1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
5 | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
---|
6 | // |
---|
7 | // This Source Code Form is subject to the terms of the Mozilla |
---|
8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
10 | |
---|
11 | #ifndef EIGEN_MATRIXBASEEIGENVALUES_H |
---|
12 | #define EIGEN_MATRIXBASEEIGENVALUES_H |
---|
13 | |
---|
14 | namespace Eigen { |
---|
15 | |
---|
16 | namespace internal { |
---|
17 | |
---|
18 | template<typename Derived, bool IsComplex> |
---|
19 | struct eigenvalues_selector |
---|
20 | { |
---|
21 | // this is the implementation for the case IsComplex = true |
---|
22 | static inline typename MatrixBase<Derived>::EigenvaluesReturnType const |
---|
23 | run(const MatrixBase<Derived>& m) |
---|
24 | { |
---|
25 | typedef typename Derived::PlainObject PlainObject; |
---|
26 | PlainObject m_eval(m); |
---|
27 | return ComplexEigenSolver<PlainObject>(m_eval, false).eigenvalues(); |
---|
28 | } |
---|
29 | }; |
---|
30 | |
---|
31 | template<typename Derived> |
---|
32 | struct eigenvalues_selector<Derived, false> |
---|
33 | { |
---|
34 | static inline typename MatrixBase<Derived>::EigenvaluesReturnType const |
---|
35 | run(const MatrixBase<Derived>& m) |
---|
36 | { |
---|
37 | typedef typename Derived::PlainObject PlainObject; |
---|
38 | PlainObject m_eval(m); |
---|
39 | return EigenSolver<PlainObject>(m_eval, false).eigenvalues(); |
---|
40 | } |
---|
41 | }; |
---|
42 | |
---|
43 | } // end namespace internal |
---|
44 | |
---|
45 | /** \brief Computes the eigenvalues of a matrix |
---|
46 | * \returns Column vector containing the eigenvalues. |
---|
47 | * |
---|
48 | * \eigenvalues_module |
---|
49 | * This function computes the eigenvalues with the help of the EigenSolver |
---|
50 | * class (for real matrices) or the ComplexEigenSolver class (for complex |
---|
51 | * matrices). |
---|
52 | * |
---|
53 | * The eigenvalues are repeated according to their algebraic multiplicity, |
---|
54 | * so there are as many eigenvalues as rows in the matrix. |
---|
55 | * |
---|
56 | * The SelfAdjointView class provides a better algorithm for selfadjoint |
---|
57 | * matrices. |
---|
58 | * |
---|
59 | * Example: \include MatrixBase_eigenvalues.cpp |
---|
60 | * Output: \verbinclude MatrixBase_eigenvalues.out |
---|
61 | * |
---|
62 | * \sa EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(), |
---|
63 | * SelfAdjointView::eigenvalues() |
---|
64 | */ |
---|
65 | template<typename Derived> |
---|
66 | inline typename MatrixBase<Derived>::EigenvaluesReturnType |
---|
67 | MatrixBase<Derived>::eigenvalues() const |
---|
68 | { |
---|
69 | typedef typename internal::traits<Derived>::Scalar Scalar; |
---|
70 | return internal::eigenvalues_selector<Derived, NumTraits<Scalar>::IsComplex>::run(derived()); |
---|
71 | } |
---|
72 | |
---|
73 | /** \brief Computes the eigenvalues of a matrix |
---|
74 | * \returns Column vector containing the eigenvalues. |
---|
75 | * |
---|
76 | * \eigenvalues_module |
---|
77 | * This function computes the eigenvalues with the help of the |
---|
78 | * SelfAdjointEigenSolver class. The eigenvalues are repeated according to |
---|
79 | * their algebraic multiplicity, so there are as many eigenvalues as rows in |
---|
80 | * the matrix. |
---|
81 | * |
---|
82 | * Example: \include SelfAdjointView_eigenvalues.cpp |
---|
83 | * Output: \verbinclude SelfAdjointView_eigenvalues.out |
---|
84 | * |
---|
85 | * \sa SelfAdjointEigenSolver::eigenvalues(), MatrixBase::eigenvalues() |
