1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2009 Claire Maurice |
---|
5 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
6 | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
---|
7 | // |
---|
8 | // This Source Code Form is subject to the terms of the Mozilla |
---|
9 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
10 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
11 | |
---|
12 | #ifndef EIGEN_COMPLEX_SCHUR_H |
---|
13 | #define EIGEN_COMPLEX_SCHUR_H |
---|
14 | |
---|
15 | #include "./HessenbergDecomposition.h" |
---|
16 | |
---|
17 | namespace Eigen { |
---|
18 | |
---|
19 | namespace internal { |
---|
20 | template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg; |
---|
21 | } |
---|
22 | |
---|
23 | /** \eigenvalues_module \ingroup Eigenvalues_Module |
---|
24 | * |
---|
25 | * |
---|
26 | * \class ComplexSchur |
---|
27 | * |
---|
28 | * \brief Performs a complex Schur decomposition of a real or complex square matrix |
---|
29 | * |
---|
30 | * \tparam _MatrixType the type of the matrix of which we are |
---|
31 | * computing the Schur decomposition; this is expected to be an |
---|
32 | * instantiation of the Matrix class template. |
---|
33 | * |
---|
34 | * Given a real or complex square matrix A, this class computes the |
---|
35 | * Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary |
---|
36 | * complex matrix, and T is a complex upper triangular matrix. The |
---|
37 | * diagonal of the matrix T corresponds to the eigenvalues of the |
---|
38 | * matrix A. |
---|
39 | * |
---|
40 | * Call the function compute() to compute the Schur decomposition of |
---|
41 | * a given matrix. Alternatively, you can use the |
---|
42 | * ComplexSchur(const MatrixType&, bool) constructor which computes |
---|
43 | * the Schur decomposition at construction time. Once the |
---|
44 | * decomposition is computed, you can use the matrixU() and matrixT() |
---|
45 | * functions to retrieve the matrices U and V in the decomposition. |
---|
46 | * |
---|
47 | * \note This code is inspired from Jampack |
---|
48 | * |
---|
49 | * \sa class RealSchur, class EigenSolver, class ComplexEigenSolver |
---|
50 | */ |
---|
51 | template<typename _MatrixType> class ComplexSchur |
---|
52 | { |
---|
53 | public: |
---|
54 | typedef _MatrixType MatrixType; |
---|
55 | enum { |
---|
56 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
---|
57 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
---|
58 | Options = MatrixType::Options, |
---|
59 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
---|
60 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
---|
61 | }; |
---|
62 | |
---|
63 | /** \brief Scalar type for matrices of type \p _MatrixType. */ |
---|
64 | typedef typename MatrixType::Scalar Scalar; |
---|
65 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
66 | typedef typename MatrixType::Index Index; |
---|
67 | |
---|
68 | /** \brief Complex scalar type for \p _MatrixType. |
---|
69 | * |
---|
70 | * This is \c std::complex<Scalar> if #Scalar is real (e.g., |
---|
71 | * \c float or \c double) and just \c Scalar if #Scalar is |
---|
72 | * complex. |
---|
73 | */ |
---|
74 | typedef std::complex<RealScalar> ComplexScalar; |
---|
75 | |
---|
76 | /** \brief Type for the matrices in the Schur decomposition. |
---|
77 | * |
---|
78 | * This is a square matrix with entries of type #ComplexScalar. |
---|
79 | * The size is the same as the size of \p _MatrixType. |
---|
80 | */ |
---|
81 | typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType; |
---|
82 | |
---|
83 | /** \brief Default constructor. |
---|
84 | * |
---|
85 | * \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed. |
---|
86 | * |
---|
87 | * The default constructor is useful in cases in which the user |
---|
88 | * intends to perform decompositions via compute(). The \p size |
---|
89 | * parameter is only used as a hint. It is not an error to give a |
---|
90 | * wrong \p size, but it may impair performance. |
---|
91 | * |
---|
92 | * \sa compute() for an example. |
---|
93 | */ |
---|
94 | ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) |
---|
95 | : m_matT(size,size), |
---|
96 | m_matU(size,size), |
---|
97 | m_hess(size), |
---|
98 | m_isInitialized(false), |
---|
99 | m_matUisUptodate(false) |
---|
100 | {} |
---|
101 | |
---|
