1 | /* |
---|
2 | Copyright (c) 2011, Intel Corporation. All rights reserved. |
---|
3 | |
---|
4 | Redistribution and use in source and binary forms, with or without modification, |
---|
5 | are permitted provided that the following conditions are met: |
---|
6 | |
---|
7 | * Redistributions of source code must retain the above copyright notice, this |
---|
8 | list of conditions and the following disclaimer. |
---|
9 | * Redistributions in binary form must reproduce the above copyright notice, |
---|
10 | this list of conditions and the following disclaimer in the documentation |
---|
11 | and/or other materials provided with the distribution. |
---|
12 | * Neither the name of Intel Corporation nor the names of its contributors may |
---|
13 | be used to endorse or promote products derived from this software without |
---|
14 | specific prior written permission. |
---|
15 | |
---|
16 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND |
---|
17 | ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
---|
18 | WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
---|
19 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR |
---|
20 | ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
---|
21 | (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
---|
22 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
---|
23 | ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
---|
24 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
---|
25 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
26 | |
---|
27 | ******************************************************************************** |
---|
28 | * Content : Eigen bindings to Intel(R) MKL |
---|
29 | * Self-adjoint eigenvalues/eigenvectors. |
---|
30 | ******************************************************************************** |
---|
31 | */ |
---|
32 | |
---|
33 | #ifndef EIGEN_SAEIGENSOLVER_MKL_H |
---|
34 | #define EIGEN_SAEIGENSOLVER_MKL_H |
---|
35 | |
---|
36 | #include "Eigen/src/Core/util/MKL_support.h" |
---|
37 | |
---|
38 | namespace Eigen { |
---|
39 | |
---|
40 | /** \internal Specialization for the data types supported by MKL */ |
---|
41 | |
---|
42 | #define EIGEN_MKL_EIG_SELFADJ(EIGTYPE, MKLTYPE, MKLRTYPE, MKLNAME, EIGCOLROW, MKLCOLROW ) \ |
---|
43 | template<> inline \ |
---|
44 | SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \ |
---|
45 | SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW>& matrix, int options) \ |
---|
46 | { \ |
---|
47 | eigen_assert(matrix.cols() == matrix.rows()); \ |
---|
48 | eigen_assert((options&~(EigVecMask|GenEigMask))==0 \ |
---|
49 | && (options&EigVecMask)!=EigVecMask \ |
---|
50 | && "invalid option parameter"); \ |
---|
51 | bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; \ |
---|
52 | lapack_int n = matrix.cols(), lda, matrix_order, info; \ |
---|
53 | m_eivalues.resize(n,1); \ |
---|
54 | m_subdiag.resize(n-1); \ |
---|
55 | m_eivec = matrix; \ |
---|
56 | \ |
---|
57 | if(n==1) \ |
---|
58 | { \ |
---|
59 | m_eivalues.coeffRef(0,0) = internal::real(matrix.coeff(0,0)); \ |
---|
60 | if(computeEigenvectors) m_eivec.setOnes(n,n); \ |
---|
61 | m_info = Success; \ |
---|
62 | m_isInitialized = true; \ |
---|
63 | m_eigenvectorsOk = computeEigenvectors; \ |
---|
64 | return *this; \ |
---|
65 | } \ |
---|
66 | \ |
---|
67 | lda = matrix.outerStride(); \ |
---|
68 | matrix_order=MKLCOLROW; \ |
---|
69 | char jobz, uplo='L'/*, range='A'*/; \ |
---|
70 | jobz = computeEigenvectors ? 'V' : 'N'; \ |
---|
71 | \ |
---|
72 | info = LAPACKE_##MKLNAME( matrix_order, jobz, uplo, n, (MKLTYPE*)m_eivec.data(), lda, (MKLRTYPE*)m_eivalues.data() ); \ |
---|
73 | m_info = (info==0) ? Success : NoConvergence; \ |
---|
74 | m_isInitialized = true; \ |
---|
75 | m_eigenvectorsOk = computeEigenvectors; \ |
---|
76 | return *this; \ |
---|
77 | } |
---|
78 | |
---|
79 | |
---|
80 | EIGEN_MKL_EIG_SELFADJ(double, double, double, dsyev, ColMajor, LAPACK_COL_MAJOR) |
---|
81 | EIGEN_MKL_EIG_SELFADJ(float, float, float, ssyev, ColMajor, LAPACK_COL_MAJOR) |
---|
82 | EIGEN_MKL_EIG_SELFADJ(dcomplex, MKL_Complex16, double, zheev, ColMajor, LAPACK_COL_MAJOR) |
---|
83 | EIGEN_MKL_EIG_SELFADJ(scomplex, MKL_Complex8, float, cheev, ColMajor, LAPACK_COL_MAJOR) |
---|
84 | |
---|
85 | EIGEN_MKL_EIG_SELFADJ(double, double, double, dsyev, RowMajor, LAPACK_ROW_MAJOR) |
---|
86 | EIGEN_MKL_EIG_SELFADJ(float, float, float, ssyev, RowMajor, LAPACK_ROW_MAJOR) |
---|
87 | EIGEN_MKL_EIG_SELFADJ(dcomplex, MKL_Complex16, double, zheev, RowMajor, LAPACK_ROW_MAJOR) |
---|
88 | EIGEN_MKL_EIG_SELFADJ(scomplex, MKL_Complex8, float, cheev, RowMajor, LAPACK_ROW_MAJOR) |
---|
89 | |
---|
90 | } // end namespace Eigen |
---|
91 | |
---|
92 | #endif // EIGEN_SAEIGENSOLVER_H |
---|