Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h @ 10586

Last change on this file since 10586 was 9562, checked in by gkronber, 12 years ago

#1967 worked on Gaussian process evolution.

File size: 28.8 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
12#define EIGEN_SELFADJOINTEIGENSOLVER_H
13
14#include "./Tridiagonalization.h"
15
16namespace Eigen {
17
18template<typename _MatrixType>
19class GeneralizedSelfAdjointEigenSolver;
20
21namespace internal {
22template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues;
23}
24
25/** \eigenvalues_module \ingroup Eigenvalues_Module
26  *
27  *
28  * \class SelfAdjointEigenSolver
29  *
30  * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices
31  *
32  * \tparam _MatrixType the type of the matrix of which we are computing the
33  * eigendecomposition; this is expected to be an instantiation of the Matrix
34  * class template.
35  *
36  * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real
37  * matrices, this means that the matrix is symmetric: it equals its
38  * transpose. This class computes the eigenvalues and eigenvectors of a
39  * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors
40  * \f$ v \f$ such that \f$ Av = \lambda v \f$.  The eigenvalues of a
41  * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with
42  * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the
43  * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$ (for selfadjoint
44  * matrices, the matrix \f$ V \f$ is always invertible). This is called the
45  * eigendecomposition.
46  *
47  * The algorithm exploits the fact that the matrix is selfadjoint, making it
48  * faster and more accurate than the general purpose eigenvalue algorithms
49  * implemented in EigenSolver and ComplexEigenSolver.
50  *
51  * Only the \b lower \b triangular \b part of the input matrix is referenced.
52  *
53  * Call the function compute() to compute the eigenvalues and eigenvectors of
54  * a given matrix. Alternatively, you can use the
55  * SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes
56  * the eigenvalues and eigenvectors at construction time. Once the eigenvalue
57  * and eigenvectors are computed, they can be retrieved with the eigenvalues()
58  * and eigenvectors() functions.
59  *
60  * The documentation for SelfAdjointEigenSolver(const MatrixType&, int)
61  * contains an example of the typical use of this class.
62  *
63  * To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and
64  * the likes, see the class GeneralizedSelfAdjointEigenSolver.
65  *
66  * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver
67  */
68template<typename _MatrixType> class SelfAdjointEigenSolver
69{
70  public:
71
72    typedef _MatrixType MatrixType;
73    enum {
74      Size = MatrixType::RowsAtCompileTime,
75      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
76      Options = MatrixType::Options,
77      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
78    };
79   
80    /** \brief Scalar type for matrices of type \p _MatrixType. */
81    typedef typename MatrixType::Scalar Scalar;
82    typedef typename MatrixType::Index Index;
83
84    /** \brief Real scalar type for \p _MatrixType.
85      *
86      * This is just \c Scalar if #Scalar is real (e.g., \c float or
87      * \c double), and the type of the real part of \c Scalar if #Scalar is
88      * complex.
89      */
90    typedef typename NumTraits<Scalar>::Real RealScalar;
91   
92    friend struct internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>;
93
94    /** \brief Type for vector of eigenvalues as returned by eigenvalues().
95      *
96      * This is a column vector with entries of type #RealScalar.
97      * The length of the vector is the size of \p _MatrixType.
98      */
99    typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
100    typedef Tridiagonalization<MatrixType> TridiagonalizationType;
101
102    /** \brief Default constructor for fixed-size matrices.
103      *
104      * The default constructor is useful in cases in which the user intends to
105      * perform decompositions via compute(). This constructor
106      * can only be used if \p _MatrixType is a fixed-size matrix; use
107      * SelfAdjointEigenSolver(Index) for dynamic-size matrices.
108      *
109      * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp
110      * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out
111      */
112    SelfAdjointEigenSolver()
113        : m_eivec(),
114          m_eivalues(),
115          m_subdiag(),
116          m_isInitialized(false)
117    { }
118
119    /** \brief Constructor, pre-allocates memory for dynamic-size matrices.
120      *
121      * \param [in]  size  Positive integer, size of the matrix whose
122      * eigenvalues and eigenvectors will be computed.
123      *
124      * This constructor is useful for dynamic-size matrices, when the user
125      * intends to perform decompositions via compute(). The \p size
126      * parameter is only used as a hint. It is not an error to give a wrong
127      * \p size, but it may impair performance.
