householder transformations
204      *       \f$ H_i = (I - h_i v_i v_i^T) \f$
205      *    where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and
206      *    \f$ v_i \f$ is the Householder vector defined by
207      *       \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$
208      *    with M the matrix returned by this function.
209      *
210      * See LAPACK for further details on this packed storage.
211      *
212      * Example: \include Tridiagonalization_packedMatrix.cpp
213      * Output: \verbinclude Tridiagonalization_packedMatrix.out
214      *
215      * \sa householderCoefficients()
216      */
217    inline const MatrixType& packedMatrix() const
218    {
219      eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
220      return m_matrix;
221    }
222
223    /** \brief Returns the unitary matrix Q in the decomposition
224      *
225      * \returns object representing the matrix Q
226      *
227      * \pre Either the constructor Tridiagonalization(const MatrixType&) or
228      * the member function compute(const MatrixType&) has been called before
229      * to compute the tridiagonal decomposition of a matrix.
230      *
231      * This function returns a light-weight object of template class
232      * HouseholderSequence. You can either apply it directly to a matrix or
233      * you can convert it to a matrix of type #MatrixType.
234      *
235      * \sa Tridiagonalization(const MatrixType&) for an example,
236      *     matrixT(), class HouseholderSequence
237      */
238    HouseholderSequenceType matrixQ() const
239    {
240      eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
241      return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate())
242             .setLength(m_matrix.rows() - 1)
243             .setShift(1);
244    }
245
246    /** \brief Returns an expression of the tridiagonal matrix T in the decomposition
247      *
248      * \returns expression object representing the matrix T
249      *
250      * \pre Either the constructor Tridiagonalization(const MatrixType&) or
251      * the member function compute(const MatrixType&) has been called before
252      * to compute the tridiagonal decomposition of a matrix.
253      *
254      * Currently, this function can be used to extract the matrix T from internal
255      * data and copy it to a dense matrix object. In most cases, it may be
256      * sufficient to directly use the packed matrix or the vector expressions
257      * returned by diagonal() and subDiagonal() instead of creating a new
258      * dense copy matrix with this function.
259      *
260      * \sa Tridiagonalization(const MatrixType&) for an example,
261      * matrixQ(), packedMatrix(), diagonal(), subDiagonal()
262      */
263    MatrixTReturnType matrixT() const
264    {
265      eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
266      return MatrixTReturnType(m_matrix.real());
267    }
268
269    /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition.
270      *
271      * \returns expression representing the diagonal of T
272      *
273      * \pre Either the constructor Tridiagonalization(const MatrixType&) or
274      * the member function compute(const MatrixType&) has been called before
275      * to compute the tridiagonal decomposition of a matrix.
276      *
277      * Example: \include Tridiagonalization_diagonal.cpp
278      * Output: \verbinclude Tridiagonalization_diagonal.out
279      *
280      * \sa matrixT(), subDiagonal()
281      */
282    DiagonalReturnType diagonal() const;
283
284    /** \brief Returns the subdiagonal of the tridiagonal matrix T in the decomposition.
285      *
286      * \returns expression representing the subdiagonal of T
287      *
288      * \pre Either the constructor Tridiagonalization(const MatrixType&) or
289      * the member function compute(const MatrixType&) has been called before
290      * to compute the tridiagonal decomposition of a matrix.
291      *
292      * \sa diagonal() for an example, matrixT()
293      */
294    SubDiagonalReturnType subDiagonal() const;
295
296  protected:
297
298    MatrixType m_matrix;
299    CoeffVectorType m_hCoeffs;
300    bool m_isInitialized;
301};
302
303template<typename MatrixType>
304typename Tridiagonalization<MatrixType>::DiagonalReturnType
305Tridiagonalization<MatrixType>::diagonal() const
306{
307  eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
308  return m_matrix.diagonal();
309}
310
311template<typename MatrixType>
312typename Tridiagonalization<MatrixType>::SubDiagonalReturnType
313Tridiagonalization<MatrixType>::subDiagonal() const
314{
315  eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
316  Index n = m_matrix.rows();
317  return Block<const MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1).diagonal();
318}
319
320namespace internal {
321
322/** \internal
323  * Performs a tridiagonal decomposition of the selfadjoint matrix \a matA in-place.
324  *
325  * \param[in,out] matA On input the selfadjoint matrix. Only the \b lower triangular part is referenced.
326  *                     On output, the strict upper part is left unchanged, and the lower triangular part
327  *                     represents the T and Q matrices in packed format has detailed below.
