1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
5 | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
---|
6 | // |
---|
7 | // This Source Code Form is subject to the terms of the Mozilla |
---|
8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
10 | |
---|
11 | #ifndef EIGEN_EIGENSOLVER_H |
---|
12 | #define EIGEN_EIGENSOLVER_H |
---|
13 | |
---|
14 | #include "./RealSchur.h" |
---|
15 | |
---|
16 | namespace Eigen { |
---|
17 | |
---|
18 | /** \eigenvalues_module \ingroup Eigenvalues_Module |
---|
19 | * |
---|
20 | * |
---|
21 | * \class EigenSolver |
---|
22 | * |
---|
23 | * \brief Computes eigenvalues and eigenvectors of general matrices |
---|
24 | * |
---|
25 | * \tparam _MatrixType the type of the matrix of which we are computing the |
---|
26 | * eigendecomposition; this is expected to be an instantiation of the Matrix |
---|
27 | * class template. Currently, only real matrices are supported. |
---|
28 | * |
---|
29 | * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars |
---|
30 | * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$. If |
---|
31 | * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and |
---|
32 | * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V = |
---|
33 | * V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we |
---|
34 | * have \f$ A = V D V^{-1} \f$. This is called the eigendecomposition. |
---|
35 | * |
---|
36 | * The eigenvalues and eigenvectors of a matrix may be complex, even when the |
---|
37 | * matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D |
---|
38 | * \f$ satisfying \f$ A V = V D \f$, just like the eigendecomposition, if the |
---|
39 | * matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to |
---|
40 | * have blocks of the form |
---|
41 | * \f[ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f] |
---|
42 | * (where \f$ u \f$ and \f$ v \f$ are real numbers) on the diagonal. These |
---|
43 | * blocks correspond to complex eigenvalue pairs \f$ u \pm iv \f$. We call |
---|
44 | * this variant of the eigendecomposition the pseudo-eigendecomposition. |
---|
45 | * |
---|
46 | * Call the function compute() to compute the eigenvalues and eigenvectors of |
---|
47 | * a given matrix. Alternatively, you can use the |
---|
48 | * EigenSolver(const MatrixType&, bool) constructor which computes the |
---|
49 | * eigenvalues and eigenvectors at construction time. Once the eigenvalue and |
---|
50 | * eigenvectors are computed, they can be retrieved with the eigenvalues() and |
---|
51 | * eigenvectors() functions. The pseudoEigenvalueMatrix() and |
---|
52 | * pseudoEigenvectors() methods allow the construction of the |
---|
53 | * pseudo-eigendecomposition. |
---|
54 | * |
---|
55 | * The documentation for EigenSolver(const MatrixType&, bool) contains an |
---|
56 | * example of the typical use of this class. |
---|
57 | * |
---|
58 | * \note The implementation is adapted from |
---|
59 | * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain). |
---|
60 | * Their code is based on EISPACK. |
---|
61 | * |
---|
62 | * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver |
---|
63 | */ |
---|
64 | template<typename _MatrixType> class EigenSolver |
---|
65 | { |
---|
66 | public: |
---|
67 | |
---|
68 | /** \brief Synonym for the template parameter \p _MatrixType. */ |
---|
69 | typedef _MatrixType MatrixType; |
---|
70 | |
---|
71 | enum { |
---|
72 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
---|
73 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
