1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2009 Claire Maurice |
---|
5 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
6 | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
---|
7 | // |
---|
8 | // This Source Code Form is subject to the terms of the Mozilla |
---|
9 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
10 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
11 | |
---|
12 | #ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H |
---|
13 | #define EIGEN_COMPLEX_EIGEN_SOLVER_H |
---|
14 | |
---|
15 | #include "./ComplexSchur.h" |
---|
16 | |
---|
17 | namespace Eigen { |
---|
18 | |
---|
19 | /** \eigenvalues_module \ingroup Eigenvalues_Module |
---|
20 | * |
---|
21 | * |
---|
22 | * \class ComplexEigenSolver |
---|
23 | * |
---|
24 | * \brief Computes eigenvalues and eigenvectors of general complex matrices |
---|
25 | * |
---|
26 | * \tparam _MatrixType the type of the matrix of which we are |
---|
27 | * computing the eigendecomposition; this is expected to be an |
---|
28 | * instantiation of the Matrix class template. |
---|
29 | * |
---|
30 | * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars |
---|
31 | * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v |
---|
32 | * \f$. If \f$ D \f$ is a diagonal matrix with the eigenvalues on |
---|
33 | * the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as |
---|
34 | * its columns, then \f$ A V = V D \f$. The matrix \f$ V \f$ is |
---|
35 | * almost always invertible, in which case we have \f$ A = V D V^{-1} |
---|
36 | * \f$. This is called the eigendecomposition. |
---|
37 | * |
---|
38 | * The main function in this class is compute(), which computes the |
---|
39 | * eigenvalues and eigenvectors of a given function. The |
---|
40 | * documentation for that function contains an example showing the |
---|
41 | * main features of the class. |
---|
42 | * |
---|
43 | * \sa class EigenSolver, class SelfAdjointEigenSolver |
---|
44 | */ |
---|
45 | template<typename _MatrixType> class ComplexEigenSolver |
---|
46 | { |
---|
47 | public: |
---|
48 | |
---|
49 | /** \brief Synonym for the template parameter \p _MatrixType. */ |
---|
50 | typedef _MatrixType MatrixType; |
---|
51 | |
---|
52 | enum { |
---|
53 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
---|
54 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
---|
55 | Options = MatrixType::Options, |
---|
56 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
---|
57 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
---|
58 | }; |
---|
59 | |
---|
60 | /** \brief Scalar type for matrices of type #MatrixType. */ |
---|
61 | typedef typename MatrixType::Scalar Scalar; |
---|
62 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
63 | typedef typename MatrixType::Index Index; |
---|
64 | |
---|
65 | /** \brief Complex scalar type for #MatrixType. |
---|
66 | * |
---|
67 | * This is \c std::complex<Scalar> if #Scalar is real (e.g., |
---|
68 | * \c float or \c double) and just \c Scalar if #Scalar is |
---|
69 | * complex. |
---|
70 | */ |
---|
71 | typedef std::complex<RealScalar> ComplexScalar; |
---|
72 | |
---|
73 | /** \brief Type for vector of eigenvalues as returned by eigenvalues(). |
---|
74 | * |
---|
75 | * This is a column vector with entries of type #ComplexScalar. |
---|
76 | * The length of the vector is the size of #MatrixType. |
---|
77 | */ |
---|
78 | typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options&(~RowMajor), MaxColsAtCompileTime, 1> EigenvalueType; |
---|
79 | |
---|
80 | /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). |
---|
81 | * |
---|
82 | * This is a square matrix with entries of type #ComplexScalar. |
---|
83 | * The size is the same as the size of #MatrixType. |
---|
84 | */ |
---|
85 | typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorType; |
---|
86 | |
---|
87 | /** \brief Default constructor. |
---|
88 | * |
---|