128      *
129      * \sa compute() for an example
130      */
131    SelfAdjointEigenSolver(Index size)
132        : m_eivec(size, size),
133          m_eivalues(size),
134          m_subdiag(size > 1 ? size - 1 : 1),
135          m_isInitialized(false)
136    {}
137
138    /** \brief Constructor; computes eigendecomposition of given matrix.
139      *
140      * \param[in]  matrix  Selfadjoint matrix whose eigendecomposition is to
141      *    be computed. Only the lower triangular part of the matrix is referenced.
142      * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
143      *
144      * This constructor calls compute(const MatrixType&, int) to compute the
145      * eigenvalues of the matrix \p matrix. The eigenvectors are computed if
146      * \p options equals #ComputeEigenvectors.
147      *
148      * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp
149      * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out
150      *
151      * \sa compute(const MatrixType&, int)
152      */
153    SelfAdjointEigenSolver(const MatrixType& matrix, int options = ComputeEigenvectors)
154      : m_eivec(matrix.rows(), matrix.cols()),
155        m_eivalues(matrix.cols()),
156        m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
157        m_isInitialized(false)
158    {
159      compute(matrix, options);
160    }
161
162    /** \brief Computes eigendecomposition of given matrix.
163      *
164      * \param[in]  matrix  Selfadjoint matrix whose eigendecomposition is to
165      *    be computed. Only the lower triangular part of the matrix is referenced.
166      * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
167      * \returns    Reference to \c *this
168      *
169      * This function computes the eigenvalues of \p matrix.  The eigenvalues()
170      * function can be used to retrieve them.  If \p options equals #ComputeEigenvectors,
171      * then the eigenvectors are also computed and can be retrieved by
172      * calling eigenvectors().
173      *
174      * This implementation uses a symmetric QR algorithm. The matrix is first
175      * reduced to tridiagonal form using the Tridiagonalization class. The
176      * tridiagonal matrix is then brought to diagonal form with implicit
177      * symmetric QR steps with Wilkinson shift. Details can be found in
178      * Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>.
179      *
180      * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors
181      * are required and \f$ 4n^3/3 \f$ if they are not required.
182      *
183      * This method reuses the memory in the SelfAdjointEigenSolver object that
184      * was allocated when the object was constructed, if the size of the
185      * matrix does not change.
186      *
187      * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp
188      * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out
189      *
190      * \sa SelfAdjointEigenSolver(const MatrixType&, int)
191      */
192    SelfAdjointEigenSolver& compute(const MatrixType& matrix, int options = ComputeEigenvectors);
193   
194    /** \brief Computes eigendecomposition of given matrix using a direct algorithm
195      *
196      * This is a variant of compute(const MatrixType&, int options) which
197      * directly solves the underlying polynomial equation.
198      *
199      * Currently only 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d).
200      *
201      * This method is usually significantly faster than the QR algorithm
202      * but it might also be less accurate. It is also worth noting that
203      * for 3x3 matrices it involves trigonometric operations which are
204      * not necessarily available for all scalar types.
205      *
206      * \sa compute(const MatrixType&, int options)
207      */
208    SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors);
209
210    /** \brief Returns the eigenvectors of given matrix.
211      *
212      * \returns  A const reference to the matrix whose columns are the eigenvectors.
213      *
214      * \pre The eigenvectors have been computed before.
215      *
216      * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
217      * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The
218      * eigenvectors are normalized to have (Euclidean) norm equal to one. If
219      * this object was used to solve the eigenproblem for the selfadjoint
220      * matrix \f$ A \f$, then the matrix returned by this function is the
221      * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$.
222      *
223      * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
224      * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
225      *
226      * \sa eigenvalues()
227      */
228    const MatrixType& eigenvectors() const
229    {
230      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
231      eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
232      return m_eivec;
233    }
234
235    /** \brief Returns the eigenvalues of given matrix.
236      *
237      * \returns A const reference to the column vector containing the eigenvalues.
238      *
239      * \pre The eigenvalues have been computed before.
240      *
241      * The eigenvalues are repeated according to their algebraic multiplicity,
242      * so there are as many eigenvalues as rows in the matrix. The eigenvalues
243      * are sorted in increasing order.
244      *
245      * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
246      * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
247      *
248      * \sa eigenvectors(), MatrixBase::eigenvalues()
249      */
250    const RealVectorType& eigenvalues() const
251    {
252      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
253      return m_eivalues;
254    }
255
256    /** \brief Computes the positive-definite square root of the matrix.
257      *
258      * \returns the positive-definite square root of the matrix
259      *
260      * \pre The eigenvalues and eigenvectors of a positive-definite matrix
261      * have been computed before.