102 | /** \brief Constructor; computes Schur decomposition of given matrix. |
---|
103 | * |
---|
104 | * \param[in] matrix Square matrix whose Schur decomposition is to be computed. |
---|
105 | * \param[in] computeU If true, both T and U are computed; if false, only T is computed. |
---|
106 | * |
---|
107 | * This constructor calls compute() to compute the Schur decomposition. |
---|
108 | * |
---|
109 | * \sa matrixT() and matrixU() for examples. |
---|
110 | */ |
---|
111 | ComplexSchur(const MatrixType& matrix, bool computeU = true) |
---|
112 | : m_matT(matrix.rows(),matrix.cols()), |
---|
113 | m_matU(matrix.rows(),matrix.cols()), |
---|
114 | m_hess(matrix.rows()), |
---|
115 | m_isInitialized(false), |
---|
116 | m_matUisUptodate(false) |
---|
117 | { |
---|
118 | compute(matrix, computeU); |
---|
119 | } |
---|
120 | |
---|
121 | /** \brief Returns the unitary matrix in the Schur decomposition. |
---|
122 | * |
---|
123 | * \returns A const reference to the matrix U. |
---|
124 | * |
---|
125 | * It is assumed that either the constructor |
---|
126 | * ComplexSchur(const MatrixType& matrix, bool computeU) or the |
---|
127 | * member function compute(const MatrixType& matrix, bool computeU) |
---|
128 | * has been called before to compute the Schur decomposition of a |
---|
129 | * matrix, and that \p computeU was set to true (the default |
---|
130 | * value). |
---|
131 | * |
---|
132 | * Example: \include ComplexSchur_matrixU.cpp |
---|
133 | * Output: \verbinclude ComplexSchur_matrixU.out |
---|
134 | */ |
---|
135 | const ComplexMatrixType& matrixU() const |
---|
136 | { |
---|
137 | eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); |
---|
138 | eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition."); |
---|
139 | return m_matU; |
---|
140 | } |
---|
141 | |
---|
142 | /** \brief Returns the triangular matrix in the Schur decomposition. |
---|
143 | * |
---|
144 | * \returns A const reference to the matrix T. |
---|
145 | * |
---|
146 | * It is assumed that either the constructor |
---|
147 | * ComplexSchur(const MatrixType& matrix, bool computeU) or the |
---|
148 | * member function compute(const MatrixType& matrix, bool computeU) |
---|
149 | * has been called before to compute the Schur decomposition of a |
---|
150 | * matrix. |
---|
151 | * |
---|
152 | * Note that this function returns a plain square matrix. If you want to reference |
---|
153 | * only the upper triangular part, use: |
---|
154 | * \code schur.matrixT().triangularView<Upper>() \endcode |
---|
155 | * |
---|
156 | * Example: \include ComplexSchur_matrixT.cpp |
---|
157 | * Output: \verbinclude ComplexSchur_matrixT.out |
---|
158 | */ |
---|
159 | const ComplexMatrixType& matrixT() const |
---|
160 | { |
---|
161 | eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); |
---|
162 | return m_matT; |
---|
163 | } |
---|
164 | |
---|
165 | /** \brief Computes Schur decomposition of given matrix. |
---|
166 | * |
---|
167 | * \param[in] matrix Square matrix whose Schur decomposition is to be computed. |
---|
168 | * \param[in] computeU If true, both T and U are computed; if false, only T is computed. |
---|
169 | * \returns Reference to \c *this |
---|
170 | * |
---|
171 | * The Schur decomposition is computed by first reducing the |
---|
172 | * matrix to Hessenberg form using the class |
---|
173 | * HessenbergDecomposition. The Hessenberg matrix is then reduced |
---|
174 | * to triangular form by performing QR iterations with a single |
---|
175 | * shift. The cost of computing the Schur decomposition depends |
---|
176 | * on the number of iterations; as a rough guide, it may be taken |
---|
177 | * on the number of iterations; as a rough guide, it may be taken |
---|
178 | * to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops |
---|
179 | * if \a computeU is false. |
---|
180 | * |
---|
181 | * Example: \include ComplexSchur_compute.cpp |
---|
182 | * Output: \verbinclude ComplexSchur_compute.out |
---|
183 | */ |
---|
184 | ComplexSchur& compute(const MatrixType& matrix, bool computeU = true); |
---|
185 | |
---|
186 | /** \brief Reports whether previous computation was successful. |
---|
187 | * |
---|
188 | * \returns \c Success if computation was succesful, \c NoConvergence otherwise. |
---|
189 | */ |
---|
190 | ComputationInfo info() const |
---|
191 | { |
---|
192 | eigen_assert(m_isInitialized && "RealSchur is not initialized."); |