---|
74 | Options = MatrixType::Options, |
---|
75 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
---|
76 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
---|
77 | }; |
---|
78 | |
---|
79 | /** \brief Scalar type for matrices of type #MatrixType. */ |
---|
80 | typedef typename MatrixType::Scalar Scalar; |
---|
81 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
82 | typedef typename MatrixType::Index Index; |
---|
83 | |
---|
84 | /** \brief Complex scalar type for #MatrixType. |
---|
85 | * |
---|
86 | * This is \c std::complex<Scalar> if #Scalar is real (e.g., |
---|
87 | * \c float or \c double) and just \c Scalar if #Scalar is |
---|
88 | * complex. |
---|
89 | */ |
---|
90 | typedef std::complex<RealScalar> ComplexScalar; |
---|
91 | |
---|
92 | /** \brief Type for vector of eigenvalues as returned by eigenvalues(). |
---|
93 | * |
---|
94 | * This is a column vector with entries of type #ComplexScalar. |
---|
95 | * The length of the vector is the size of #MatrixType. |
---|
96 | */ |
---|
97 | typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType; |
---|
98 | |
---|
99 | /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). |
---|
100 | * |
---|
101 | * This is a square matrix with entries of type #ComplexScalar. |
---|
102 | * The size is the same as the size of #MatrixType. |
---|
103 | */ |
---|
104 | typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType; |
---|
105 | |
---|
106 | /** \brief Default constructor. |
---|
107 | * |
---|
108 | * The default constructor is useful in cases in which the user intends to |
---|
109 | * perform decompositions via EigenSolver::compute(const MatrixType&, bool). |
---|
110 | * |
---|
111 | * \sa compute() for an example. |
---|
112 | */ |
---|
113 | EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_realSchur(), m_matT(), m_tmp() {} |
---|
114 | |
---|
115 | /** \brief Default constructor with memory preallocation |
---|
116 | * |
---|
117 | * Like the default constructor but with preallocation of the internal data |
---|
118 | * according to the specified problem \a size. |
---|
119 | * \sa EigenSolver() |
---|
120 | */ |
---|
121 | EigenSolver(Index size) |
---|
122 | : m_eivec(size, size), |
---|
123 | m_eivalues(size), |
---|
124 | m_isInitialized(false), |
---|
125 | m_eigenvectorsOk(false), |
---|
126 | m_realSchur(size), |
---|
127 | m_matT(size, size), |
---|
128 | m_tmp(size) |
---|
129 | {} |
---|
130 | |
---|
131 | /** \brief Constructor; computes eigendecomposition of given matrix. |
---|
132 | * |
---|
133 | * \param[in] matrix Square matrix whose eigendecomposition is to be computed. |
---|
134 | * \param[in] computeEigenvectors If true, both the eigenvectors and the |
---|
135 | * eigenvalues are computed; if false, only the eigenvalues are |
---|
136 | * computed. |
---|
137 | * |
---|
138 | * This constructor calls compute() to compute the eigenvalues |
---|
139 | * and eigenvectors. |
---|
140 | * |
---|
141 | * Example: \include EigenSolver_EigenSolver_MatrixType.cpp |
---|
142 | * Output: \verbinclude EigenSolver_EigenSolver_MatrixType.out |
---|
143 | * |
---|
144 | * \sa compute() |
---|
145 | */ |
---|
146 | EigenSolver(const MatrixType& matrix, bool computeEigenvectors = true) |
---|
147 | : m_eivec(matrix.rows(), matrix.cols()), |
---|
148 | m_eivalues(matrix.cols()), |
---|
149 | m_isInitialized(false), |
---|
150 | m_eigenvectorsOk(false), |
---|
151 | m_realSchur(matrix.cols()), |
---|
152 | m_matT(matrix.rows(), matrix.cols()), |
