Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Eigen/Eigen/src/Eigenvalues/ComplexSchur.h @ 10586

Last change on this file since 10586 was 9562, checked in by gkronber, 12 years ago

#1967 worked on Gaussian process evolution.

File size: 14.3 KB
RevLine 
[9562]1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Claire Maurice
5// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
7//
8// This Source Code Form is subject to the terms of the Mozilla
9// Public License v. 2.0. If a copy of the MPL was not distributed
10// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11
12#ifndef EIGEN_COMPLEX_SCHUR_H
13#define EIGEN_COMPLEX_SCHUR_H
14
15#include "./HessenbergDecomposition.h"
16
17namespace Eigen {
18
19namespace internal {
20template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg;
21}
22
23/** \eigenvalues_module \ingroup Eigenvalues_Module
24  *
25  *
26  * \class ComplexSchur
27  *
28  * \brief Performs a complex Schur decomposition of a real or complex square matrix
29  *
30  * \tparam _MatrixType the type of the matrix of which we are
31  * computing the Schur decomposition; this is expected to be an
32  * instantiation of the Matrix class template.
33  *
34  * Given a real or complex square matrix A, this class computes the
35  * Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary
36  * complex matrix, and T is a complex upper triangular matrix.  The
37  * diagonal of the matrix T corresponds to the eigenvalues of the
38  * matrix A.
39  *
40  * Call the function compute() to compute the Schur decomposition of
41  * a given matrix. Alternatively, you can use the
42  * ComplexSchur(const MatrixType&, bool) constructor which computes
43  * the Schur decomposition at construction time. Once the
44  * decomposition is computed, you can use the matrixU() and matrixT()
45  * functions to retrieve the matrices U and V in the decomposition.
46  *
47  * \note This code is inspired from Jampack
48  *
49  * \sa class RealSchur, class EigenSolver, class ComplexEigenSolver
50  */
51template<typename _MatrixType> class ComplexSchur
52{
53  public:
54    typedef _MatrixType MatrixType;
55    enum {
56      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
57      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
58      Options = MatrixType::Options,
59      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
60      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
61    };
62
63    /** \brief Scalar type for matrices of type \p _MatrixType. */
64    typedef typename MatrixType::Scalar Scalar;
65    typedef typename NumTraits<Scalar>::Real RealScalar;
66    typedef typename MatrixType::Index Index;
67
68    /** \brief Complex scalar type for \p _MatrixType.
69      *
70      * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
71      * \c float or \c double) and just \c Scalar if #Scalar is
72      * complex.
73      */
74    typedef std::complex<RealScalar> ComplexScalar;
75
76    /** \brief Type for the matrices in the Schur decomposition.
77      *
78      * This is a square matrix with entries of type #ComplexScalar.
79      * The size is the same as the size of \p _MatrixType.
80      */
81    typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType;
82
83    /** \brief Default constructor.
84      *
85      * \param [in] size  Positive integer, size of the matrix whose Schur decomposition will be computed.
86      *
87      * The default constructor is useful in cases in which the user
88      * intends to perform decompositions via compute().  The \p size
89      * parameter is only used as a hint. It is not an error to give a
90      * wrong \p size, but it may impair performance.
91      *
92      * \sa compute() for an example.
93      */
94    ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
95      : m_matT(size,size),
96        m_matU(size,size),
97        m_hess(size),
98        m_isInitialized(false),
99        m_matUisUptodate(false)
100    {}
101
102    /** \brief Constructor; computes Schur decomposition of given matrix.
103      *
104      * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed.
105      * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
106      *
107      * This constructor calls compute() to compute the Schur decomposition.
108      *
109      * \sa matrixT() and matrixU() for examples.
110      */
111    ComplexSchur(const MatrixType& matrix, bool computeU = true)
112            : m_matT(matrix.rows(),matrix.cols()),
113              m_matU(matrix.rows(),matrix.cols()),
114              m_hess(matrix.rows()),
115              m_isInitialized(false),
116              m_matUisUptodate(false)
117    {
118      compute(matrix, computeU);
119    }
120
121    /** \brief Returns the unitary matrix in the Schur decomposition.
122      *
123      * \returns A const reference to the matrix U.
124      *
125      * It is assumed that either the constructor
126      * ComplexSchur(const MatrixType& matrix, bool computeU) or the
127      * member function compute(const MatrixType& matrix, bool computeU)
128      * has been called before to compute the Schur decomposition of a
129      * matrix, and that \p computeU was set to true (the default
130      * value).