---|
193 | return m_info; |
---|
194 | } |
---|
195 | |
---|
196 | /** \brief Maximum number of iterations. |
---|
197 | * |
---|
198 | * Maximum number of iterations allowed for an eigenvalue to converge. |
---|
199 | */ |
---|
200 | static const int m_maxIterations = 30; |
---|
201 | |
---|
202 | protected: |
---|
203 | ComplexMatrixType m_matT, m_matU; |
---|
204 | HessenbergDecomposition<MatrixType> m_hess; |
---|
205 | ComputationInfo m_info; |
---|
206 | bool m_isInitialized; |
---|
207 | bool m_matUisUptodate; |
---|
208 | |
---|
209 | private: |
---|
210 | bool subdiagonalEntryIsNeglegible(Index i); |
---|
211 | ComplexScalar computeShift(Index iu, Index iter); |
---|
212 | void reduceToTriangularForm(bool computeU); |
---|
213 | friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>; |
---|
214 | }; |
---|
215 | |
---|
216 | /** If m_matT(i+1,i) is neglegible in floating point arithmetic |
---|
217 | * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and |
---|
218 | * return true, else return false. */ |
---|
219 | template<typename MatrixType> |
---|
220 | inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i) |
---|
221 | { |
---|
222 | RealScalar d = internal::norm1(m_matT.coeff(i,i)) + internal::norm1(m_matT.coeff(i+1,i+1)); |
---|
223 | RealScalar sd = internal::norm1(m_matT.coeff(i+1,i)); |
---|
224 | if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon())) |
---|
225 | { |
---|
226 | m_matT.coeffRef(i+1,i) = ComplexScalar(0); |
---|
227 | return true; |
---|
228 | } |
---|
229 | return false; |
---|
230 | } |
---|
231 | |
---|
232 | |
---|
233 | /** Compute the shift in the current QR iteration. */ |
---|
234 | template<typename MatrixType> |
---|
235 | typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter) |
---|
236 | { |
---|
237 | if (iter == 10 || iter == 20) |
---|
238 | { |
---|
239 | // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f |
---|
240 | return internal::abs(internal::real(m_matT.coeff(iu,iu-1))) + internal::abs(internal::real(m_matT.coeff(iu-1,iu-2))); |
---|
241 | } |
---|
242 | |
---|
243 | // compute the shift as one of the eigenvalues of t, the 2x2 |
---|
244 | // diagonal block on the bottom of the active submatrix |
---|
245 | Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1); |
---|
246 | RealScalar normt = t.cwiseAbs().sum(); |
---|
247 | t /= normt; // the normalization by sf is to avoid under/overflow |
---|
248 | |
---|
249 | ComplexScalar b = t.coeff(0,1) * t.coeff(1,0); |
---|
250 | ComplexScalar c = t.coeff(0,0) - t.coeff(1,1); |
---|
251 | ComplexScalar disc = sqrt(c*c + RealScalar(4)*b); |
---|
252 | ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b; |
---|
253 | ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1); |
---|
254 | ComplexScalar eival1 = (trace + disc) / RealScalar(2); |
---|
255 | ComplexScalar eival2 = (trace - disc) / RealScalar(2); |
---|
256 | |
---|
257 | if(internal::norm1(eival1) > internal::norm1(eival2)) |
---|
258 | eival2 = det / eival1; |
---|
259 | else |
---|
260 | eival1 = det / eival2; |
---|
261 | |
---|
262 | // choose the eigenvalue closest to the bottom entry of the diagonal |
---|
263 | if(internal::norm1(eival1-t.coeff(1,1)) < internal::norm1(eival2-t.coeff(1,1))) |
---|
264 | return normt * eival1; |
---|
265 | else |
---|
266 | return normt * eival2; |
---|
267 | } |
---|
268 | |
---|
269 | |
---|
270 | template<typename MatrixType> |
---|
271 | ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU) |
---|
272 | { |
---|
273 | m_matUisUptodate = false; |
---|
274 | eigen_assert(matrix.cols() == matrix.rows()); |
---|
275 | |
---|
276 | if(matrix.cols() == 1) |
---|
277 | { |
---|
278 | m_matT = matrix.template cast<ComplexScalar>(); |
---|
279 | if(computeU) m_matU = ComplexMatrixType::Identity(1,1); |
---|
280 | m_info = Success; |
---|
281 | m_isInitialized = true; |
---|
282 | m_matUisUptodate = computeU; |
---|
283 | return *this; |
---|
284 | } |
---|
285 | |
---|
286 | internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix, computeU); |
---|
287 | reduceToTriangularForm(computeU); |
---|
288 | return *this; |
---|
289 | } |
---|
290 | |
---|
291 | namespace internal { |
---|
292 | |
---|
293 | /* Reduce given matrix to Hessenberg form */ |
---|
294 | template<typename MatrixType, bool IsComplex> |
---|