---|
153 | m_tmp(matrix.cols()) |
---|
154 | { |
---|
155 | compute(matrix, computeEigenvectors); |
---|
156 | } |
---|
157 | |
---|
158 | /** \brief Returns the eigenvectors of given matrix. |
---|
159 | * |
---|
160 | * \returns %Matrix whose columns are the (possibly complex) eigenvectors. |
---|
161 | * |
---|
162 | * \pre Either the constructor |
---|
163 | * EigenSolver(const MatrixType&,bool) or the member function |
---|
164 | * compute(const MatrixType&, bool) has been called before, and |
---|
165 | * \p computeEigenvectors was set to true (the default). |
---|
166 | * |
---|
167 | * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding |
---|
168 | * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The |
---|
169 | * eigenvectors are normalized to have (Euclidean) norm equal to one. The |
---|
170 | * matrix returned by this function is the matrix \f$ V \f$ in the |
---|
171 | * eigendecomposition \f$ A = V D V^{-1} \f$, if it exists. |
---|
172 | * |
---|
173 | * Example: \include EigenSolver_eigenvectors.cpp |
---|
174 | * Output: \verbinclude EigenSolver_eigenvectors.out |
---|
175 | * |
---|
176 | * \sa eigenvalues(), pseudoEigenvectors() |
---|
177 | */ |
---|
178 | EigenvectorsType eigenvectors() const; |
---|
179 | |
---|
180 | /** \brief Returns the pseudo-eigenvectors of given matrix. |
---|
181 | * |
---|
182 | * \returns Const reference to matrix whose columns are the pseudo-eigenvectors. |
---|
183 | * |
---|
184 | * \pre Either the constructor |
---|
185 | * EigenSolver(const MatrixType&,bool) or the member function |
---|
186 | * compute(const MatrixType&, bool) has been called before, and |
---|
187 | * \p computeEigenvectors was set to true (the default). |
---|
188 | * |
---|
189 | * The real matrix \f$ V \f$ returned by this function and the |
---|
190 | * block-diagonal matrix \f$ D \f$ returned by pseudoEigenvalueMatrix() |
---|
191 | * satisfy \f$ AV = VD \f$. |
---|
192 | * |
---|
193 | * Example: \include EigenSolver_pseudoEigenvectors.cpp |
---|
194 | * Output: \verbinclude EigenSolver_pseudoEigenvectors.out |
---|
195 | * |
---|
196 | * \sa pseudoEigenvalueMatrix(), eigenvectors() |
---|
197 | */ |
---|
198 | const MatrixType& pseudoEigenvectors() const |
---|
199 | { |
---|
200 | eigen_assert(m_isInitialized && "EigenSolver is not initialized."); |
---|
201 | eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); |
---|
202 | return m_eivec; |
---|
203 | } |
---|
204 | |
---|
205 | /** \brief Returns the block-diagonal matrix in the pseudo-eigendecomposition. |
---|
206 | * |
---|
207 | * \returns A block-diagonal matrix. |
---|
208 | * |
---|
209 | * \pre Either the constructor |
---|
210 | * EigenSolver(const MatrixType&,bool) or the member function |
---|
211 | * compute(const MatrixType&, bool) has been called before. |
---|
212 | * |
---|
213 | * The matrix \f$ D \f$ returned by this function is real and |
---|
214 | * block-diagonal. The blocks on the diagonal are either 1-by-1 or 2-by-2 |
---|
215 | * blocks of the form |
---|
216 | * \f$ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f$. |
---|
217 | * These blocks are not sorted in any particular order. |
---|
218 | * The matrix \f$ D \f$ and the matrix \f$ V \f$ returned by |
---|
219 | * pseudoEigenvectors() satisfy \f$ AV = VD \f$. |
---|
220 | * |
---|
221 | * \sa pseudoEigenvectors() for an example, eigenvalues() |
---|
222 | */ |
---|
223 | MatrixType pseudoEigenvalueMatrix() const; |
---|
224 | |
---|
