[9562] | 1 | // This file is part of Eigen, a lightweight C++ template library |
---|
| 2 | // for linear algebra. |
---|
| 3 | // |
---|
| 4 | // Copyright (C) 2009 Claire Maurice |
---|
| 5 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
| 6 | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
---|
| 7 | // |
---|
| 8 | // This Source Code Form is subject to the terms of the Mozilla |
---|
| 9 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
| 10 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
| 11 | |
---|
| 12 | #ifndef EIGEN_COMPLEX_SCHUR_H |
---|
| 13 | #define EIGEN_COMPLEX_SCHUR_H |
---|
| 14 | |
---|
| 15 | #include "./HessenbergDecomposition.h" |
---|
| 16 | |
---|
| 17 | namespace Eigen { |
---|
| 18 | |
---|
| 19 | namespace internal { |
---|
| 20 | template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg; |
---|
| 21 | } |
---|
| 22 | |
---|
| 23 | /** \eigenvalues_module \ingroup Eigenvalues_Module |
---|
| 24 | * |
---|
| 25 | * |
---|
| 26 | * \class ComplexSchur |
---|
| 27 | * |
---|
| 28 | * \brief Performs a complex Schur decomposition of a real or complex square matrix |
---|
| 29 | * |
---|
| 30 | * \tparam _MatrixType the type of the matrix of which we are |
---|
| 31 | * computing the Schur decomposition; this is expected to be an |
---|
| 32 | * instantiation of the Matrix class template. |
---|
| 33 | * |
---|
| 34 | * Given a real or complex square matrix A, this class computes the |
---|
| 35 | * Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary |
---|
| 36 | * complex matrix, and T is a complex upper triangular matrix. The |
---|
| 37 | * diagonal of the matrix T corresponds to the eigenvalues of the |
---|
| 38 | * matrix A. |
---|
| 39 | * |
---|
| 40 | * Call the function compute() to compute the Schur decomposition of |
---|
| 41 | * a given matrix. Alternatively, you can use the |
---|
| 42 | * ComplexSchur(const MatrixType&, bool) constructor which computes |
---|
| 43 | * the Schur decomposition at construction time. Once the |
---|
| 44 | * decomposition is computed, you can use the matrixU() and matrixT() |
---|
| 45 | * functions to retrieve the matrices U and V in the decomposition. |
---|
| 46 | * |
---|
| 47 | * \note This code is inspired from Jampack |
---|
| 48 | * |
---|
| 49 | * \sa class RealSchur, class EigenSolver, class ComplexEigenSolver |
---|
| 50 | */ |
---|
| 51 | template<typename _MatrixType> class ComplexSchur |
---|
| 52 | { |
---|
| 53 | public: |
---|
| 54 | typedef _MatrixType MatrixType; |
---|
| 55 | enum { |
---|
| 56 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
---|
| 57 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
---|
| 58 | Options = MatrixType::Options, |
---|
| 59 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
---|
| 60 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
---|
| 61 | }; |
---|
| 62 | |
---|
| 63 | /** \brief Scalar type for matrices of type \p _MatrixType. */ |
---|
| 64 | typedef typename MatrixType::Scalar Scalar; |
---|
| 65 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
| 66 | typedef typename MatrixType::Index Index; |
---|
| 67 | |
---|
| 68 | /** \brief Complex scalar type for \p _MatrixType. |
---|
| 69 | * |
---|
| 70 | * This is \c std::complex<Scalar> if #Scalar is real (e.g., |
---|
| 71 | * \c float or \c double) and just \c Scalar if #Scalar is |
---|
| 72 | * complex. |
---|
| 73 | */ |
---|
| 74 | typedef std::complex<RealScalar> ComplexScalar; |
---|
| 75 | |
---|
| 76 | /** \brief Type for the matrices in the Schur decomposition. |
---|
| 77 | * |
---|
| 78 | * This is a square matrix with entries of type #ComplexScalar. |
---|