262      *
263      * The square root of a positive-definite matrix \f$ A \f$ is the
264      * positive-definite matrix whose square equals \f$ A \f$. This function
265      * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
266      * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
267      *
268      * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
269      * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
270      *
271      * \sa operatorInverseSqrt(),
272      *     \ref MatrixFunctions_Module "MatrixFunctions Module"
273      */
274    MatrixType operatorSqrt() const
275    {
276      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
277      eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
278      return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
279    }
280
281    /** \brief Computes the inverse square root of the matrix.
282      *
283      * \returns the inverse positive-definite square root of the matrix
284      *
285      * \pre The eigenvalues and eigenvectors of a positive-definite matrix
286      * have been computed before.
287      *
288      * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
289      * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
290      * cheaper than first computing the square root with operatorSqrt() and
291      * then its inverse with MatrixBase::inverse().
292      *
293      * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
294      * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
295      *
296      * \sa operatorSqrt(), MatrixBase::inverse(),
297      *     \ref MatrixFunctions_Module "MatrixFunctions Module"
298      */
299    MatrixType operatorInverseSqrt() const
300    {
301      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
302      eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
303      return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
304    }
305
306    /** \brief Reports whether previous computation was successful.
307      *
308      * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
309      */
310    ComputationInfo info() const
311    {
312      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
313      return m_info;
314    }
315
316    /** \brief Maximum number of iterations.
317      *
318      * The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n
319      * denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK).
320      */
321    static const int m_maxIterations = 30;
322
323    #ifdef EIGEN2_SUPPORT
324    SelfAdjointEigenSolver(const MatrixType& matrix, bool computeEigenvectors)
325      : m_eivec(matrix.rows(), matrix.cols()),
326        m_eivalues(matrix.cols()),
327        m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
328        m_isInitialized(false)
329    {
330      compute(matrix, computeEigenvectors);
331    }
332   
333    SelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true)
334        : m_eivec(matA.cols(), matA.cols()),
335          m_eivalues(matA.cols()),
336          m_subdiag(matA.cols() > 1 ? matA.cols() - 1 : 1),
337          m_isInitialized(false)
338    {
339      static_cast<GeneralizedSelfAdjointEigenSolver<MatrixType>*>(this)->compute(matA, matB, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
340    }
341   
342    void compute(const MatrixType& matrix, bool computeEigenvectors)
343    {
344      compute(matrix, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
345    }
346
347    void compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true)
348    {
349      compute(matA, matB, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
350    }
351    #endif // EIGEN2_SUPPORT
352
353  protected:
354    MatrixType m_eivec;
355    RealVectorType m_eivalues;
356    typename TridiagonalizationType::SubDiagonalType m_subdiag;
357    ComputationInfo m_info;
358    bool m_isInitialized;
359    bool m_eigenvectorsOk;
360};
361
362/** \internal
363  *
364  * \eigenvalues_module \ingroup Eigenvalues_Module
365  *
366  * Performs a QR step on a tridiagonal symmetric matrix represented as a
367  * pair of two vectors \a diag and \a subdiag.
368  *
369  * \param matA the input selfadjoint matrix
370  * \param hCoeffs returned Householder coefficients
371  *
372  * For compilation efficiency reasons, this procedure does not use eigen expression
373  * for its arguments.
374  *
375  * Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
376  * "implicit symmetric QR step with Wilkinson shift"
377  */
378namespace internal {
379template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
380static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);
381}
382
383template<typename MatrixType>
384SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
385::compute(const MatrixType& matrix, int options)
386{
387  eigen_assert(matrix.cols() == matrix.rows());
388  eigen_assert((options&~(EigVecMask|GenEigMask))==0
389          && (options&EigVecMask)!=EigVecMask
390          && "invalid option parameter");
391  bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
392  Index n = matrix.cols();
393  m_eivalues.resize(n,1);
394
395  if(n==1)
396  {
397    m_eivalues.coeffRef(0,0) = internal::real(matrix.coeff(0,0));
398    if(computeEigenvectors)
399      m_eivec.setOnes(n,n);
400    m_info = Success;
401    m_isInitialized = true;
402    m_eigenvectorsOk = computeEigenvectors;
403    return *this;
404  }
405
406  // declare some aliases
407  RealVectorType& diag = m_eivalues;
408  MatrixType& mat = m_eivec;
409
410  // map the matrix coefficients to [-1:1] to avoid over- and underflow.
