[9562] | 1 | // This file is part of Eigen, a lightweight C++ template library |
---|
| 2 | // for linear algebra. |
---|
| 3 | // |
---|
| 4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
| 5 | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
---|
| 6 | // |
---|
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
---|
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
| 10 | |
---|
| 11 | #ifndef EIGEN_MATRIXBASEEIGENVALUES_H |
---|
| 12 | #define EIGEN_MATRIXBASEEIGENVALUES_H |
---|
| 13 | |
---|
| 14 | namespace Eigen { |
---|
| 15 | |
---|
| 16 | namespace internal { |
---|
| 17 | |
---|
| 18 | template<typename Derived, bool IsComplex> |
---|
| 19 | struct eigenvalues_selector |
---|
| 20 | { |
---|
| 21 | // this is the implementation for the case IsComplex = true |
---|
| 22 | static inline typename MatrixBase<Derived>::EigenvaluesReturnType const |
---|
| 23 | run(const MatrixBase<Derived>& m) |
---|
| 24 | { |
---|
| 25 | typedef typename Derived::PlainObject PlainObject; |
---|
| 26 | PlainObject m_eval(m); |
---|
| 27 | return ComplexEigenSolver<PlainObject>(m_eval, false).eigenvalues(); |
---|
| 28 | } |
---|
| 29 | }; |
---|
| 30 | |
---|
| 31 | template<typename Derived> |
---|
| 32 | struct eigenvalues_selector<Derived, false> |
---|
| 33 | { |
---|
| 34 | static inline typename MatrixBase<Derived>::EigenvaluesReturnType const |
---|
| 35 | run(const MatrixBase<Derived>& m) |
---|
| 36 | { |
---|
| 37 | typedef typename Derived::PlainObject PlainObject; |
---|
| 38 | PlainObject m_eval(m); |
---|
| 39 | return EigenSolver<PlainObject>(m_eval, false).eigenvalues(); |
---|
| 40 | } |
---|
| 41 | }; |
---|
| 42 | |
---|
| 43 | } // end namespace internal |
---|
| 44 | |
---|
| 45 | /** \brief Computes the eigenvalues of a matrix |
---|
| 46 | * \returns Column vector containing the eigenvalues. |
---|
| 47 | * |
---|
| 48 | * \eigenvalues_module |
---|
| 49 | * This function computes the eigenvalues with the help of the EigenSolver |
---|
| 50 | * class (for real matrices) or the ComplexEigenSolver class (for complex |
---|
| 51 | * matrices). |
---|
| 52 | * |
---|
| 53 | * The eigenvalues are repeated according to their algebraic multiplicity, |
---|
| 54 | * so there are as many eigenvalues as rows in the matrix. |
---|
| 55 | * |
---|
| 56 | * The SelfAdjointView class provides a better algorithm for selfadjoint |
---|
| 57 | * matrices. |
---|
| 58 | * |
---|
| 59 | * Example: \include MatrixBase_eigenvalues.cpp |
---|
| 60 | * Output: \verbinclude MatrixBase_eigenvalues.out |
---|
| 61 | * |
---|
| 62 | * \sa EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(), |
---|
| 63 | * SelfAdjointView::eigenvalues() |
---|
| 64 | */ |
---|
| 65 | template<typename Derived> |
---|
| 66 | inline typename MatrixBase<Derived>::EigenvaluesReturnType |
---|
| 67 | MatrixBase<Derived>::eigenvalues() const |
---|
| 68 | { |
---|
| 69 | typedef typename internal::traits<Derived>::Scalar Scalar; |
---|
| 70 | return internal::eigenvalues_selector<Derived, NumTraits<Scalar>::IsComplex>::run(derived()); |
---|
| 71 | } |
---|
| 72 | |
---|
| 73 | /** \brief Computes the eigenvalues of a matrix |
---|
| 74 | * \returns Column vector containing the eigenvalues. |
---|
| 75 | * |
---|
| 76 | * \eigenvalues_module |
---|
| 77 | * This function computes the eigenvalues with the help of the |
---|
| 78 | * SelfAdjointEigenSolver class. The eigenvalues are repeated according to |
---|
| 79 | * their algebraic multiplicity, so there are as many eigenvalues as rows in |
---|
| 80 | * the matrix. |
---|
| 81 | * |
---|
| 82 | * Example: \include SelfAdjointView_eigenvalues.cpp |
---|
| 83 | * Output: \verbinclude SelfAdjointView_eigenvalues.out |
---|
| 84 | * |
---|