225 | /** \brief Returns the eigenvalues of given matrix. |
---|
226 | * |
---|
227 | * \returns A const reference to the column vector containing the eigenvalues. |
---|
228 | * |
---|
229 | * \pre Either the constructor |
---|
230 | * EigenSolver(const MatrixType&,bool) or the member function |
---|
231 | * compute(const MatrixType&, bool) has been called before. |
---|
232 | * |
---|
233 | * The eigenvalues are repeated according to their algebraic multiplicity, |
---|
234 | * so there are as many eigenvalues as rows in the matrix. The eigenvalues |
---|
235 | * are not sorted in any particular order. |
---|
236 | * |
---|
237 | * Example: \include EigenSolver_eigenvalues.cpp |
---|
238 | * Output: \verbinclude EigenSolver_eigenvalues.out |
---|
239 | * |
---|
240 | * \sa eigenvectors(), pseudoEigenvalueMatrix(), |
---|
241 | * MatrixBase::eigenvalues() |
---|
242 | */ |
---|
243 | const EigenvalueType& eigenvalues() const |
---|
244 | { |
---|
245 | eigen_assert(m_isInitialized && "EigenSolver is not initialized."); |
---|
246 | return m_eivalues; |
---|
247 | } |
---|
248 | |
---|
249 | /** \brief Computes eigendecomposition of given matrix. |
---|
250 | * |
---|
251 | * \param[in] matrix Square matrix whose eigendecomposition is to be computed. |
---|
252 | * \param[in] computeEigenvectors If true, both the eigenvectors and the |
---|
253 | * eigenvalues are computed; if false, only the eigenvalues are |
---|
254 | * computed. |
---|
255 | * \returns Reference to \c *this |
---|
256 | * |
---|
257 | * This function computes the eigenvalues of the real matrix \p matrix. |
---|
258 | * The eigenvalues() function can be used to retrieve them. If |
---|
259 | * \p computeEigenvectors is true, then the eigenvectors are also computed |
---|
260 | * and can be retrieved by calling eigenvectors(). |
---|
261 | * |
---|
262 | * The matrix is first reduced to real Schur form using the RealSchur |
---|
263 | * class. The Schur decomposition is then used to compute the eigenvalues |
---|
264 | * and eigenvectors. |
---|
265 | * |
---|
266 | * The cost of the computation is dominated by the cost of the |
---|
267 | * Schur decomposition, which is very approximately \f$ 25n^3 \f$ |
---|
268 | * (where \f$ n \f$ is the size of the matrix) if \p computeEigenvectors |
---|
269 | * is true, and \f$ 10n^3 \f$ if \p computeEigenvectors is false. |
---|
270 | * |
---|
271 | * This method reuses of the allocated data in the EigenSolver object. |
---|
272 | * |
---|
273 | * Example: \include EigenSolver_compute.cpp |
---|
274 | * Output: \verbinclude EigenSolver_compute.out |
---|
275 | */ |
---|
276 | EigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true); |
---|
277 | |
---|
278 | ComputationInfo info() const |
---|
279 | { |
---|
280 | eigen_assert(m_isInitialized && "EigenSolver is not initialized."); |
---|
281 | return m_realSchur.info(); |
---|
282 | } |
---|
283 | |
---|
284 | private: |
---|
285 | void doComputeEigenvectors(); |
---|
286 | |
---|
287 | protected: |
---|
288 | MatrixType m_eivec; |
---|
289 | EigenvalueType m_eivalues; |
---|
290 | bool m_isInitialized; |
---|
291 | bool m_eigenvectorsOk; |
---|
292 | RealSchur<MatrixType> m_realSchur; |
---|
293 | MatrixType m_matT; |
---|
294 | |
---|
295 | typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType; |
---|
296 | ColumnVectorType m_tmp; |
---|
297 | }; |
---|
298 | |
---|
299 | template<typename MatrixType> |
---|
300 | MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const |
---|
301 | { |
---|