131      *
132      * Example: \include ComplexSchur_matrixU.cpp
133      * Output: \verbinclude ComplexSchur_matrixU.out
134      */
135    const ComplexMatrixType& matrixU() const
136    {
137      eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
138      eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition.");
139      return m_matU;
140    }
141
142    /** \brief Returns the triangular matrix in the Schur decomposition.
143      *
144      * \returns A const reference to the matrix T.
145      *
146      * It is assumed that either the constructor
147      * ComplexSchur(const MatrixType& matrix, bool computeU) or the
148      * member function compute(const MatrixType& matrix, bool computeU)
149      * has been called before to compute the Schur decomposition of a
150      * matrix.
151      *
152      * Note that this function returns a plain square matrix. If you want to reference
153      * only the upper triangular part, use:
154      * \code schur.matrixT().triangularView<Upper>() \endcode
155      *
156      * Example: \include ComplexSchur_matrixT.cpp
157      * Output: \verbinclude ComplexSchur_matrixT.out
158      */
159    const ComplexMatrixType& matrixT() const
160    {
161      eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
162      return m_matT;
163    }
164
165    /** \brief Computes Schur decomposition of given matrix.
166      *
167      * \param[in]  matrix  Square matrix whose Schur decomposition is to be computed.
168      * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
169      * \returns    Reference to \c *this
170      *
171      * The Schur decomposition is computed by first reducing the
172      * matrix to Hessenberg form using the class
173      * HessenbergDecomposition. The Hessenberg matrix is then reduced
174      * to triangular form by performing QR iterations with a single
175      * shift. The cost of computing the Schur decomposition depends
176      * on the number of iterations; as a rough guide, it may be taken
177      * on the number of iterations; as a rough guide, it may be taken
178      * to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops
179      * if \a computeU is false.
180      *
181      * Example: \include ComplexSchur_compute.cpp
182      * Output: \verbinclude ComplexSchur_compute.out
183      */
184    ComplexSchur& compute(const MatrixType& matrix, bool computeU = true);
185
186    /** \brief Reports whether previous computation was successful.
187      *
188      * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
189      */
190    ComputationInfo info() const
191    {
192      eigen_assert(m_isInitialized && "RealSchur is not initialized.");
193      return m_info;
194    }
195
196    /** \brief Maximum number of iterations.
197      *
198      * Maximum number of iterations allowed for an eigenvalue to converge.
199      */
200    static const int m_maxIterations = 30;
201
202  protected:
203    ComplexMatrixType m_matT, m_matU;
204    HessenbergDecomposition<MatrixType> m_hess;
205    ComputationInfo m_info;
206    bool m_isInitialized;
207    bool m_matUisUptodate;
208
209  private: 
210    bool subdiagonalEntryIsNeglegible(Index i);
211    ComplexScalar computeShift(Index iu, Index iter);
212    void reduceToTriangularForm(bool computeU);
213    friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>;
214};
215
216/** If m_matT(i+1,i) is neglegible in floating point arithmetic
217  * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and
218  * return true, else return false. */
219template<typename MatrixType>
220inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i)
221{
222  RealScalar d = internal::norm1(m_matT.coeff(i,i)) + internal::norm1(m_matT.coeff(i+1,i+1));
223  RealScalar sd = internal::norm1(m_matT.coeff(i+1,i));
224  if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon()))
225  {
226    m_matT.coeffRef(i+1,i) = ComplexScalar(0);
227    return true;
228  }
229  return false;
230}
231
232
233/** Compute the shift in the current QR iteration. */
234template<typename MatrixType>
235typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter)
236{
237  if (iter == 10 || iter == 20)
238  {
239    // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f
240    return internal::abs(internal::real(m_matT.coeff(iu,iu-1))) + internal::abs(internal::real(m_matT.coeff(iu-1,iu-2)));
241  }
242
243  // compute the shift as one of the eigenvalues of t, the 2x2
244  // diagonal block on the bottom of the active submatrix
245  Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
246  RealScalar normt = t.cwiseAbs().sum();
247  t /= normt;     // the normalization by sf is to avoid under/overflow
248
249  ComplexScalar b = t.coeff(0,1) * t.coeff(1,0);
250  ComplexScalar c = t.coeff(0,0) - t.coeff(1,1);
251  ComplexScalar disc = sqrt(c*c + RealScalar(4)*b);
252  ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b;