| 85 | * \sa SelfAdjointEigenSolver::eigenvalues(), MatrixBase::eigenvalues() |
---|
| 86 | */ |
---|
| 87 | template<typename MatrixType, unsigned int UpLo> |
---|
| 88 | inline typename SelfAdjointView<MatrixType, UpLo>::EigenvaluesReturnType |
---|
| 89 | SelfAdjointView<MatrixType, UpLo>::eigenvalues() const |
---|
| 90 | { |
---|
| 91 | typedef typename SelfAdjointView<MatrixType, UpLo>::PlainObject PlainObject; |
---|
| 92 | PlainObject thisAsMatrix(*this); |
---|
| 93 | return SelfAdjointEigenSolver<PlainObject>(thisAsMatrix, false).eigenvalues(); |
---|
| 94 | } |
---|
| 95 | |
---|
| 96 | |
---|
| 97 | |
---|
| 98 | /** \brief Computes the L2 operator norm |
---|
| 99 | * \returns Operator norm of the matrix. |
---|
| 100 | * |
---|
| 101 | * \eigenvalues_module |
---|
| 102 | * This function computes the L2 operator norm of a matrix, which is also |
---|
| 103 | * known as the spectral norm. The norm of a matrix \f$ A \f$ is defined to be |
---|
| 104 | * \f[ \|A\|_2 = \max_x \frac{\|Ax\|_2}{\|x\|_2} \f] |
---|
| 105 | * where the maximum is over all vectors and the norm on the right is the |
---|
| 106 | * Euclidean vector norm. The norm equals the largest singular value, which is |
---|
| 107 | * the square root of the largest eigenvalue of the positive semi-definite |
---|
| 108 | * matrix \f$ A^*A \f$. |
---|
| 109 | * |
---|
| 110 | * The current implementation uses the eigenvalues of \f$ A^*A \f$, as computed |
---|
| 111 | * by SelfAdjointView::eigenvalues(), to compute the operator norm of a |
---|
| 112 | * matrix. The SelfAdjointView class provides a better algorithm for |
---|
| 113 | * selfadjoint matrices. |
---|
| 114 | * |
---|
| 115 | * Example: \include MatrixBase_operatorNorm.cpp |
---|
| 116 | * Output: \verbinclude MatrixBase_operatorNorm.out |
---|
| 117 | * |
---|
| 118 | * \sa SelfAdjointView::eigenvalues(), SelfAdjointView::operatorNorm() |
---|
| 119 | */ |
---|
| 120 | template<typename Derived> |
---|
| 121 | inline typename MatrixBase<Derived>::RealScalar |
---|
| 122 | MatrixBase<Derived>::operatorNorm() const |
---|
| 123 | { |
---|
| 124 | typename Derived::PlainObject m_eval(derived()); |
---|
| 125 | // FIXME if it is really guaranteed that the eigenvalues are already sorted, |
---|
| 126 | // then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough. |
---|
| 127 | return internal::sqrt((m_eval*m_eval.adjoint()) |
---|
| 128 | .eval() |
---|
| 129 | .template selfadjointView<Lower>() |
---|
| 130 | .eigenvalues() |
---|
| 131 | .maxCoeff() |
---|
| 132 | ); |
---|
| 133 | } |
---|
| 134 | |
---|
| 135 | /** \brief Computes the L2 operator norm |
---|
| 136 | * \returns Operator norm of the matrix. |
---|
| 137 | * |
---|
| 138 | * \eigenvalues_module |
---|
| 139 | * This function computes the L2 operator norm of a self-adjoint matrix. For a |
---|
| 140 | * self-adjoint matrix, the operator norm is the largest eigenvalue. |
---|
| 141 | * |
---|
| 142 | * The current implementation uses the eigenvalues of the matrix, as computed |
---|
| 143 | * by eigenvalues(), to compute the operator norm of the matrix. |
---|
| 144 | * |
---|
| 145 | * Example: \include SelfAdjointView_operatorNorm.cpp |
---|
| 146 | * Output: \verbinclude SelfAdjointView_operatorNorm.out |
---|
| 147 | * |
---|
| 148 | * \sa eigenvalues(), MatrixBase::operatorNorm() |
---|
| 149 | */ |
---|
| 150 | template<typename MatrixType, unsigned int UpLo> |
---|
| 151 | inline typename SelfAdjointView<MatrixType, UpLo>::RealScalar |
---|
| 152 | SelfAdjointView<MatrixType, UpLo>::operatorNorm() const |
---|
| 153 | { |
---|
| 154 | return eigenvalues().cwiseAbs().maxCoeff(); |
---|
| 155 | } |
---|
| 156 | |
---|
| 157 | } // end namespace Eigen |
---|
| 158 | |
---|
| 159 | #endif |
---|