302 | eigen_assert(m_isInitialized && "EigenSolver is not initialized."); |
---|
303 | Index n = m_eivalues.rows(); |
---|
304 | MatrixType matD = MatrixType::Zero(n,n); |
---|
305 | for (Index i=0; i<n; ++i) |
---|
306 | { |
---|
307 | if (internal::isMuchSmallerThan(internal::imag(m_eivalues.coeff(i)), internal::real(m_eivalues.coeff(i)))) |
---|
308 | matD.coeffRef(i,i) = internal::real(m_eivalues.coeff(i)); |
---|
309 | else |
---|
310 | { |
---|
311 | matD.template block<2,2>(i,i) << internal::real(m_eivalues.coeff(i)), internal::imag(m_eivalues.coeff(i)), |
---|
312 | -internal::imag(m_eivalues.coeff(i)), internal::real(m_eivalues.coeff(i)); |
---|
313 | ++i; |
---|
314 | } |
---|
315 | } |
---|
316 | return matD; |
---|
317 | } |
---|
318 | |
---|
319 | template<typename MatrixType> |
---|
320 | typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const |
---|
321 | { |
---|
322 | eigen_assert(m_isInitialized && "EigenSolver is not initialized."); |
---|
323 | eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); |
---|
324 | Index n = m_eivec.cols(); |
---|
325 | EigenvectorsType matV(n,n); |
---|
326 | for (Index j=0; j<n; ++j) |
---|
327 | { |
---|
328 | if (internal::isMuchSmallerThan(internal::imag(m_eivalues.coeff(j)), internal::real(m_eivalues.coeff(j))) || j+1==n) |
---|
329 | { |
---|
330 | // we have a real eigen value |
---|
331 | matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>(); |
---|
332 | matV.col(j).normalize(); |
---|
333 | } |
---|
334 | else |
---|
335 | { |
---|
336 | // we have a pair of complex eigen values |
---|
337 | for (Index i=0; i<n; ++i) |
---|
338 | { |
---|
339 | matV.coeffRef(i,j) = ComplexScalar(m_eivec.coeff(i,j), m_eivec.coeff(i,j+1)); |
---|
340 | matV.coeffRef(i,j+1) = ComplexScalar(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1)); |
---|
341 | } |
---|
342 | matV.col(j).normalize(); |
---|
343 | matV.col(j+1).normalize(); |
---|
344 | ++j; |
---|
345 | } |
---|
346 | } |
---|
347 | return matV; |
---|
348 | } |
---|
349 | |
---|
350 | template<typename MatrixType> |
---|
351 | EigenSolver<MatrixType>& EigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors) |
---|
352 | { |
---|
353 | assert(matrix.cols() == matrix.rows()); |
---|
354 | |
---|
355 | // Reduce to real Schur form. |
---|
356 | m_realSchur.compute(matrix, computeEigenvectors); |
---|
357 | if (m_realSchur.info() == Success) |
---|
358 | { |
---|
359 | m_matT = m_realSchur.matrixT(); |
---|
360 | if (computeEigenvectors) |
---|
361 | m_eivec = m_realSchur.matrixU(); |
---|
362 | |
---|
363 | // Compute eigenvalues from matT |
---|
364 | m_eivalues.resize(matrix.cols()); |
---|
365 | Index i = 0; |
---|
366 | while (i < matrix.cols()) |
---|
367 | { |
---|
368 | if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0)) |
---|
369 | { |
---|
370 | m_eivalues.coeffRef(i) = m_matT.coeff(i, i); |
---|
371 | ++i; |
---|
372 | } |
---|
373 | else |
---|
374 | { |
---|
375 | Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1)); |
---|
376 | Scalar z = internal::sqrt(internal::abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1))); |
---|
377 | m_eivalues.coeffRef(i) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z); |
---|
378 | m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z); |
---|
379 | i += 2; |
---|
380 | } |
---|
381 | } |
---|
382 | |
---|
383 | // Compute eigenvectors. |
---|
384 | if (computeEigenvectors) |
---|
385 | doComputeEigenvectors(); |
---|
386 | } |
---|
387 | |
---|
