Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Eigen/Eigen/src/Eigenvalues/EigenSolver.h @ 10586

Last change on this file since 10586 was 9562, checked in by gkronber, 12 years ago

#1967 worked on Gaussian process evolution.

File size: 20.9 KB
RevLine 
[9562]1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_EIGENSOLVER_H
12#define EIGEN_EIGENSOLVER_H
13
14#include "./RealSchur.h"
15
16namespace Eigen {
17
18/** \eigenvalues_module \ingroup Eigenvalues_Module
19  *
20  *
21  * \class EigenSolver
22  *
23  * \brief Computes eigenvalues and eigenvectors of general matrices
24  *
25  * \tparam _MatrixType the type of the matrix of which we are computing the
26  * eigendecomposition; this is expected to be an instantiation of the Matrix
27  * class template. Currently, only real matrices are supported.
28  *
29  * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
30  * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$.  If
31  * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
32  * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
33  * V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
34  * have \f$ A = V D V^{-1} \f$. This is called the eigendecomposition.
35  *
36  * The eigenvalues and eigenvectors of a matrix may be complex, even when the
37  * matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D
38  * \f$ satisfying \f$ A V = V D \f$, just like the eigendecomposition, if the
39  * matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to
40  * have blocks of the form
41  * \f[ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f]
42  * (where \f$ u \f$ and \f$ v \f$ are real numbers) on the diagonal.  These
43  * blocks correspond to complex eigenvalue pairs \f$ u \pm iv \f$. We call
44  * this variant of the eigendecomposition the pseudo-eigendecomposition.
45  *
46  * Call the function compute() to compute the eigenvalues and eigenvectors of
47  * a given matrix. Alternatively, you can use the
48  * EigenSolver(const MatrixType&, bool) constructor which computes the
49  * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
50  * eigenvectors are computed, they can be retrieved with the eigenvalues() and
51  * eigenvectors() functions. The pseudoEigenvalueMatrix() and
52  * pseudoEigenvectors() methods allow the construction of the
53  * pseudo-eigendecomposition.
54  *
55  * The documentation for EigenSolver(const MatrixType&, bool) contains an
56  * example of the typical use of this class.
57  *
58  * \note The implementation is adapted from
59  * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
60  * Their code is based on EISPACK.
61  *
62  * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
63  */
64template<typename _MatrixType> class EigenSolver
65{
66  public:
67
68    /** \brief Synonym for the template parameter \p _MatrixType. */
69    typedef _MatrixType MatrixType;
70
71    enum {
72      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
73      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
74      Options = MatrixType::Options,
75      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
76      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
77    };
78
79    /** \brief Scalar type for matrices of type #MatrixType. */
80    typedef typename MatrixType::Scalar Scalar;
81    typedef typename NumTraits<Scalar>::Real RealScalar;
82    typedef typename MatrixType::Index Index;
83
84    /** \brief Complex scalar type for #MatrixType.
85      *
86      * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
87      * \c float or \c double) and just \c Scalar if #Scalar is
88      * complex.
89      */
90    typedef std::complex<RealScalar> ComplexScalar;
91
92    /** \brief Type for vector of eigenvalues as returned by eigenvalues().
93      *
94      * This is a column vector with entries of type #ComplexScalar.
95      * The length of the vector is the size of #MatrixType.
96      */
97    typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
98
99    /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
100      *
101      * This is a square matrix with entries of type #ComplexScalar.
102      * The size is the same as the size of #MatrixType.
103      */
104    typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
105
106    /** \brief Default constructor.
107      *
108      * The default constructor is useful in cases in which the user intends to
109      * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
110      *
111      * \sa compute() for an example.
112      */
113 EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_realSchur(), m_matT(), m_tmp() {}
114
115    /** \brief Default constructor with memory preallocation
116      *
117      * Like the default constructor but with preallocation of the internal data
118      * according to the specified problem \a size.