411  RealScalar scale = matrix.cwiseAbs().maxCoeff();
412  if(scale==RealScalar(0)) scale = RealScalar(1);
413  mat = matrix / scale;
414  m_subdiag.resize(n-1);
415  internal::tridiagonalization_inplace(mat, diag, m_subdiag, computeEigenvectors);
416 
417  Index end = n-1;
418  Index start = 0;
419  Index iter = 0; // total number of iterations
420
421  while (end>0)
422  {
423    for (Index i = start; i<end; ++i)
424      if (internal::isMuchSmallerThan(internal::abs(m_subdiag[i]),(internal::abs(diag[i])+internal::abs(diag[i+1]))))
425        m_subdiag[i] = 0;
426
427    // find the largest unreduced block
428    while (end>0 && m_subdiag[end-1]==0)
429    {
430      end--;
431    }
432    if (end<=0)
433      break;
434
435    // if we spent too many iterations, we give up
436    iter++;
437    if(iter > m_maxIterations * n) break;
438
439    start = end - 1;
440    while (start>0 && m_subdiag[start-1]!=0)
441      start--;
442
443    internal::tridiagonal_qr_step<MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor>(diag.data(), m_subdiag.data(), start, end, computeEigenvectors ? m_eivec.data() : (Scalar*)0, n);
444  }
445
446  if (iter <= m_maxIterations * n)
447    m_info = Success;
448  else
449    m_info = NoConvergence;
450
451  // Sort eigenvalues and corresponding vectors.
452  // TODO make the sort optional ?
453  // TODO use a better sort algorithm !!
454  if (m_info == Success)
455  {
456    for (Index i = 0; i < n-1; ++i)
457    {
458      Index k;
459      m_eivalues.segment(i,n-i).minCoeff(&k);
460      if (k > 0)
461      {
462        std::swap(m_eivalues[i], m_eivalues[k+i]);
463        if(computeEigenvectors)
464          m_eivec.col(i).swap(m_eivec.col(k+i));
465      }
466    }
467  }
468 
469  // scale back the eigen values
470  m_eivalues *= scale;
471
472  m_isInitialized = true;
473  m_eigenvectorsOk = computeEigenvectors;
474  return *this;
475}
476
477
478namespace internal {
479 
480template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues
481{
482  static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options)
483  { eig.compute(A,options); }
484};
485
486template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3,false>
487{
488  typedef typename SolverType::MatrixType MatrixType;
489  typedef typename SolverType::RealVectorType VectorType;
490  typedef typename SolverType::Scalar Scalar;
491 
492  static inline void computeRoots(const MatrixType& m, VectorType& roots)
493  {
494    using std::sqrt;
495    using std::atan2;
496    using std::cos;
497    using std::sin;
498    const Scalar s_inv3 = Scalar(1.0)/Scalar(3.0);
499    const Scalar s_sqrt3 = sqrt(Scalar(3.0));
500
501    // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0.  The
502    // eigenvalues are the roots to this equation, all guaranteed to be
503    // real-valued, because the matrix is symmetric.
504    Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0);
505    Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1);
506    Scalar c2 = m(0,0) + m(1,1) + m(2,2);
507
508    // Construct the parameters used in classifying the roots of the equation
509    // and in solving the equation for the roots in closed form.
510    Scalar c2_over_3 = c2*s_inv3;
511    Scalar a_over_3 = (c1 - c2*c2_over_3)*s_inv3;
512    if (a_over_3 > Scalar(0))
513      a_over_3 = Scalar(0);
514
515    Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
516
517    Scalar q = half_b*half_b + a_over_3*a_over_3*a_over_3;
518    if (q > Scalar(0))
519      q = Scalar(0);
520
521    // Compute the eigenvalues by solving for the roots of the polynomial.
522    Scalar rho = sqrt(-a_over_3);
523    Scalar theta = atan2(sqrt(-q),half_b)*s_inv3;
524    Scalar cos_theta = cos(theta);
525    Scalar sin_theta = sin(theta);
526    roots(0) = c2_over_3 + Scalar(2)*rho*cos_theta;
527    roots(1) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta);
528    roots(2) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta);
529
530    // Sort in increasing order.