---|
86 | */ |
---|
87 | template<typename MatrixType, unsigned int UpLo> |
---|
88 | inline typename SelfAdjointView<MatrixType, UpLo>::EigenvaluesReturnType |
---|
89 | SelfAdjointView<MatrixType, UpLo>::eigenvalues() const |
---|
90 | { |
---|
91 | typedef typename SelfAdjointView<MatrixType, UpLo>::PlainObject PlainObject; |
---|
92 | PlainObject thisAsMatrix(*this); |
---|
93 | return SelfAdjointEigenSolver<PlainObject>(thisAsMatrix, false).eigenvalues(); |
---|
94 | } |
---|
95 | |
---|
96 | |
---|
97 | |
---|
98 | /** \brief Computes the L2 operator norm |
---|
99 | * \returns Operator norm of the matrix. |
---|
100 | * |
---|
101 | * \eigenvalues_module |
---|
102 | * This function computes the L2 operator norm of a matrix, which is also |
---|
103 | * known as the spectral norm. The norm of a matrix \f$ A \f$ is defined to be |
---|
104 | * \f[ \|A\|_2 = \max_x \frac{\|Ax\|_2}{\|x\|_2} \f] |
---|
105 | * where the maximum is over all vectors and the norm on the right is the |
---|
106 | * Euclidean vector norm. The norm equals the largest singular value, which is |
---|
107 | * the square root of the largest eigenvalue of the positive semi-definite |
---|
108 | * matrix \f$ A^*A \f$. |
---|
109 | * |
---|
110 | * The current implementation uses the eigenvalues of \f$ A^*A \f$, as computed |
---|
111 | * by SelfAdjointView::eigenvalues(), to compute the operator norm of a |
---|
112 | * matrix. The SelfAdjointView class provides a better algorithm for |
---|
113 | * selfadjoint matrices. |
---|
114 | * |
---|
115 | * Example: \include MatrixBase_operatorNorm.cpp |
---|
116 | * Output: \verbinclude MatrixBase_operatorNorm.out |
---|
117 | * |
---|
118 | * \sa SelfAdjointView::eigenvalues(), SelfAdjointView::operatorNorm() |
---|
119 | */ |
---|
120 | template<typename Derived> |
---|
121 | inline typename MatrixBase<Derived>::RealScalar |
---|
122 | MatrixBase<Derived>::operatorNorm() const |
---|
123 | { |
---|
124 | typename Derived::PlainObject m_eval(derived()); |
---|
125 | // FIXME if it is really guaranteed that the eigenvalues are already sorted, |
---|
126 | // then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough. |
---|
127 | return internal::sqrt((m_eval*m_eval.adjoint()) |
---|
128 | .eval() |
---|
129 | .template selfadjointView<Lower>() |
---|
130 | .eigenvalues() |
---|
131 | .maxCoeff() |
---|
132 | ); |
---|
133 | } |
---|
134 | |
---|
135 | /** \brief Computes the L2 operator norm |
---|
136 | * \returns Operator norm of the matrix. |
---|
137 | * |
---|
138 | * \eigenvalues_module |
---|
139 | * This function computes the L2 operator norm of a self-adjoint matrix. For a |
---|
140 | * self-adjoint matrix, the operator norm is the largest eigenvalue. |
---|
141 | * |
---|
142 | * The current implementation uses the eigenvalues of the matrix, as computed |
---|
143 | * by eigenvalues(), to compute the operator norm of the matrix. |
---|
144 | * |
---|
145 | * Example: \include SelfAdjointView_operatorNorm.cpp |
---|
146 | * Output: \verbinclude SelfAdjointView_operatorNorm.out |
---|
147 | * |
---|
148 | * \sa eigenvalues(), MatrixBase::operatorNorm() |
---|
149 | */ |
---|
150 | template<typename MatrixType, unsigned int UpLo> |
---|
151 | inline typename SelfAdjointView<MatrixType, UpLo>::RealScalar |
---|
152 | SelfAdjointView<MatrixType, UpLo>::operatorNorm() const |
---|
153 | { |
---|
154 | return eigenvalues().cwiseAbs().maxCoeff(); |
---|
155 | } |
---|
156 | |
---|
157 | } // end namespace Eigen |
---|
158 | |
---|
159 | #endif |
---|