295 | struct complex_schur_reduce_to_hessenberg |
---|
296 | { |
---|
297 | // this is the implementation for the case IsComplex = true |
---|
298 | static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU) |
---|
299 | { |
---|
300 | _this.m_hess.compute(matrix); |
---|
301 | _this.m_matT = _this.m_hess.matrixH(); |
---|
302 | if(computeU) _this.m_matU = _this.m_hess.matrixQ(); |
---|
303 | } |
---|
304 | }; |
---|
305 | |
---|
306 | template<typename MatrixType> |
---|
307 | struct complex_schur_reduce_to_hessenberg<MatrixType, false> |
---|
308 | { |
---|
309 | static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU) |
---|
310 | { |
---|
311 | typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar; |
---|
312 | typedef typename ComplexSchur<MatrixType>::ComplexMatrixType ComplexMatrixType; |
---|
313 | |
---|
314 | // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar |
---|
315 | _this.m_hess.compute(matrix); |
---|
316 | _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>(); |
---|
317 | if(computeU) |
---|
318 | { |
---|
319 | // This may cause an allocation which seems to be avoidable |
---|
320 | MatrixType Q = _this.m_hess.matrixQ(); |
---|
321 | _this.m_matU = Q.template cast<ComplexScalar>(); |
---|
322 | } |
---|
323 | } |
---|
324 | }; |
---|
325 | |
---|
326 | } // end namespace internal |
---|
327 | |
---|
328 | // Reduce the Hessenberg matrix m_matT to triangular form by QR iteration. |
---|
329 | template<typename MatrixType> |
---|
330 | void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU) |
---|
331 | { |
---|
332 | // The matrix m_matT is divided in three parts. |
---|
333 | // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero. |
---|
334 | // Rows il,...,iu is the part we are working on (the active submatrix). |
---|
335 | // Rows iu+1,...,end are already brought in triangular form. |
---|
336 | Index iu = m_matT.cols() - 1; |
---|
337 | Index il; |
---|
338 | Index iter = 0; // number of iterations we are working on the (iu,iu) element |
---|
339 | Index totalIter = 0; // number of iterations for whole matrix |
---|
340 | |
---|
341 | while(true) |
---|
342 | { |
---|
343 | // find iu, the bottom row of the active submatrix |
---|
344 | while(iu > 0) |
---|
345 | { |
---|
346 | if(!subdiagonalEntryIsNeglegible(iu-1)) break; |
---|
347 | iter = 0; |
---|
348 | --iu; |
---|
349 | } |
---|
350 | |
---|
351 | // if iu is zero then we are done; the whole matrix is triangularized |
---|
352 | if(iu==0) break; |
---|
353 | |
---|
354 | // if we spent too many iterations, we give up |
---|
355 | iter++; |
---|
356 | totalIter++; |
---|
357 | if(totalIter > m_maxIterations * m_matT.cols()) break; |
---|
358 | |
---|
359 | // find il, the top row of the active submatrix |
---|
360 | il = iu-1; |
---|
361 | while(il > 0 && !subdiagonalEntryIsNeglegible(il-1)) |
---|
362 | { |
---|
363 | --il; |
---|
364 | } |
---|
365 | |
---|
366 | /* perform the QR step using Givens rotations. The first rotation |
---|
367 | creates a bulge; the (il+2,il) element becomes nonzero. This |
---|
368 | bulge is chased down to the bottom of the active submatrix. */ |
---|
369 | |
---|
370 | ComplexScalar shift = computeShift(iu, iter); |
---|
371 | JacobiRotation<ComplexScalar> rot; |
---|
372 | rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il)); |
---|
373 | m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint()); |
---|
374 | m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot); |
---|
375 | if(computeU) m_matU.applyOnTheRight(il, il+1, rot); |
---|
376 | |
---|
377 | for(Index i=il+1 ; i<iu ; i++) |
---|
378 | { |
---|
379 | rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1)); |
---|
380 | m_matT.coeffRef(i+1,i-1) = ComplexScalar(0); |
---|
381 | m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint()); |
---|
382 | m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot); |
---|
383 | if(computeU) m_matU.applyOnTheRight(i, i+1, rot); |
---|
384 | } |
---|
385 | } |
---|
386 | |
---|
387 | if(totalIter <= m_maxIterations * m_matT.cols()) |
---|
388 | m_info = Success; |
---|
389 | else |
---|
390 | m_info = NoConvergence; |
---|
391 | |
---|
392 | m_isInitialized = true; |
---|
393 | m_matUisUptodate = computeU; |
---|
394 | } |
---|
395 | |
---|
396 | } // end namespace Eigen |
---|
397 | |
---|
398 | #endif // EIGEN_COMPLEX_SCHUR_H |
---|