388 | m_isInitialized = true; |
---|
389 | m_eigenvectorsOk = computeEigenvectors; |
---|
390 | |
---|
391 | return *this; |
---|
392 | } |
---|
393 | |
---|
394 | // Complex scalar division. |
---|
395 | template<typename Scalar> |
---|
396 | std::complex<Scalar> cdiv(Scalar xr, Scalar xi, Scalar yr, Scalar yi) |
---|
397 | { |
---|
398 | Scalar r,d; |
---|
399 | if (internal::abs(yr) > internal::abs(yi)) |
---|
400 | { |
---|
401 | r = yi/yr; |
---|
402 | d = yr + r*yi; |
---|
403 | return std::complex<Scalar>((xr + r*xi)/d, (xi - r*xr)/d); |
---|
404 | } |
---|
405 | else |
---|
406 | { |
---|
407 | r = yr/yi; |
---|
408 | d = yi + r*yr; |
---|
409 | return std::complex<Scalar>((r*xr + xi)/d, (r*xi - xr)/d); |
---|
410 | } |
---|
411 | } |
---|
412 | |
---|
413 | |
---|
414 | template<typename MatrixType> |
---|
415 | void EigenSolver<MatrixType>::doComputeEigenvectors() |
---|
416 | { |
---|
417 | const Index size = m_eivec.cols(); |
---|
418 | const Scalar eps = NumTraits<Scalar>::epsilon(); |
---|
419 | |
---|
420 | // inefficient! this is already computed in RealSchur |
---|
421 | Scalar norm(0); |
---|
422 | for (Index j = 0; j < size; ++j) |
---|
423 | { |
---|
424 | norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum(); |
---|
425 | } |
---|
426 | |
---|
427 | // Backsubstitute to find vectors of upper triangular form |
---|
428 | if (norm == 0.0) |
---|
429 | { |
---|
430 | return; |
---|
431 | } |
---|
432 | |
---|
433 | for (Index n = size-1; n >= 0; n--) |
---|
434 | { |
---|
435 | Scalar p = m_eivalues.coeff(n).real(); |
---|
436 | Scalar q = m_eivalues.coeff(n).imag(); |
---|
437 | |
---|
438 | // Scalar vector |
---|
439 | if (q == Scalar(0)) |
---|
440 | { |
---|
441 | Scalar lastr(0), lastw(0); |
---|
442 | Index l = n; |
---|
443 | |
---|
444 | m_matT.coeffRef(n,n) = 1.0; |
---|
445 | for (Index i = n-1; i >= 0; i--) |
---|
446 | { |
---|
447 | Scalar w = m_matT.coeff(i,i) - p; |
---|
448 | Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1)); |
---|
449 | |
---|
450 | if (m_eivalues.coeff(i).imag() < 0.0) |
---|
451 | { |
---|
452 | lastw = w; |
---|
453 | lastr = r; |
---|
454 | } |
---|
455 | else |
---|
456 | { |
---|
457 | l = i; |
---|
458 | if (m_eivalues.coeff(i).imag() == 0.0) |
---|
459 | { |
---|
460 | if (w != 0.0) |
---|
461 | m_matT.coeffRef(i,n) = -r / w; |
---|
462 | else |
---|
463 | m_matT.coeffRef(i,n) = -r / (eps * norm); |
---|
464 | } |
---|
465 | else // Solve real equations |
---|
466 | { |
---|
467 | Scalar x = m_matT.coeff(i,i+1); |
---|
468 | Scalar y = m_matT.coeff(i+1,i); |
---|
469 | Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag(); |
---|
470 | Scalar t = (x * lastr - lastw * r) / denom; |
---|
471 | m_matT.coeffRef(i,n) = t; |
---|
472 | if (internal::abs(x) > internal::abs(lastw)) |
---|
473 | m_matT.coeffRef(i+1,n) = (-r - w * t) / x; |
---|
474 | else |
---|
475 | m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw; |
---|
476 | } |
---|
477 | |
---|
478 | // Overflow control |
---|
479 | Scalar t = internal::abs(m_matT.coeff(i,n)); |
---|
480 | if ((eps * t) * t > Scalar(1)) |
---|
481 | m_matT.col(n).tail(size-i) /= t; |
---|
482 | } |
---|
483 | } |
---|
484 | } |
---|
485 | else if (q < Scalar(0) && n > 0) // Complex vector |
---|
486 | { |
---|
487 | Scalar lastra(0), lastsa(0), lastw(0); |
---|
488 | Index l = n-1; |
---|
489 | |
---|
490 | // Last vector component imaginary so matrix is triangular |
---|
491 | if (internal::abs(m_matT.coeff(n,n-1)) > internal::abs(m_matT.coeff(n-1,n))) |