531    if (roots(0) >= roots(1))
532      std::swap(roots(0),roots(1));
533    if (roots(1) >= roots(2))
534    {
535      std::swap(roots(1),roots(2));
536      if (roots(0) >= roots(1))
537        std::swap(roots(0),roots(1));
538    }
539  }
540 
541  static inline void run(SolverType& solver, const MatrixType& mat, int options)
542  {
543    using std::sqrt;
544    eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows());
545    eigen_assert((options&~(EigVecMask|GenEigMask))==0
546            && (options&EigVecMask)!=EigVecMask
547            && "invalid option parameter");
548    bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
549   
550    MatrixType& eivecs = solver.m_eivec;
551    VectorType& eivals = solver.m_eivalues;
552 
553    // map the matrix coefficients to [-1:1] to avoid over- and underflow.
554    Scalar scale = mat.cwiseAbs().maxCoeff();
555    MatrixType scaledMat = mat / scale;
556
557    // compute the eigenvalues
558    computeRoots(scaledMat,eivals);
559
560    // compute the eigen vectors
561    if(computeEigenvectors)
562    {
563      Scalar safeNorm2 = Eigen::NumTraits<Scalar>::epsilon();
564      safeNorm2 *= safeNorm2;
565      if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon())
566      {
567        eivecs.setIdentity();
568      }
569      else
570      {
571        scaledMat = scaledMat.template selfadjointView<Lower>();
572        MatrixType tmp;
573        tmp = scaledMat;
574
575        Scalar d0 = eivals(2) - eivals(1);
576        Scalar d1 = eivals(1) - eivals(0);
577        int k =  d0 > d1 ? 2 : 0;
578        d0 = d0 > d1 ? d1 : d0;
579
580        tmp.diagonal().array () -= eivals(k);
581        VectorType cross;
582        Scalar n;
583        n = (cross = tmp.row(0).cross(tmp.row(1))).squaredNorm();
584
585        if(n>safeNorm2)
586          eivecs.col(k) = cross / sqrt(n);
587        else
588        {
589          n = (cross = tmp.row(0).cross(tmp.row(2))).squaredNorm();
590
591          if(n>safeNorm2)
592            eivecs.col(k) = cross / sqrt(n);
593          else
594          {
595            n = (cross = tmp.row(1).cross(tmp.row(2))).squaredNorm();
596
597            if(n>safeNorm2)
598              eivecs.col(k) = cross / sqrt(n);
599            else
600            {
601              // the input matrix and/or the eigenvaues probably contains some inf/NaN,
602              // => exit
603              // scale back to the original size.
604              eivals *= scale;
605
606              solver.m_info = NumericalIssue;
607              solver.m_isInitialized = true;
608              solver.m_eigenvectorsOk = computeEigenvectors;
609              return;
610            }
611          }
612        }
613
614        tmp = scaledMat;
615        tmp.diagonal().array() -= eivals(1);
616
617        if(d0<=Eigen::NumTraits<Scalar>::epsilon())
618          eivecs.col(1) = eivecs.col(k).unitOrthogonal();
619        else
620        {
621          n = (cross = eivecs.col(k).cross(tmp.row(0).normalized())).squaredNorm();
622          if(n>safeNorm2)
623            eivecs.col(1) = cross / sqrt(n);
624          else
625          {
626            n = (cross = eivecs.col(k).cross(tmp.row(1))).squaredNorm();
627            if(n>safeNorm2)
628              eivecs.col(1) = cross / sqrt(n);
629            else
630            {
631              n = (cross = eivecs.col(k).cross(tmp.row(2))).squaredNorm();
632              if(n>safeNorm2)
633                eivecs.col(1) = cross / sqrt(n);
634              else
635              {
636                // we should never reach this point,
637                // if so the last two eigenvalues are likely to ve very closed to each other
638                eivecs.col(1) = eivecs.col(k).unitOrthogonal();
639              }
640            }
641          }
642
643          // make sure that eivecs[1] is orthogonal to eivecs[2]
644          Scalar d = eivecs.col(1).dot(eivecs.col(k));
645          eivecs.col(1) = (eivecs.col(1) - d * eivecs.col(k)).normalized();
646        }
647
648        eivecs.col(k==2 ? 0 : 2) = eivecs.col(k).cross(eivecs.col(1)).normalized();
649      }
650    }
651    // Rescale back to the original size.