119      * \sa EigenSolver()
120      */
121    EigenSolver(Index size)
122      : m_eivec(size, size),
123        m_eivalues(size),
124        m_isInitialized(false),
125        m_eigenvectorsOk(false),
126        m_realSchur(size),
127        m_matT(size, size),
128        m_tmp(size)
129    {}
130
131    /** \brief Constructor; computes eigendecomposition of given matrix.
132      *
133      * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
134      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
135      *    eigenvalues are computed; if false, only the eigenvalues are
136      *    computed.
137      *
138      * This constructor calls compute() to compute the eigenvalues
139      * and eigenvectors.
140      *
141      * Example: \include EigenSolver_EigenSolver_MatrixType.cpp
142      * Output: \verbinclude EigenSolver_EigenSolver_MatrixType.out
143      *
144      * \sa compute()
145      */
146    EigenSolver(const MatrixType& matrix, bool computeEigenvectors = true)
147      : m_eivec(matrix.rows(), matrix.cols()),
148        m_eivalues(matrix.cols()),
149        m_isInitialized(false),
150        m_eigenvectorsOk(false),
151        m_realSchur(matrix.cols()),
152        m_matT(matrix.rows(), matrix.cols()),
153        m_tmp(matrix.cols())
154    {
155      compute(matrix, computeEigenvectors);
156    }
157
158    /** \brief Returns the eigenvectors of given matrix.
159      *
160      * \returns  %Matrix whose columns are the (possibly complex) eigenvectors.
161      *
162      * \pre Either the constructor
163      * EigenSolver(const MatrixType&,bool) or the member function
164      * compute(const MatrixType&, bool) has been called before, and
165      * \p computeEigenvectors was set to true (the default).
166      *
167      * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
168      * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The
169      * eigenvectors are normalized to have (Euclidean) norm equal to one. The
170      * matrix returned by this function is the matrix \f$ V \f$ in the
171      * eigendecomposition \f$ A = V D V^{-1} \f$, if it exists.
172      *
173      * Example: \include EigenSolver_eigenvectors.cpp
174      * Output: \verbinclude EigenSolver_eigenvectors.out
175      *
176      * \sa eigenvalues(), pseudoEigenvectors()
177      */
178    EigenvectorsType eigenvectors() const;
179
180    /** \brief Returns the pseudo-eigenvectors of given matrix.
181      *
182      * \returns  Const reference to matrix whose columns are the pseudo-eigenvectors.
183      *
184      * \pre Either the constructor
185      * EigenSolver(const MatrixType&,bool) or the member function
186      * compute(const MatrixType&, bool) has been called before, and
187      * \p computeEigenvectors was set to true (the default).
188      *
189      * The real matrix \f$ V \f$ returned by this function and the
190      * block-diagonal matrix \f$ D \f$ returned by pseudoEigenvalueMatrix()
191      * satisfy \f$ AV = VD \f$.
192      *
193      * Example: \include EigenSolver_pseudoEigenvectors.cpp
194      * Output: \verbinclude EigenSolver_pseudoEigenvectors.out
195      *
196      * \sa pseudoEigenvalueMatrix(), eigenvectors()
197      */
198    const MatrixType& pseudoEigenvectors() const
199    {
200      eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
201      eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
202      return m_eivec;
203    }
204
205    /** \brief Returns the block-diagonal matrix in the pseudo-eigendecomposition.
206      *
207      * \returns  A block-diagonal matrix.
208      *
209      * \pre Either the constructor
210      * EigenSolver(const MatrixType&,bool) or the member function
211      * compute(const MatrixType&, bool) has been called before.
212      *
213      * The matrix \f$ D \f$ returned by this function is real and
214      * block-diagonal. The blocks on the diagonal are either 1-by-1 or 2-by-2
215      * blocks of the form
216      * \f$ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f$.
217      * These blocks are not sorted in any particular order.
218      * The matrix \f$ D \f$ and the matrix \f$ V \f$ returned by
219      * pseudoEigenvectors() satisfy \f$ AV = VD \f$.
220      *
221      * \sa pseudoEigenvectors() for an example, eigenvalues()
222      */
223    MatrixType pseudoEigenvalueMatrix() const;
224
225    /** \brief Returns the eigenvalues of given matrix.