| 79 | * The size is the same as the size of \p _MatrixType. |
---|
| 80 | */ |
---|
| 81 | typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType; |
---|
| 82 | |
---|
| 83 | /** \brief Default constructor. |
---|
| 84 | * |
---|
| 85 | * \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed. |
---|
| 86 | * |
---|
| 87 | * The default constructor is useful in cases in which the user |
---|
| 88 | * intends to perform decompositions via compute(). The \p size |
---|
| 89 | * parameter is only used as a hint. It is not an error to give a |
---|
| 90 | * wrong \p size, but it may impair performance. |
---|
| 91 | * |
---|
| 92 | * \sa compute() for an example. |
---|
| 93 | */ |
---|
| 94 | ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) |
---|
| 95 | : m_matT(size,size), |
---|
| 96 | m_matU(size,size), |
---|
| 97 | m_hess(size), |
---|
| 98 | m_isInitialized(false), |
---|
| 99 | m_matUisUptodate(false) |
---|
| 100 | {} |
---|
| 101 | |
---|
| 102 | /** \brief Constructor; computes Schur decomposition of given matrix. |
---|
| 103 | * |
---|
| 104 | * \param[in] matrix Square matrix whose Schur decomposition is to be computed. |
---|
| 105 | * \param[in] computeU If true, both T and U are computed; if false, only T is computed. |
---|
| 106 | * |
---|
| 107 | * This constructor calls compute() to compute the Schur decomposition. |
---|
| 108 | * |
---|
| 109 | * \sa matrixT() and matrixU() for examples. |
---|
| 110 | */ |
---|
| 111 | ComplexSchur(const MatrixType& matrix, bool computeU = true) |
---|
| 112 | : m_matT(matrix.rows(),matrix.cols()), |
---|
| 113 | m_matU(matrix.rows(),matrix.cols()), |
---|
| 114 | m_hess(matrix.rows()), |
---|
| 115 | m_isInitialized(false), |
---|
| 116 | m_matUisUptodate(false) |
---|
| 117 | { |
---|
| 118 | compute(matrix, computeU); |
---|
| 119 | } |
---|
| 120 | |
---|
| 121 | /** \brief Returns the unitary matrix in the Schur decomposition. |
---|
| 122 | * |
---|
| 123 | * \returns A const reference to the matrix U. |
---|
| 124 | * |
---|
| 125 | * It is assumed that either the constructor |
---|
| 126 | * ComplexSchur(const MatrixType& matrix, bool computeU) or the |
---|
| 127 | * member function compute(const MatrixType& matrix, bool computeU) |
---|
| 128 | * has been called before to compute the Schur decomposition of a |
---|
| 129 | * matrix, and that \p computeU was set to true (the default |
---|
| 130 | * value). |
---|
| 131 | * |
---|
| 132 | * Example: \include ComplexSchur_matrixU.cpp |
---|
| 133 | * Output: \verbinclude ComplexSchur_matrixU.out |
---|
| 134 | */ |
---|
| 135 | const ComplexMatrixType& matrixU() const |
---|
| 136 | { |
---|
| 137 | eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); |
---|
| 138 | eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition."); |
---|
| 139 | return m_matU; |
---|
| 140 | } |
---|
| 141 | |
---|
| 142 | /** \brief Returns the triangular matrix in the Schur decomposition. |
---|
| 143 | * |
---|
| 144 | * \returns A const reference to the matrix T. |
---|
| 145 | * |
---|
| 146 | * It is assumed that either the constructor |
---|
| 147 | * ComplexSchur(const MatrixType& matrix, bool computeU) or the |
---|
| 148 | * member function compute(const MatrixType& matrix, bool computeU) |
---|
| 149 | * has been called before to compute the Schur decomposition of a |
---|
| 150 | * matrix. |
---|
| 151 | * |
---|
| 152 | * Note that this function returns a plain square matrix. If you want to reference |
---|
| 153 | * only the upper triangular part, use: |
---|
| 154 | * \code schur.matrixT().triangularView<Upper>() \endcode |
---|
| 155 | * |
---|
| 156 | * Example: \include ComplexSchur_matrixT.cpp |
