1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
5 | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
---|
6 | // |
---|
7 | // This Source Code Form is subject to the terms of the Mozilla |
---|
8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
10 | |
---|
11 | #ifndef EIGEN_REAL_SCHUR_H |
---|
12 | #define EIGEN_REAL_SCHUR_H |
---|
13 | |
---|
14 | #include "./HessenbergDecomposition.h" |
---|
15 | |
---|
16 | namespace Eigen { |
---|
17 | |
---|
18 | /** \eigenvalues_module \ingroup Eigenvalues_Module |
---|
19 | * |
---|
20 | * |
---|
21 | * \class RealSchur |
---|
22 | * |
---|
23 | * \brief Performs a real Schur decomposition of a square matrix |
---|
24 | * |
---|
25 | * \tparam _MatrixType the type of the matrix of which we are computing the |
---|
26 | * real Schur decomposition; this is expected to be an instantiation of the |
---|
27 | * Matrix class template. |
---|
28 | * |
---|
29 | * Given a real square matrix A, this class computes the real Schur |
---|
30 | * decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and |
---|
31 | * T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose |
---|
32 | * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular |
---|
33 | * matrix is a block-triangular matrix whose diagonal consists of 1-by-1 |
---|
34 | * blocks and 2-by-2 blocks with complex eigenvalues. The eigenvalues of the |
---|
35 | * blocks on the diagonal of T are the same as the eigenvalues of the matrix |
---|
36 | * A, and thus the real Schur decomposition is used in EigenSolver to compute |
---|
37 | * the eigendecomposition of a matrix. |
---|
38 | * |
---|
39 | * Call the function compute() to compute the real Schur decomposition of a |
---|
40 | * given matrix. Alternatively, you can use the RealSchur(const MatrixType&, bool) |
---|
41 | * constructor which computes the real Schur decomposition at construction |
---|
42 | * time. Once the decomposition is computed, you can use the matrixU() and |
---|
43 | * matrixT() functions to retrieve the matrices U and T in the decomposition. |
---|
44 | * |
---|
45 | * The documentation of RealSchur(const MatrixType&, bool) contains an example |
---|
46 | * of the typical use of this class. |
---|
47 | * |
---|
48 | * \note The implementation is adapted from |
---|
49 | * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain). |
---|
50 | * Their code is based on EISPACK. |
---|
51 | * |
---|
52 | * \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver |
---|
53 | */ |
---|
54 | template<typename _MatrixType> class RealSchur |
---|
55 | { |
---|
56 | public: |
---|
57 | typedef _MatrixType MatrixType; |
---|
58 | enum { |
---|
59 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
---|
60 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
---|
61 | Options = MatrixType::Options, |
---|
62 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
---|
63 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
---|
64 | }; |
---|
65 | typedef typename MatrixType::Scalar Scalar; |
---|
66 | typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar; |
---|
67 | typedef typename MatrixType::Index Index; |
---|
68 | |
---|
69 | typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType; |
---|
70 | typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType; |
---|
71 | |
---|
72 | /** \brief Default constructor. |
---|
73 | * |
---|
74 | * \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed. |
---|
75 | * |
---|
76 | * The default constructor is useful in cases in which the user intends to |
---|
77 | * perform decompositions via compute(). The \p size parameter is only |
---|
78 | * used as a hint. It is not an error to give a wrong \p size, but it may |
---|
79 | * impair performance. |
---|
80 | * |
---|
81 | * \sa compute() for an example. |
---|
82 | */ |
---|
83 | RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) |
---|
84 | : m_matT(size, size), |
---|
85 | m_matU(size, size), |
---|
86 | m_workspaceVector(size), |
---|
87 | m_hess(size), |
---|
88 | m_isInitialized(false), |