652    eivals *= scale;
653   
654    solver.m_info = Success;
655    solver.m_isInitialized = true;
656    solver.m_eigenvectorsOk = computeEigenvectors;
657  }
658};
659
660// 2x2 direct eigenvalues decomposition, code from Hauke Heibel
661template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,2,false>
662{
663  typedef typename SolverType::MatrixType MatrixType;
664  typedef typename SolverType::RealVectorType VectorType;
665  typedef typename SolverType::Scalar Scalar;
666 
667  static inline void computeRoots(const MatrixType& m, VectorType& roots)
668  {
669    using std::sqrt;
670    const Scalar t0 = Scalar(0.5) * sqrt( abs2(m(0,0)-m(1,1)) + Scalar(4)*m(1,0)*m(1,0));
671    const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1));
672    roots(0) = t1 - t0;
673    roots(1) = t1 + t0;
674  }
675 
676  static inline void run(SolverType& solver, const MatrixType& mat, int options)
677  {
678    eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows());
679    eigen_assert((options&~(EigVecMask|GenEigMask))==0
680            && (options&EigVecMask)!=EigVecMask
681            && "invalid option parameter");
682    bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
683   
684    MatrixType& eivecs = solver.m_eivec;
685    VectorType& eivals = solver.m_eivalues;
686 
687    // map the matrix coefficients to [-1:1] to avoid over- and underflow.
688    Scalar scale = mat.cwiseAbs().maxCoeff();
689    scale = (std::max)(scale,Scalar(1));
690    MatrixType scaledMat = mat / scale;
691   
692    // Compute the eigenvalues
693    computeRoots(scaledMat,eivals);
694   
695    // compute the eigen vectors
696    if(computeEigenvectors)
697    {
698      scaledMat.diagonal().array () -= eivals(1);
699      Scalar a2 = abs2(scaledMat(0,0));
700      Scalar c2 = abs2(scaledMat(1,1));
701      Scalar b2 = abs2(scaledMat(1,0));
702      if(a2>c2)
703      {
704        eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0);
705        eivecs.col(1) /= sqrt(a2+b2);
706      }
707      else
708      {
709        eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0);
710        eivecs.col(1) /= sqrt(c2+b2);
711      }
712
713      eivecs.col(0) << eivecs.col(1).unitOrthogonal();
714    }
715   
716    // Rescale back to the original size.
717    eivals *= scale;
718   
719    solver.m_info = Success;
720    solver.m_isInitialized = true;
721    solver.m_eigenvectorsOk = computeEigenvectors;
722  }
723};
724
725}
726
727template<typename MatrixType>
728SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
729::computeDirect(const MatrixType& matrix, int options)
730{
731  internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>::run(*this,matrix,options);
732  return *this;
733}
734
735namespace internal {
736template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
737static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n)
738{
739  RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5);
740  RealScalar e = subdiag[end-1];
741  // Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still
742  // underflow thus leading to inf/NaN values when using the following commented code:
743//   RealScalar e2 = abs2(subdiag[end-1]);
744//   RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2));
745  // This explain the following, somewhat more complicated, version:
746  RealScalar mu = diag[end];
747  if(td==0)
748    mu -= abs(e);
749  else
750  {
751    RealScalar e2 = abs2(subdiag[end-1]);
752    RealScalar h = hypot(td,e);
753    if(e2==0)  mu -= (e / (td + (td>0 ? 1 : -1))) * (e / h);
754    else       mu -= e2 / (td + (td>0 ? h : -h));
755  }
756 
757  RealScalar x = diag[start] - mu;
758  RealScalar z = subdiag[start];
759  for (Index k = start; k < end; ++k)
760  {
761    JacobiRotation<RealScalar> rot;
762    rot.makeGivens(x, z);
763
764    // do T = G' T G
765    RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k];
766    RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1];
767
768    diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]);
769    diag[k+1] = rot.s() * sdk + rot.c() * dkp1;
770    subdiag[k] = rot.c() * sdk - rot.s() * dkp1;
771   
772
773    if (k > start)
774      subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z;
775
776    x = subdiag[k];
777
778    if (k < end - 1)
779    {
780      z = -rot.s() * subdiag[k+1];
781      subdiag[k + 1] = rot.c() * subdiag[k+1];
782    }
783   
784    // apply the givens rotation to the unit matrix Q = Q * G
785    if (matrixQ)
786    {
787      // FIXME if StorageOrder == RowMajor this operation is not very efficient
788      Map<Matrix<Scalar,Dynamic,Dynamic,StorageOrder> > q(matrixQ,n,n);
789      q.applyOnTheRight(k,k+1,rot);
790    }
791  }
792}
793
794} // end namespace internal
795
796} // end namespace Eigen
797
798#endif // EIGEN_SELFADJOINTEIGENSOLVER_H
Note: See TracBrowser for help on using the repository browser.