---|
| 157 | * Output: \verbinclude ComplexSchur_matrixT.out |
---|
| 158 | */ |
---|
| 159 | const ComplexMatrixType& matrixT() const |
---|
| 160 | { |
---|
| 161 | eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); |
---|
| 162 | return m_matT; |
---|
| 163 | } |
---|
| 164 | |
---|
| 165 | /** \brief Computes Schur decomposition of given matrix. |
---|
| 166 | * |
---|
| 167 | * \param[in] matrix Square matrix whose Schur decomposition is to be computed. |
---|
| 168 | * \param[in] computeU If true, both T and U are computed; if false, only T is computed. |
---|
| 169 | * \returns Reference to \c *this |
---|
| 170 | * |
---|
| 171 | * The Schur decomposition is computed by first reducing the |
---|
| 172 | * matrix to Hessenberg form using the class |
---|
| 173 | * HessenbergDecomposition. The Hessenberg matrix is then reduced |
---|
| 174 | * to triangular form by performing QR iterations with a single |
---|
| 175 | * shift. The cost of computing the Schur decomposition depends |
---|
| 176 | * on the number of iterations; as a rough guide, it may be taken |
---|
| 177 | * on the number of iterations; as a rough guide, it may be taken |
---|
| 178 | * to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops |
---|
| 179 | * if \a computeU is false. |
---|
| 180 | * |
---|
| 181 | * Example: \include ComplexSchur_compute.cpp |
---|
| 182 | * Output: \verbinclude ComplexSchur_compute.out |
---|
| 183 | */ |
---|
| 184 | ComplexSchur& compute(const MatrixType& matrix, bool computeU = true); |
---|
| 185 | |
---|
| 186 | /** \brief Reports whether previous computation was successful. |
---|
| 187 | * |
---|
| 188 | * \returns \c Success if computation was succesful, \c NoConvergence otherwise. |
---|
| 189 | */ |
---|
| 190 | ComputationInfo info() const |
---|
| 191 | { |
---|
| 192 | eigen_assert(m_isInitialized && "RealSchur is not initialized."); |
---|
| 193 | return m_info; |
---|
| 194 | } |
---|
| 195 | |
---|
| 196 | /** \brief Maximum number of iterations. |
---|
| 197 | * |
---|
| 198 | * Maximum number of iterations allowed for an eigenvalue to converge. |
---|
| 199 | */ |
---|
| 200 | static const int m_maxIterations = 30; |
---|
| 201 | |
---|
| 202 | protected: |
---|
| 203 | ComplexMatrixType m_matT, m_matU; |
---|
| 204 | HessenbergDecomposition<MatrixType> m_hess; |
---|
| 205 | ComputationInfo m_info; |
---|
| 206 | bool m_isInitialized; |
---|
| 207 | bool m_matUisUptodate; |
---|
| 208 | |
---|
| 209 | private: |
---|
| 210 | bool subdiagonalEntryIsNeglegible(Index i); |
---|
| 211 | ComplexScalar computeShift(Index iu, Index iter); |
---|
| 212 | void reduceToTriangularForm(bool computeU); |
---|
| 213 | friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>; |
---|
| 214 | }; |
---|
| 215 | |
---|
| 216 | /** If m_matT(i+1,i) is neglegible in floating point arithmetic |
---|
| 217 | * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and |
---|
| 218 | * return true, else return false. */ |
---|
| 219 | template<typename MatrixType> |
---|
| 220 | inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i) |
---|
| 221 | { |
---|
| 222 | RealScalar d = internal::norm1(m_matT.coeff(i,i)) + internal::norm1(m_matT.coeff(i+1,i+1)); |
---|
| 223 | RealScalar sd = internal::norm1(m_matT.coeff(i+1,i)); |
---|
| 224 | if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon())) |
---|
| 225 | { |
---|
| 226 | m_matT.coeffRef(i+1,i) = ComplexScalar(0); |
---|
| 227 | return true; |
---|
| 228 | } |
---|
| 229 | return false; |
---|
| 230 | } |
---|
| 231 | |
---|
| 232 | |
---|
| 233 | /** Compute the shift in the current QR iteration. */ |
---|