---|
89 | m_matUisUptodate(false) |
---|
90 | { } |
---|
91 | |
---|
92 | /** \brief Constructor; computes real Schur decomposition of given matrix. |
---|
93 | * |
---|
94 | * \param[in] matrix Square matrix whose Schur decomposition is to be computed. |
---|
95 | * \param[in] computeU If true, both T and U are computed; if false, only T is computed. |
---|
96 | * |
---|
97 | * This constructor calls compute() to compute the Schur decomposition. |
---|
98 | * |
---|
99 | * Example: \include RealSchur_RealSchur_MatrixType.cpp |
---|
100 | * Output: \verbinclude RealSchur_RealSchur_MatrixType.out |
---|
101 | */ |
---|
102 | RealSchur(const MatrixType& matrix, bool computeU = true) |
---|
103 | : m_matT(matrix.rows(),matrix.cols()), |
---|
104 | m_matU(matrix.rows(),matrix.cols()), |
---|
105 | m_workspaceVector(matrix.rows()), |
---|
106 | m_hess(matrix.rows()), |
---|
107 | m_isInitialized(false), |
---|
108 | m_matUisUptodate(false) |
---|
109 | { |
---|
110 | compute(matrix, computeU); |
---|
111 | } |
---|
112 | |
---|
113 | /** \brief Returns the orthogonal matrix in the Schur decomposition. |
---|
114 | * |
---|
115 | * \returns A const reference to the matrix U. |
---|
116 | * |
---|
117 | * \pre Either the constructor RealSchur(const MatrixType&, bool) or the |
---|
118 | * member function compute(const MatrixType&, bool) has been called before |
---|
119 | * to compute the Schur decomposition of a matrix, and \p computeU was set |
---|
120 | * to true (the default value). |
---|
121 | * |
---|
122 | * \sa RealSchur(const MatrixType&, bool) for an example |
---|
123 | */ |
---|
124 | const MatrixType& matrixU() const |
---|
125 | { |
---|
126 | eigen_assert(m_isInitialized && "RealSchur is not initialized."); |
---|
127 | eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition."); |
---|
128 | return m_matU; |
---|
129 | } |
---|
130 | |
---|
131 | /** \brief Returns the quasi-triangular matrix in the Schur decomposition. |
---|
132 | * |
---|
133 | * \returns A const reference to the matrix T. |
---|
134 | * |
---|
135 | * \pre Either the constructor RealSchur(const MatrixType&, bool) or the |
---|
136 | * member function compute(const MatrixType&, bool) has been called before |
---|
137 | * to compute the Schur decomposition of a matrix. |
---|
138 | * |
---|
139 | * \sa RealSchur(const MatrixType&, bool) for an example |
---|
140 | */ |
---|
141 | const MatrixType& matrixT() const |
---|
142 | { |
---|
143 | eigen_assert(m_isInitialized && "RealSchur is not initialized."); |
---|
144 | return m_matT; |
---|
145 | } |
---|
146 | |
---|
147 | /** \brief Computes Schur decomposition of given matrix. |
---|
148 | * |
---|
149 | * \param[in] matrix Square matrix whose Schur decomposition is to be computed. |
---|
150 | * \param[in] computeU If true, both T and U are computed; if false, only T is computed. |
---|
151 | * \returns Reference to \c *this |
---|
152 | * |
---|
153 | * The Schur decomposition is computed by first reducing the matrix to |
---|
154 | * Hessenberg form using the class HessenbergDecomposition. The Hessenberg |
---|
155 | * matrix is then reduced to triangular form by performing Francis QR |
---|
156 | * iterations with implicit double shift. The cost of computing the Schur |
---|
157 | * decomposition depends on the number of iterations; as a rough guide, it |
---|
158 | * may be taken to be \f$25n^3\f$ flops if \a computeU is true and |
---|
159 | * \f$10n^3\f$ flops if \a computeU is false. |
---|
160 | * |
---|
161 | * Example: \include RealSchur_compute.cpp |
---|
162 | * Output: \verbinclude RealSchur_compute.out |
---|
163 | */ |
---|
164 | RealSchur& compute(const MatrixType& matrix, bool computeU = true); |
---|
165 | |
---|
166 | /** \brief Reports whether previous computation was successful. |
---|
167 | * |
---|
168 | * \returns \c Success if computation was succesful, \c NoConvergence otherwise. |
---|
169 | */ |
---|
170 | ComputationInfo info() const |
---|
171 | { |
---|
172 | eigen_assert(m_isInitialized && "RealSchur is not initialized."); |