253  ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1);
254  ComplexScalar eival1 = (trace + disc) / RealScalar(2);
255  ComplexScalar eival2 = (trace - disc) / RealScalar(2);
256
257  if(internal::norm1(eival1) > internal::norm1(eival2))
258    eival2 = det / eival1;
259  else
260    eival1 = det / eival2;
261
262  // choose the eigenvalue closest to the bottom entry of the diagonal
263  if(internal::norm1(eival1-t.coeff(1,1)) < internal::norm1(eival2-t.coeff(1,1)))
264    return normt * eival1;
265  else
266    return normt * eival2;
267}
268
269
270template<typename MatrixType>
271ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU)
272{
273  m_matUisUptodate = false;
274  eigen_assert(matrix.cols() == matrix.rows());
275
276  if(matrix.cols() == 1)
277  {
278    m_matT = matrix.template cast<ComplexScalar>();
279    if(computeU)  m_matU = ComplexMatrixType::Identity(1,1);
280    m_info = Success;
281    m_isInitialized = true;
282    m_matUisUptodate = computeU;
283    return *this;
284  }
285
286  internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix, computeU);
287  reduceToTriangularForm(computeU);
288  return *this;
289}
290
291namespace internal {
292
293/* Reduce given matrix to Hessenberg form */
294template<typename MatrixType, bool IsComplex>
295struct complex_schur_reduce_to_hessenberg
296{
297  // this is the implementation for the case IsComplex = true
298  static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
299  {
300    _this.m_hess.compute(matrix);
301    _this.m_matT = _this.m_hess.matrixH();
302    if(computeU)  _this.m_matU = _this.m_hess.matrixQ();
303  }
304};
305
306template<typename MatrixType>
307struct complex_schur_reduce_to_hessenberg<MatrixType, false>
308{
309  static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
310  {
311    typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
312    typedef typename ComplexSchur<MatrixType>::ComplexMatrixType ComplexMatrixType;
313
314    // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar
315    _this.m_hess.compute(matrix);
316    _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>();
317    if(computeU) 
318    {
319      // This may cause an allocation which seems to be avoidable
320      MatrixType Q = _this.m_hess.matrixQ();
321      _this.m_matU = Q.template cast<ComplexScalar>();
322    }
323  }
324};
325
326} // end namespace internal
327
328// Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
329template<typename MatrixType>
330void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
331
332  // The matrix m_matT is divided in three parts.
333  // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
334  // Rows il,...,iu is the part we are working on (the active submatrix).
335  // Rows iu+1,...,end are already brought in triangular form.
336  Index iu = m_matT.cols() - 1;
337  Index il;
338  Index iter = 0; // number of iterations we are working on the (iu,iu) element
339  Index totalIter = 0; // number of iterations for whole matrix
340
341  while(true)
342  {
343    // find iu, the bottom row of the active submatrix
344    while(iu > 0)
345    {
346      if(!subdiagonalEntryIsNeglegible(iu-1)) break;
347      iter = 0;
348      --iu;
349    }
350
351    // if iu is zero then we are done; the whole matrix is triangularized
352    if(iu==0) break;
353
354    // if we spent too many iterations, we give up
355    iter++;
356    totalIter++;
357    if(totalIter > m_maxIterations * m_matT.cols()) break;
358
359    // find il, the top row of the active submatrix
360    il = iu-1;
361    while(il > 0 && !subdiagonalEntryIsNeglegible(il-1))
362    {
363      --il;
364    }
365
366    /* perform the QR step using Givens rotations. The first rotation
367       creates a bulge; the (il+2,il) element becomes nonzero. This
368       bulge is chased down to the bottom of the active submatrix. */
369
370    ComplexScalar shift = computeShift(iu, iter);
371    JacobiRotation<ComplexScalar> rot;
372    rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il));
373    m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint());
374    m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
375    if(computeU) m_matU.applyOnTheRight(il, il+1, rot);
376
377    for(Index i=il+1 ; i<iu ; i++)
378    {
379      rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1));
380      m_matT.coeffRef(i+1,i-1) = ComplexScalar(0);
381      m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint());
382      m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot);
383      if(computeU) m_matU.applyOnTheRight(i, i+1, rot);
384    }
385  }
386
387  if(totalIter <= m_maxIterations * m_matT.cols())
388    m_info = Success;
389  else
390    m_info = NoConvergence;
391
392  m_isInitialized = true;
393  m_matUisUptodate = computeU;
394}
395
396} // end namespace Eigen
397
398#endif // EIGEN_COMPLEX_SCHUR_H
Note: See TracBrowser for help on using the repository browser.