226      *
227      * \returns A const reference to the column vector containing the eigenvalues.
228      *
229      * \pre Either the constructor
230      * EigenSolver(const MatrixType&,bool) or the member function
231      * compute(const MatrixType&, bool) has been called before.
232      *
233      * The eigenvalues are repeated according to their algebraic multiplicity,
234      * so there are as many eigenvalues as rows in the matrix. The eigenvalues
235      * are not sorted in any particular order.
236      *
237      * Example: \include EigenSolver_eigenvalues.cpp
238      * Output: \verbinclude EigenSolver_eigenvalues.out
239      *
240      * \sa eigenvectors(), pseudoEigenvalueMatrix(),
241      *     MatrixBase::eigenvalues()
242      */
243    const EigenvalueType& eigenvalues() const
244    {
245      eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
246      return m_eivalues;
247    }
248
249    /** \brief Computes eigendecomposition of given matrix.
250      *
251      * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
252      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
253      *    eigenvalues are computed; if false, only the eigenvalues are
254      *    computed.
255      * \returns    Reference to \c *this
256      *
257      * This function computes the eigenvalues of the real matrix \p matrix.
258      * The eigenvalues() function can be used to retrieve them.  If
259      * \p computeEigenvectors is true, then the eigenvectors are also computed
260      * and can be retrieved by calling eigenvectors().
261      *
262      * The matrix is first reduced to real Schur form using the RealSchur
263      * class. The Schur decomposition is then used to compute the eigenvalues
264      * and eigenvectors.
265      *
266      * The cost of the computation is dominated by the cost of the
267      * Schur decomposition, which is very approximately \f$ 25n^3 \f$
268      * (where \f$ n \f$ is the size of the matrix) if \p computeEigenvectors
269      * is true, and \f$ 10n^3 \f$ if \p computeEigenvectors is false.
270      *
271      * This method reuses of the allocated data in the EigenSolver object.
272      *
273      * Example: \include EigenSolver_compute.cpp
274      * Output: \verbinclude EigenSolver_compute.out
275      */
276    EigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
277
278    ComputationInfo info() const
279    {
280      eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
281      return m_realSchur.info();
282    }
283
284  private:
285    void doComputeEigenvectors();
286
287  protected:
288    MatrixType m_eivec;
289    EigenvalueType m_eivalues;
290    bool m_isInitialized;
291    bool m_eigenvectorsOk;
292    RealSchur<MatrixType> m_realSchur;
293    MatrixType m_matT;
294
295    typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
296    ColumnVectorType m_tmp;
297};
298
299template<typename MatrixType>
300MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const
301{
302  eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
303  Index n = m_eivalues.rows();
304  MatrixType matD = MatrixType::Zero(n,n);
305  for (Index i=0; i<n; ++i)
306  {
307    if (internal::isMuchSmallerThan(internal::imag(m_eivalues.coeff(i)), internal::real(m_eivalues.coeff(i))))
308      matD.coeffRef(i,i) = internal::real(m_eivalues.coeff(i));
309    else
310    {
311      matD.template block<2,2>(i,i) <<  internal::real(m_eivalues.coeff(i)), internal::imag(m_eivalues.coeff(i)),
312                                       -internal::imag(m_eivalues.coeff(i)), internal::real(m_eivalues.coeff(i));
313      ++i;
314    }
315  }
316  return matD;
317}
318
319template<typename MatrixType>
320typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const
321{
322  eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
323  eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
324  Index n = m_eivec.cols();
325  EigenvectorsType matV(n,n);
326  for (Index j=0; j<n; ++j)
327  {
328    if (internal::isMuchSmallerThan(internal::imag(m_eivalues.coeff(j)), internal::real(m_eivalues.coeff(j))) || j+1==n)
329    {
330      // we have a real eigen value
331      matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>();
332      matV.col(j).normalize();
333    }
334    else
335    {
336      // we have a pair of complex eigen values
337      for (Index i=0; i<n; ++i)
338      {
339        matV.coeffRef(i,j)   = ComplexScalar(m_eivec.coeff(i,j),  m_eivec.coeff(i,j+1));
340        matV.coeffRef(i,j+1) = ComplexScalar(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1));
341      }
342      matV.col(j).normalize();
343      matV.col(j+1).normalize();
344      ++j;
345    }
346  }
347  return matV;
348}
349
350template<typename MatrixType>
351EigenSolver<MatrixType>& EigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
352{
353  assert(matrix.cols() == matrix.rows());
354
355  // Reduce to real Schur form.