---|
173 | return m_info; |
---|
174 | } |
---|
175 | |
---|
176 | /** \brief Maximum number of iterations. |
---|
177 | * |
---|
178 | * Maximum number of iterations allowed for an eigenvalue to converge. |
---|
179 | */ |
---|
180 | static const int m_maxIterations = 40; |
---|
181 | |
---|
182 | private: |
---|
183 | |
---|
184 | MatrixType m_matT; |
---|
185 | MatrixType m_matU; |
---|
186 | ColumnVectorType m_workspaceVector; |
---|
187 | HessenbergDecomposition<MatrixType> m_hess; |
---|
188 | ComputationInfo m_info; |
---|
189 | bool m_isInitialized; |
---|
190 | bool m_matUisUptodate; |
---|
191 | |
---|
192 | typedef Matrix<Scalar,3,1> Vector3s; |
---|
193 | |
---|
194 | Scalar computeNormOfT(); |
---|
195 | Index findSmallSubdiagEntry(Index iu, Scalar norm); |
---|
196 | void splitOffTwoRows(Index iu, bool computeU, Scalar exshift); |
---|
197 | void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo); |
---|
198 | void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector); |
---|
199 | void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace); |
---|
200 | }; |
---|
201 | |
---|
202 | |
---|
203 | template<typename MatrixType> |
---|
204 | RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU) |
---|
205 | { |
---|
206 | assert(matrix.cols() == matrix.rows()); |
---|
207 | |
---|
208 | // Step 1. Reduce to Hessenberg form |
---|
209 | m_hess.compute(matrix); |
---|
210 | m_matT = m_hess.matrixH(); |
---|
211 | if (computeU) |
---|
212 | m_matU = m_hess.matrixQ(); |
---|
213 | |
---|
214 | // Step 2. Reduce to real Schur form |
---|
215 | m_workspaceVector.resize(m_matT.cols()); |
---|
216 | Scalar* workspace = &m_workspaceVector.coeffRef(0); |
---|
217 | |
---|
218 | // The matrix m_matT is divided in three parts. |
---|
219 | // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero. |
---|
220 | // Rows il,...,iu is the part we are working on (the active window). |
---|
221 | // Rows iu+1,...,end are already brought in triangular form. |
---|
222 | Index iu = m_matT.cols() - 1; |
---|
223 | Index iter = 0; // iteration count for current eigenvalue |
---|
224 | Index totalIter = 0; // iteration count for whole matrix |
---|
225 | Scalar exshift(0); // sum of exceptional shifts |
---|
226 | Scalar norm = computeNormOfT(); |
---|
227 | |
---|
228 | if(norm!=0) |
---|
229 | { |
---|
230 | while (iu >= 0) |
---|
231 | { |
---|
232 | Index il = findSmallSubdiagEntry(iu, norm); |
---|
233 | |
---|
234 | // Check for convergence |
---|
235 | if (il == iu) // One root found |
---|
236 | { |
---|
237 | m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift; |
---|
238 | if (iu > 0) |
---|
239 | m_matT.coeffRef(iu, iu-1) = Scalar(0); |
---|
240 | iu--; |
---|
241 | iter = 0; |
---|
242 | } |
---|
243 | else if (il == iu-1) // Two roots found |
---|
244 | { |
---|
245 | splitOffTwoRows(iu, computeU, exshift); |
---|
246 | iu -= 2; |
---|
247 | iter = 0; |
---|
248 | } |
---|
249 | else // No convergence yet |
---|
250 | { |
---|
251 | // The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG ) |
---|
252 | Vector3s firstHouseholderVector(0,0,0), shiftInfo; |
---|
253 | computeShift(iu, iter, exshift, shiftInfo); |
---|
254 | iter = iter + 1; |
---|
255 | totalIter = totalIter + 1; |
---|
256 | if (totalIter > m_maxIterations * matrix.cols()) break; |
---|
257 | Index im; |
---|
258 | initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector); |
---|
259 | performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace); |
---|
260 | } |
---|
261 | } |
---|
262 | } |
---|
263 | if(totalIter <= m_maxIterations * matrix.cols()) |
---|
264 | m_info = Success; |
---|
265 | else |
---|
266 | m_info = NoConvergence; |
---|
267 | |
---|
268 | m_isInitialized = true; |
---|
269 | m_matUisUptodate = computeU; |
---|
270 | return *this; |
---|
271 | } |
---|
272 | |
---|
273 | /** \internal Computes and returns vector L1 norm of T */ |
---|
274 | template<typename MatrixType> |
---|
275 | inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT() |