---|
492 | { |
---|
493 | m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1); |
---|
494 | m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1); |
---|
495 | } |
---|
496 | else |
---|
497 | { |
---|
498 | std::complex<Scalar> cc = cdiv<Scalar>(0.0,-m_matT.coeff(n-1,n),m_matT.coeff(n-1,n-1)-p,q); |
---|
499 | m_matT.coeffRef(n-1,n-1) = internal::real(cc); |
---|
500 | m_matT.coeffRef(n-1,n) = internal::imag(cc); |
---|
501 | } |
---|
502 | m_matT.coeffRef(n,n-1) = 0.0; |
---|
503 | m_matT.coeffRef(n,n) = 1.0; |
---|
504 | for (Index i = n-2; i >= 0; i--) |
---|
505 | { |
---|
506 | Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1)); |
---|
507 | Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1)); |
---|
508 | Scalar w = m_matT.coeff(i,i) - p; |
---|
509 | |
---|
510 | if (m_eivalues.coeff(i).imag() < 0.0) |
---|
511 | { |
---|
512 | lastw = w; |
---|
513 | lastra = ra; |
---|
514 | lastsa = sa; |
---|
515 | } |
---|
516 | else |
---|
517 | { |
---|
518 | l = i; |
---|
519 | if (m_eivalues.coeff(i).imag() == RealScalar(0)) |
---|
520 | { |
---|
521 | std::complex<Scalar> cc = cdiv(-ra,-sa,w,q); |
---|
522 | m_matT.coeffRef(i,n-1) = internal::real(cc); |
---|
523 | m_matT.coeffRef(i,n) = internal::imag(cc); |
---|
524 | } |
---|
525 | else |
---|
526 | { |
---|
527 | // Solve complex equations |
---|
528 | Scalar x = m_matT.coeff(i,i+1); |
---|
529 | Scalar y = m_matT.coeff(i+1,i); |
---|
530 | Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q; |
---|
531 | Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q; |
---|
532 | if ((vr == 0.0) && (vi == 0.0)) |
---|
533 | vr = eps * norm * (internal::abs(w) + internal::abs(q) + internal::abs(x) + internal::abs(y) + internal::abs(lastw)); |
---|
534 | |
---|
535 | std::complex<Scalar> cc = cdiv(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra,vr,vi); |
---|
536 | m_matT.coeffRef(i,n-1) = internal::real(cc); |
---|
537 | m_matT.coeffRef(i,n) = internal::imag(cc); |
---|
538 | if (internal::abs(x) > (internal::abs(lastw) + internal::abs(q))) |
---|
539 | { |
---|
540 | m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x; |
---|
541 | m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x; |
---|
542 | } |
---|
543 | else |
---|
544 | { |
---|
545 | cc = cdiv(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n),lastw,q); |
---|
546 | m_matT.coeffRef(i+1,n-1) = internal::real(cc); |
---|
547 | m_matT.coeffRef(i+1,n) = internal::imag(cc); |
---|
548 | } |
---|
549 | } |
---|
550 | |
---|
551 | // Overflow control |
---|
552 | using std::max; |
---|
553 | Scalar t = (max)(internal::abs(m_matT.coeff(i,n-1)),internal::abs(m_matT.coeff(i,n))); |
---|
554 | if ((eps * t) * t > Scalar(1)) |
---|
555 | m_matT.block(i, n-1, size-i, 2) /= t; |
---|
556 | |
---|
557 | } |
---|
558 | } |
---|
559 | |
---|
560 | // We handled a pair of complex conjugate eigenvalues, so need to skip them both |
---|
561 | n--; |
---|
562 | } |
---|
563 | else |
---|
564 | { |
---|
565 | eigen_assert(0 && "Internal bug in EigenSolver"); // this should not happen |
---|
566 | } |
---|
567 | } |
---|
568 | |
---|
569 | // Back transformation to get eigenvectors of original matrix |
---|
570 | for (Index j = size-1; j >= 0; j--) |
---|
571 | { |
---|
572 | m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1); |
---|
573 | m_eivec.col(j) = m_tmp; |
---|
574 | } |
---|
575 | } |
---|
576 | |
---|
577 | } // end namespace Eigen |
---|
578 | |
---|
579 | #endif // EIGEN_EIGENSOLVER_H |
---|