356  m_realSchur.compute(matrix, computeEigenvectors);
357  if (m_realSchur.info() == Success)
358  {
359    m_matT = m_realSchur.matrixT();
360    if (computeEigenvectors)
361      m_eivec = m_realSchur.matrixU();
362 
363    // Compute eigenvalues from matT
364    m_eivalues.resize(matrix.cols());
365    Index i = 0;
366    while (i < matrix.cols())
367    {
368      if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0))
369      {
370        m_eivalues.coeffRef(i) = m_matT.coeff(i, i);
371        ++i;
372      }
373      else
374      {
375        Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1));
376        Scalar z = internal::sqrt(internal::abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1)));
377        m_eivalues.coeffRef(i)   = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z);
378        m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z);
379        i += 2;
380      }
381    }
382   
383    // Compute eigenvectors.
384    if (computeEigenvectors)
385      doComputeEigenvectors();
386  }
387
388  m_isInitialized = true;
389  m_eigenvectorsOk = computeEigenvectors;
390
391  return *this;
392}
393
394// Complex scalar division.
395template<typename Scalar>
396std::complex<Scalar> cdiv(Scalar xr, Scalar xi, Scalar yr, Scalar yi)
397{
398  Scalar r,d;
399  if (internal::abs(yr) > internal::abs(yi))
400  {
401      r = yi/yr;
402      d = yr + r*yi;
403      return std::complex<Scalar>((xr + r*xi)/d, (xi - r*xr)/d);
404  }
405  else
406  {
407      r = yr/yi;
408      d = yi + r*yr;
409      return std::complex<Scalar>((r*xr + xi)/d, (r*xi - xr)/d);
410  }
411}
412
413
414template<typename MatrixType>
415void EigenSolver<MatrixType>::doComputeEigenvectors()
416{
417  const Index size = m_eivec.cols();
418  const Scalar eps = NumTraits<Scalar>::epsilon();
419
420  // inefficient! this is already computed in RealSchur
421  Scalar norm(0);
422  for (Index j = 0; j < size; ++j)
423  {
424    norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum();
425  }
426 
427  // Backsubstitute to find vectors of upper triangular form
428  if (norm == 0.0)
429  {
430    return;
431  }
432
433  for (Index n = size-1; n >= 0; n--)
434  {
435    Scalar p = m_eivalues.coeff(n).real();
436    Scalar q = m_eivalues.coeff(n).imag();
437
438    // Scalar vector
439    if (q == Scalar(0))
440    {
441      Scalar lastr(0), lastw(0);
442      Index l = n;
443
444      m_matT.coeffRef(n,n) = 1.0;
445      for (Index i = n-1; i >= 0; i--)
446      {
447        Scalar w = m_matT.coeff(i,i) - p;
448        Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
449
450        if (m_eivalues.coeff(i).imag() < 0.0)
451        {
452          lastw = w;
453          lastr = r;
454        }
455        else
456        {
457          l = i;
458          if (m_eivalues.coeff(i).imag() == 0.0)
459          {
460            if (w != 0.0)
461              m_matT.coeffRef(i,n) = -r / w;
462            else
463              m_matT.coeffRef(i,n) = -r / (eps * norm);
464          }
465          else // Solve real equations
466          {
467            Scalar x = m_matT.coeff(i,i+1);
468            Scalar y = m_matT.coeff(i+1,i);
469            Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
470            Scalar t = (x * lastr - lastw * r) / denom;
471            m_matT.coeffRef(i,n) = t;
472            if (internal::abs(x) > internal::abs(lastw))
473              m_matT.coeffRef(i+1,n) = (-r - w * t) / x;
474            else
475              m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw;
476          }
477
478          // Overflow control
479          Scalar t = internal::abs(m_matT.coeff(i,n));
480          if ((eps * t) * t > Scalar(1))