---|
276 | { |
---|
277 | const Index size = m_matT.cols(); |
---|
278 | // FIXME to be efficient the following would requires a triangular reduxion code |
---|
279 | // Scalar norm = m_matT.upper().cwiseAbs().sum() |
---|
280 | // + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum(); |
---|
281 | Scalar norm(0); |
---|
282 | for (Index j = 0; j < size; ++j) |
---|
283 | norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum(); |
---|
284 | return norm; |
---|
285 | } |
---|
286 | |
---|
287 | /** \internal Look for single small sub-diagonal element and returns its index */ |
---|
288 | template<typename MatrixType> |
---|
289 | inline typename MatrixType::Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu, Scalar norm) |
---|
290 | { |
---|
291 | Index res = iu; |
---|
292 | while (res > 0) |
---|
293 | { |
---|
294 | Scalar s = internal::abs(m_matT.coeff(res-1,res-1)) + internal::abs(m_matT.coeff(res,res)); |
---|
295 | if (s == 0.0) |
---|
296 | s = norm; |
---|
297 | if (internal::abs(m_matT.coeff(res,res-1)) < NumTraits<Scalar>::epsilon() * s) |
---|
298 | break; |
---|
299 | res--; |
---|
300 | } |
---|
301 | return res; |
---|
302 | } |
---|
303 | |
---|
304 | /** \internal Update T given that rows iu-1 and iu decouple from the rest. */ |
---|
305 | template<typename MatrixType> |
---|
306 | inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, Scalar exshift) |
---|
307 | { |
---|
308 | const Index size = m_matT.cols(); |
---|
309 | |
---|
310 | // The eigenvalues of the 2x2 matrix [a b; c d] are |
---|
311 | // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc |
---|
312 | Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu)); |
---|
313 | Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); // q = tr^2 / 4 - det = discr/4 |
---|
314 | m_matT.coeffRef(iu,iu) += exshift; |
---|
315 | m_matT.coeffRef(iu-1,iu-1) += exshift; |
---|
316 | |
---|
317 | if (q >= Scalar(0)) // Two real eigenvalues |
---|
318 | { |
---|
319 | Scalar z = internal::sqrt(internal::abs(q)); |
---|
320 | JacobiRotation<Scalar> rot; |
---|
321 | if (p >= Scalar(0)) |
---|
322 | rot.makeGivens(p + z, m_matT.coeff(iu, iu-1)); |
---|
323 | else |
---|
324 | rot.makeGivens(p - z, m_matT.coeff(iu, iu-1)); |
---|
325 | |
---|
326 | m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint()); |
---|
327 | m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot); |
---|
328 | m_matT.coeffRef(iu, iu-1) = Scalar(0); |
---|
329 | if (computeU) |
---|
330 | m_matU.applyOnTheRight(iu-1, iu, rot); |
---|
331 | } |
---|
332 | |
---|
333 | if (iu > 1) |
---|
334 | m_matT.coeffRef(iu-1, iu-2) = Scalar(0); |
---|
335 | } |
---|
336 | |
---|
337 | /** \internal Form shift in shiftInfo, and update exshift if an exceptional shift is performed. */ |
---|
338 | template<typename MatrixType> |
---|
339 | inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo) |
---|
340 | { |
---|
341 | shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu); |
---|
342 | shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1); |
---|
343 | shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); |
---|
344 | |
---|
345 | // Wilkinson's original ad hoc shift |
---|
346 | if (iter == 10) |
---|
347 | { |
---|
348 | exshift += shiftInfo.coeff(0); |
---|
349 | for (Index i = 0; i <= iu; ++i) |
---|
350 | m_matT.coeffRef(i,i) -= shiftInfo.coeff(0); |
---|
351 | Scalar s = internal::abs(m_matT.coeff(iu,iu-1)) + internal::abs(m_matT.coeff(iu-1,iu-2)); |
---|
352 | shiftInfo.coeffRef(0) = Scalar(0.75) * s; |
---|
353 | shiftInfo.coeffRef(1) = Scalar(0.75) * s; |
---|
354 | shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s; |
---|
355 | } |
---|
356 | |
---|
357 | // MATLAB's new ad hoc shift |
---|
358 | if (iter == 30) |
---|
359 | { |
---|
360 | Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0); |
---|
361 | s = s * s + shiftInfo.coeff(2); |
---|
362 | if (s > Scalar(0)) |
---|
363 | { |
---|
364 | s = internal::sqrt(s); |
---|
365 | if (shiftInfo.coeff(1) < shiftInfo.coeff(0)) |
---|
366 | s = -s; |