328  * \param[out]    hCoeffs returned Householder coefficients (see below)
329  *
330  * On output, the tridiagonal selfadjoint matrix T is stored in the diagonal
331  * and lower sub-diagonal of the matrix \a matA.
332  * The unitary matrix Q is represented in a compact way as a product of
333  * Householder reflectors \f$ H_i \f$ such that:
334  *       \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
335  * The Householder reflectors are defined as
336  *       \f$ H_i = (I - h_i v_i v_i^T) \f$
337  * where \f$ h_i = hCoeffs[i]\f$ is the \f$ i \f$th Householder coefficient and
338  * \f$ v_i \f$ is the Householder vector defined by
339  *       \f$ v_i = [ 0, \ldots, 0, 1, matA(i+2,i), \ldots, matA(N-1,i) ]^T \f$.
340  *
341  * Implemented from Golub's "Matrix Computations", algorithm 8.3.1.
342  *
343  * \sa Tridiagonalization::packedMatrix()
344  */
345template<typename MatrixType, typename CoeffVectorType>
346void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs)
347{
348  typedef typename MatrixType::Index Index;
349  typedef typename MatrixType::Scalar Scalar;
350  typedef typename MatrixType::RealScalar RealScalar;
351  Index n = matA.rows();
352  eigen_assert(n==matA.cols());
353  eigen_assert(n==hCoeffs.size()+1 || n==1);
354 
355  for (Index i = 0; i<n-1; ++i)
356  {
357    Index remainingSize = n-i-1;
358    RealScalar beta;
359    Scalar h;
360    matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta);
361
362    // Apply similarity transformation to remaining columns,
363    // i.e., A = H A H' where H = I - h v v' and v = matA.col(i).tail(n-i-1)
364    matA.col(i).coeffRef(i+1) = 1;
365
366    hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>()
367                                  * (conj(h) * matA.col(i).tail(remainingSize)));
368
369    hCoeffs.tail(n-i-1) += (conj(h)*Scalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1);
370
371    matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>()
372      .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), -1);
373
374    matA.col(i).coeffRef(i+1) = beta;
375    hCoeffs.coeffRef(i) = h;
376  }
377}
378
379// forward declaration, implementation at the end of this file
380template<typename MatrixType,
381         int Size=MatrixType::ColsAtCompileTime,
382         bool IsComplex=NumTraits<typename MatrixType::Scalar>::IsComplex>
383struct tridiagonalization_inplace_selector;
384
385/** \brief Performs a full tridiagonalization in place
386  *
387  * \param[in,out]  mat  On input, the selfadjoint matrix whose tridiagonal
388  *    decomposition is to be computed. Only the lower triangular part referenced.
389  *    The rest is left unchanged. On output, the orthogonal matrix Q
390  *    in the decomposition if \p extractQ is true.
391  * \param[out]  diag  The diagonal of the tridiagonal matrix T in the
392  *    decomposition.
393  * \param[out]  subdiag  The subdiagonal of the tridiagonal matrix T in
394  *    the decomposition.
395  * \param[in]  extractQ  If true, the orthogonal matrix Q in the
396  *    decomposition is computed and stored in \p mat.
397  *
398  * Computes the tridiagonal decomposition of the selfadjoint matrix \p mat in place
399  * such that \f$ mat = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real
400  * symmetric tridiagonal matrix.
401  *
402  * The tridiagonal matrix T is passed to the output parameters \p diag and \p subdiag. If
403  * \p extractQ is true, then the orthogonal matrix Q is passed to \p mat. Otherwise the lower
404  * part of the matrix \p mat is destroyed.
405  *
406  * The vectors \p diag and \p subdiag are not resized. The function
407  * assumes that they are already of the correct size. The length of the
408  * vector \p diag should equal the number of rows in \p mat, and the
409  * length of the vector \p subdiag should be one left.
410  *
411  * This implementation contains an optimized path for 3-by-3 matrices
412  * which is especially useful for plane fitting.
413  *
414  * \note Currently, it requires two temporary vectors to hold the intermediate
415  * Householder coefficients, and to reconstruct the matrix Q from the Householder
416  * reflectors.