481            m_matT.col(n).tail(size-i) /= t;
482        }
483      }
484    }
485    else if (q < Scalar(0) && n > 0) // Complex vector
486    {
487      Scalar lastra(0), lastsa(0), lastw(0);
488      Index l = n-1;
489
490      // Last vector component imaginary so matrix is triangular
491      if (internal::abs(m_matT.coeff(n,n-1)) > internal::abs(m_matT.coeff(n-1,n)))
492      {
493        m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1);
494        m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1);
495      }
496      else
497      {
498        std::complex<Scalar> cc = cdiv<Scalar>(0.0,-m_matT.coeff(n-1,n),m_matT.coeff(n-1,n-1)-p,q);
499        m_matT.coeffRef(n-1,n-1) = internal::real(cc);
500        m_matT.coeffRef(n-1,n) = internal::imag(cc);
501      }
502      m_matT.coeffRef(n,n-1) = 0.0;
503      m_matT.coeffRef(n,n) = 1.0;
504      for (Index i = n-2; i >= 0; i--)
505      {
506        Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1));
507        Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
508        Scalar w = m_matT.coeff(i,i) - p;
509
510        if (m_eivalues.coeff(i).imag() < 0.0)
511        {
512          lastw = w;
513          lastra = ra;
514          lastsa = sa;
515        }
516        else
517        {
518          l = i;
519          if (m_eivalues.coeff(i).imag() == RealScalar(0))
520          {
521            std::complex<Scalar> cc = cdiv(-ra,-sa,w,q);
522            m_matT.coeffRef(i,n-1) = internal::real(cc);
523            m_matT.coeffRef(i,n) = internal::imag(cc);
524          }
525          else
526          {
527            // Solve complex equations
528            Scalar x = m_matT.coeff(i,i+1);
529            Scalar y = m_matT.coeff(i+1,i);
530            Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
531            Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q;
532            if ((vr == 0.0) && (vi == 0.0))
533              vr = eps * norm * (internal::abs(w) + internal::abs(q) + internal::abs(x) + internal::abs(y) + internal::abs(lastw));
534
535      std::complex<Scalar> cc = cdiv(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra,vr,vi);
536            m_matT.coeffRef(i,n-1) = internal::real(cc);
537            m_matT.coeffRef(i,n) = internal::imag(cc);
538            if (internal::abs(x) > (internal::abs(lastw) + internal::abs(q)))
539            {
540              m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x;
541              m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x;
542            }
543            else
544            {
545              cc = cdiv(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n),lastw,q);
546              m_matT.coeffRef(i+1,n-1) = internal::real(cc);
547              m_matT.coeffRef(i+1,n) = internal::imag(cc);
548            }
549          }
550
551          // Overflow control
552          using std::max;
553          Scalar t = (max)(internal::abs(m_matT.coeff(i,n-1)),internal::abs(m_matT.coeff(i,n)));
554          if ((eps * t) * t > Scalar(1))
555            m_matT.block(i, n-1, size-i, 2) /= t;
556
557        }
558      }
559     
560      // We handled a pair of complex conjugate eigenvalues, so need to skip them both
561      n--;
562    }
563    else
564    {
565      eigen_assert(0 && "Internal bug in EigenSolver"); // this should not happen
566    }
567  }
568
569  // Back transformation to get eigenvectors of original matrix
570  for (Index j = size-1; j >= 0; j--)
571  {
572    m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1);
573    m_eivec.col(j) = m_tmp;
574  }
575}
576
577} // end namespace Eigen
578
579#endif // EIGEN_EIGENSOLVER_H
Note: See TracBrowser for help on using the repository browser.