---|
367 | s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0); |
---|
368 | s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s; |
---|
369 | exshift += s; |
---|
370 | for (Index i = 0; i <= iu; ++i) |
---|
371 | m_matT.coeffRef(i,i) -= s; |
---|
372 | shiftInfo.setConstant(Scalar(0.964)); |
---|
373 | } |
---|
374 | } |
---|
375 | } |
---|
376 | |
---|
377 | /** \internal Compute index im at which Francis QR step starts and the first Householder vector. */ |
---|
378 | template<typename MatrixType> |
---|
379 | inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector) |
---|
380 | { |
---|
381 | Vector3s& v = firstHouseholderVector; // alias to save typing |
---|
382 | |
---|
383 | for (im = iu-2; im >= il; --im) |
---|
384 | { |
---|
385 | const Scalar Tmm = m_matT.coeff(im,im); |
---|
386 | const Scalar r = shiftInfo.coeff(0) - Tmm; |
---|
387 | const Scalar s = shiftInfo.coeff(1) - Tmm; |
---|
388 | v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1); |
---|
389 | v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s; |
---|
390 | v.coeffRef(2) = m_matT.coeff(im+2,im+1); |
---|
391 | if (im == il) { |
---|
392 | break; |
---|
393 | } |
---|
394 | const Scalar lhs = m_matT.coeff(im,im-1) * (internal::abs(v.coeff(1)) + internal::abs(v.coeff(2))); |
---|
395 | const Scalar rhs = v.coeff(0) * (internal::abs(m_matT.coeff(im-1,im-1)) + internal::abs(Tmm) + internal::abs(m_matT.coeff(im+1,im+1))); |
---|
396 | if (internal::abs(lhs) < NumTraits<Scalar>::epsilon() * rhs) |
---|
397 | { |
---|
398 | break; |
---|
399 | } |
---|
400 | } |
---|
401 | } |
---|
402 | |
---|
403 | /** \internal Perform a Francis QR step involving rows il:iu and columns im:iu. */ |
---|
404 | template<typename MatrixType> |
---|
405 | inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace) |
---|
406 | { |
---|
407 | assert(im >= il); |
---|
408 | assert(im <= iu-2); |
---|
409 | |
---|
410 | const Index size = m_matT.cols(); |
---|
411 | |
---|
412 | for (Index k = im; k <= iu-2; ++k) |
---|
413 | { |
---|
414 | bool firstIteration = (k == im); |
---|
415 | |
---|
416 | Vector3s v; |
---|
417 | if (firstIteration) |
---|
418 | v = firstHouseholderVector; |
---|
419 | else |
---|
420 | v = m_matT.template block<3,1>(k,k-1); |
---|
421 | |
---|
422 | Scalar tau, beta; |
---|
423 | Matrix<Scalar, 2, 1> ess; |
---|
424 | v.makeHouseholder(ess, tau, beta); |
---|
425 | |
---|
426 | if (beta != Scalar(0)) // if v is not zero |
---|
427 | { |
---|
428 | if (firstIteration && k > il) |
---|
429 | m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1); |
---|
430 | else if (!firstIteration) |
---|
431 | m_matT.coeffRef(k,k-1) = beta; |
---|
432 | |
---|
433 | // These Householder transformations form the O(n^3) part of the algorithm |
---|
434 | m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace); |
---|
435 | m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace); |
---|
436 | if (computeU) |
---|
437 | m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace); |
---|
438 | } |
---|
439 | } |
---|
440 | |
---|
441 | Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2); |
---|
442 | Scalar tau, beta; |
---|
443 | Matrix<Scalar, 1, 1> ess; |
---|
444 | v.makeHouseholder(ess, tau, beta); |
---|
445 | |
---|
446 | if (beta != Scalar(0)) // if v is not zero |
---|
447 | { |
---|
448 | m_matT.coeffRef(iu-1, iu-2) = beta; |
---|
449 | m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace); |
---|
450 | m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace); |
---|
451 | if (computeU) |
---|
452 | m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace); |
---|
453 | } |
---|
454 | |
---|
455 | // clean up pollution due to round-off errors |
---|
456 | for (Index i = im+2; i <= iu; ++i) |
---|
457 | { |
---|
458 | m_matT.coeffRef(i,i-2) = Scalar(0); |
---|
459 | if (i > im+2) |
---|
460 | m_matT.coeffRef(i,i-3) = Scalar(0); |
---|
461 | } |
---|
462 | } |
---|
463 | |
---|
464 | } // end namespace Eigen |
---|
465 | |
---|
466 | #endif // EIGEN_REAL_SCHUR_H |
---|