417  *
418  * Example (this uses the same matrix as the example in
419  *    Tridiagonalization::Tridiagonalization(const MatrixType&)):
420  *    \include Tridiagonalization_decomposeInPlace.cpp
421  * Output: \verbinclude Tridiagonalization_decomposeInPlace.out
422  *
423  * \sa class Tridiagonalization
424  */
425template<typename MatrixType, typename DiagonalType, typename SubDiagonalType>
426void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
427{
428  typedef typename MatrixType::Index Index;
429  //Index n = mat.rows();
430  eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1);
431  tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, extractQ);
432}
433
434/** \internal
435  * General full tridiagonalization
436  */
437template<typename MatrixType, int Size, bool IsComplex>
438struct tridiagonalization_inplace_selector
439{
440  typedef typename Tridiagonalization<MatrixType>::CoeffVectorType CoeffVectorType;
441  typedef typename Tridiagonalization<MatrixType>::HouseholderSequenceType HouseholderSequenceType;
442  typedef typename MatrixType::Index Index;
443  template<typename DiagonalType, typename SubDiagonalType>
444  static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
445  {
446    CoeffVectorType hCoeffs(mat.cols()-1);
447    tridiagonalization_inplace(mat,hCoeffs);
448    diag = mat.diagonal().real();
449    subdiag = mat.template diagonal<-1>().real();
450    if(extractQ)
451      mat = HouseholderSequenceType(mat, hCoeffs.conjugate())
452            .setLength(mat.rows() - 1)
453            .setShift(1);
454  }
455};
456
457/** \internal
458  * Specialization for 3x3 real matrices.
459  * Especially useful for plane fitting.
460  */
461template<typename MatrixType>
462struct tridiagonalization_inplace_selector<MatrixType,3,false>
463{
464  typedef typename MatrixType::Scalar Scalar;
465  typedef typename MatrixType::RealScalar RealScalar;
466
467  template<typename DiagonalType, typename SubDiagonalType>
468  static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
469  {
470    diag[0] = mat(0,0);
471    RealScalar v1norm2 = abs2(mat(2,0));
472    if(v1norm2 == RealScalar(0))
473    {
474      diag[1] = mat(1,1);
475      diag[2] = mat(2,2);
476      subdiag[0] = mat(1,0);
477      subdiag[1] = mat(2,1);
478      if (extractQ)
479        mat.setIdentity();
480    }
481    else
482    {
483      RealScalar beta = sqrt(abs2(mat(1,0)) + v1norm2);
484      RealScalar invBeta = RealScalar(1)/beta;
485      Scalar m01 = mat(1,0) * invBeta;
486      Scalar m02 = mat(2,0) * invBeta;
487      Scalar q = RealScalar(2)*m01*mat(2,1) + m02*(mat(2,2) - mat(1,1));
488      diag[1] = mat(1,1) + m02*q;
489      diag[2] = mat(2,2) - m02*q;
490      subdiag[0] = beta;
491      subdiag[1] = mat(2,1) - m01 * q;
492      if (extractQ)
493      {
494        mat << 1,   0,    0,
495               0, m01,  m02,
496               0, m02, -m01;
497      }
498    }
499  }
500};
501
502/** \internal
503  * Trivial specialization for 1x1 matrices
504  */
505template<typename MatrixType, bool IsComplex>
506struct tridiagonalization_inplace_selector<MatrixType,1,IsComplex>
507{
508  typedef typename MatrixType::Scalar Scalar;
509
510  template<typename DiagonalType, typename SubDiagonalType>
511  static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, bool extractQ)
512  {
513    diag(0,0) = real(mat(0,0));
514    if(extractQ)
515      mat(0,0) = Scalar(1);
516  }
517};
518
519/** \internal
520  * \eigenvalues_module \ingroup Eigenvalues_Module
521  *
522  * \brief Expression type for return value of Tridiagonalization::matrixT()
523  *
524  * \tparam MatrixType type of underlying dense matrix
525  */
526template<typename MatrixType> struct TridiagonalizationMatrixTReturnType
527: public ReturnByValue<TridiagonalizationMatrixTReturnType<MatrixType> >
528{
529    typedef typename MatrixType::Index Index;
530  public:
531    /** \brief Constructor.
532      *
533      * \param[in] mat The underlying dense matrix
534      */
535    TridiagonalizationMatrixTReturnType(const MatrixType& mat) : m_matrix(mat) { }
536
537    template <typename ResultType>
538    inline void evalTo(ResultType& result) const
539    {
540      result.setZero();
541      result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate();
542      result.diagonal() = m_matrix.diagonal();
543      result.template diagonal<-1>() = m_matrix.template diagonal<-1>();
544    }
545
546    Index rows() const { return m_matrix.rows(); }
547    Index cols() const { return m_matrix.cols(); }
548
549  protected:
550    typename MatrixType::Nested m_matrix;
551};
552
553} // end namespace internal
554
555} // end namespace Eigen
556
557#endif // EIGEN_TRIDIAGONALIZATION_H
Note: See TracBrowser for help on using the repository browser.