| 234 | template<typename MatrixType> |
---|
| 235 | typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter) |
---|
| 236 | { |
---|
| 237 | if (iter == 10 || iter == 20) |
---|
| 238 | { |
---|
| 239 | // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f |
---|
| 240 | return internal::abs(internal::real(m_matT.coeff(iu,iu-1))) + internal::abs(internal::real(m_matT.coeff(iu-1,iu-2))); |
---|
| 241 | } |
---|
| 242 | |
---|
| 243 | // compute the shift as one of the eigenvalues of t, the 2x2 |
---|
| 244 | // diagonal block on the bottom of the active submatrix |
---|
| 245 | Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1); |
---|
| 246 | RealScalar normt = t.cwiseAbs().sum(); |
---|
| 247 | t /= normt; // the normalization by sf is to avoid under/overflow |
---|
| 248 | |
---|
| 249 | ComplexScalar b = t.coeff(0,1) * t.coeff(1,0); |
---|
| 250 | ComplexScalar c = t.coeff(0,0) - t.coeff(1,1); |
---|
| 251 | ComplexScalar disc = sqrt(c*c + RealScalar(4)*b); |
---|
| 252 | ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b; |
---|
| 253 | ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1); |
---|
| 254 | ComplexScalar eival1 = (trace + disc) / RealScalar(2); |
---|
| 255 | ComplexScalar eival2 = (trace - disc) / RealScalar(2); |
---|
| 256 | |
---|
| 257 | if(internal::norm1(eival1) > internal::norm1(eival2)) |
---|
| 258 | eival2 = det / eival1; |
---|
| 259 | else |
---|
| 260 | eival1 = det / eival2; |
---|
| 261 | |
---|
| 262 | // choose the eigenvalue closest to the bottom entry of the diagonal |
---|
| 263 | if(internal::norm1(eival1-t.coeff(1,1)) < internal::norm1(eival2-t.coeff(1,1))) |
---|
| 264 | return normt * eival1; |
---|
| 265 | else |
---|
| 266 | return normt * eival2; |
---|
| 267 | } |
---|
| 268 | |
---|
| 269 | |
---|
| 270 | template<typename MatrixType> |
---|
| 271 | ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU) |
---|
| 272 | { |
---|
| 273 | m_matUisUptodate = false; |
---|
| 274 | eigen_assert(matrix.cols() == matrix.rows()); |
---|
| 275 | |
---|
| 276 | if(matrix.cols() == 1) |
---|
| 277 | { |
---|
| 278 | m_matT = matrix.template cast<ComplexScalar>(); |
---|
| 279 | if(computeU) m_matU = ComplexMatrixType::Identity(1,1); |
---|
| 280 | m_info = Success; |
---|
| 281 | m_isInitialized = true; |
---|
| 282 | m_matUisUptodate = computeU; |
---|
| 283 | return *this; |
---|
| 284 | } |
---|
| 285 | |
---|
| 286 | internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix, computeU); |
---|
| 287 | reduceToTriangularForm(computeU); |
---|
| 288 | return *this; |
---|
| 289 | } |
---|
| 290 | |
---|
| 291 | namespace internal { |
---|
| 292 | |
---|
| 293 | /* Reduce given matrix to Hessenberg form */ |
---|
| 294 | template<typename MatrixType, bool IsComplex> |
---|
| 295 | struct complex_schur_reduce_to_hessenberg |
---|
| 296 | { |
---|
| 297 | // this is the implementation for the case IsComplex = true |
---|
| 298 | static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU) |
---|
| 299 | { |
---|
| 300 | _this.m_hess.compute(matrix); |
---|
| 301 | _this.m_matT = _this.m_hess.matrixH(); |
---|
| 302 | if(computeU) _this.m_matU = _this.m_hess.matrixQ(); |
---|
| 303 | } |
---|
| 304 | }; |
---|
| 305 | |
---|
| 306 | template<typename MatrixType> |
---|
| 307 | struct complex_schur_reduce_to_hessenberg<MatrixType, false> |
---|
| 308 | { |
---|
| 309 | static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU) |
---|
| 310 | { |
---|
| 311 | typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar; |
---|
| 312 | typedef typename ComplexSchur<MatrixType>::ComplexMatrixType ComplexMatrixType; |
---|
| 313 | |
---|
| 314 | // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar |
---|
| 315 | _this.m_hess.compute(matrix); |
---|
| 316 | _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>(); |
---|
| 317 | if(computeU) |
---|
| 318 | { |
---|
| 319 | // This may cause an allocation which seems to be avoidable |
---|
| 320 | MatrixType Q = _this.m_hess.matrixQ(); |
---|
| 321 | _this.m_matU = Q.template cast<ComplexScalar>(); |
---|
| 322 | } |
---|
| 323 | } |
---|
| 324 | }; |
---|
| 325 | |
---|
| 326 | } // end namespace internal |
---|
| 327 | |
---|
| 328 | // Reduce the Hessenberg matrix m_matT to triangular form by QR iteration. |
---|
| 329 | template<typename MatrixType> |
---|
| 330 | void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU) |
---|
| 331 | { |
---|
| 332 | // The matrix m_matT is divided in three parts. |
---|
| 333 | // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero. |
---|
| 334 | // Rows il,...,iu is the part we are working on (the active submatrix). |
---|
| 335 | // Rows iu+1,...,end are already brought in triangular form. |
---|
| 336 | Index iu = m_matT.cols() - 1; |
---|
| 337 | Index il; |
---|
| 338 | Index iter = 0; // number of iterations we are working on the (iu,iu) element |
---|
| 339 | Index totalIter = 0; // number of iterations for whole matrix |
---|
| 340 | |
---|
| 341 | while(true) |
---|
| 342 | { |
---|
| 343 | // find iu, the bottom row of the active submatrix |
---|
| 344 | while(iu > 0) |
---|
| 345 | { |
---|
| 346 | if(!subdiagonalEntryIsNeglegible(iu-1)) break; |
---|
| 347 | iter = 0; |
---|
| 348 | --iu; |
---|
| 349 | } |
---|
| 350 | |
---|
| 351 | // if iu is zero then we are done; the whole matrix is triangularized |
---|
| 352 | if(iu==0) break; |
---|
| 353 | |
---|
| 354 | // if we spent too many iterations, we give up |
---|
| 355 | iter++; |
---|
| 356 | totalIter++; |
---|
| 357 | if(totalIter > m_maxIterations * m_matT.cols()) break; |
---|
| 358 | |
---|
| 359 | // find il, the top row of the active submatrix |
---|
| 360 | il = iu-1; |
---|
| 361 | while(il > 0 && !subdiagonalEntryIsNeglegible(il-1)) |
---|
| 362 | { |
---|
| 363 | --il; |
---|
| 364 | } |
---|
| 365 | |
---|
| 366 | /* perform the QR step using Givens rotations. The first rotation |
---|
| 367 | creates a bulge; the (il+2,il) element becomes nonzero. This |
---|
| 368 | bulge is chased down to the bottom of the active submatrix. */ |
---|
| 369 | |
---|
| 370 | ComplexScalar shift = computeShift(iu, iter); |
---|
| 371 | JacobiRotation<ComplexScalar> rot; |
---|
| 372 | rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il)); |
---|
| 373 | m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint()); |
---|
| 374 | m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot); |
---|
| 375 | if(computeU) m_matU.applyOnTheRight(il, il+1, rot); |
---|
| 376 | |
---|
| 377 | for(Index i=il+1 ; i<iu ; i++) |
---|
| 378 | { |
---|
| 379 | rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1)); |
---|
| 380 | m_matT.coeffRef(i+1,i-1) = ComplexScalar(0); |
---|
| 381 | m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint()); |
---|
| 382 | m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot); |
---|
| 383 | if(computeU) m_matU.applyOnTheRight(i, i+1, rot); |
---|
| 384 | } |
---|
| 385 | } |
---|
| 386 | |
---|
| 387 | if(totalIter <= m_maxIterations * m_matT.cols()) |
---|
| 388 | m_info = Success; |
---|
| 389 | else |
---|
| 390 | m_info = NoConvergence; |
---|
| 391 | |
---|
| 392 | m_isInitialized = true; |
---|
| 393 | m_matUisUptodate = computeU; |
---|
| 394 | } |
---|
| 395 | |
---|
| 396 | } // end namespace Eigen |
---|
| 397 | |
---|
| 398 | #endif // EIGEN_COMPLEX_SCHUR_H |
---|