89 | * The default constructor is useful in cases in which the user intends to |
---|
90 | * perform decompositions via compute(). |
---|
91 | */ |
---|
92 | ComplexEigenSolver() |
---|
93 | : m_eivec(), |
---|
94 | m_eivalues(), |
---|
95 | m_schur(), |
---|
96 | m_isInitialized(false), |
---|
97 | m_eigenvectorsOk(false), |
---|
98 | m_matX() |
---|
99 | {} |
---|
100 | |
---|
101 | /** \brief Default Constructor with memory preallocation |
---|
102 | * |
---|
103 | * Like the default constructor but with preallocation of the internal data |
---|
104 | * according to the specified problem \a size. |
---|
105 | * \sa ComplexEigenSolver() |
---|
106 | */ |
---|
107 | ComplexEigenSolver(Index size) |
---|
108 | : m_eivec(size, size), |
---|
109 | m_eivalues(size), |
---|
110 | m_schur(size), |
---|
111 | m_isInitialized(false), |
---|
112 | m_eigenvectorsOk(false), |
---|
113 | m_matX(size, size) |
---|
114 | {} |
---|
115 | |
---|
116 | /** \brief Constructor; computes eigendecomposition of given matrix. |
---|
117 | * |
---|
118 | * \param[in] matrix Square matrix whose eigendecomposition is to be computed. |
---|
119 | * \param[in] computeEigenvectors If true, both the eigenvectors and the |
---|
120 | * eigenvalues are computed; if false, only the eigenvalues are |
---|
121 | * computed. |
---|
122 | * |
---|
123 | * This constructor calls compute() to compute the eigendecomposition. |
---|
124 | */ |
---|
125 | ComplexEigenSolver(const MatrixType& matrix, bool computeEigenvectors = true) |
---|
126 | : m_eivec(matrix.rows(),matrix.cols()), |
---|
127 | m_eivalues(matrix.cols()), |
---|
128 | m_schur(matrix.rows()), |
---|
129 | m_isInitialized(false), |
---|
130 | m_eigenvectorsOk(false), |
---|
131 | m_matX(matrix.rows(),matrix.cols()) |
---|
132 | { |
---|
133 | compute(matrix, computeEigenvectors); |
---|
134 | } |
---|
135 | |
---|
136 | /** \brief Returns the eigenvectors of given matrix. |
---|
137 | * |
---|
138 | * \returns A const reference to the matrix whose columns are the eigenvectors. |
---|
139 | * |
---|
140 | * \pre Either the constructor |
---|
141 | * ComplexEigenSolver(const MatrixType& matrix, bool) or the member |
---|
142 | * function compute(const MatrixType& matrix, bool) has been called before |
---|
143 | * to compute the eigendecomposition of a matrix, and |
---|
144 | * \p computeEigenvectors was set to true (the default). |
---|
145 | * |
---|
146 | * This function returns a matrix whose columns are the eigenvectors. Column |
---|
147 | * \f$ k \f$ is an eigenvector corresponding to eigenvalue number \f$ k |
---|
148 | * \f$ as returned by eigenvalues(). The eigenvectors are normalized to |
---|
149 | * have (Euclidean) norm equal to one. The matrix returned by this |
---|
150 | * function is the matrix \f$ V \f$ in the eigendecomposition \f$ A = V D |
---|
151 | * V^{-1} \f$, if it exists. |
---|
152 | * |
---|
153 | * Example: \include ComplexEigenSolver_eigenvectors.cpp |
---|
154 | * Output: \verbinclude ComplexEigenSolver_eigenvectors.out |
---|
155 | */ |
---|
156 | const EigenvectorType& eigenvectors() const |
---|
157 | { |
---|
158 | eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); |
---|
159 | eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); |
---|
160 | return m_eivec; |
---|
161 | } |
---|
162 | |
---|
163 | /** \brief Returns the eigenvalues of given matrix. |
---|
164 | * |
---|
165 | * \returns A const reference to the column vector containing the eigenvalues. |
---|
166 | * |
---|
167 | * \pre Either the constructor |
---|
168 | * ComplexEigenSolver(const MatrixType& matrix, bool) or the member |
---|
169 | * function compute(const MatrixType& matrix, bool) has been called before |
---|
170 | * to compute the eigendecomposition of a matrix. |
---|
171 | * |
---|
172 | * This function returns a column vector containing the |
---|
173 | * eigenvalues. Eigenvalues are repeated according to their |
---|
174 | * algebraic multiplicity, so there are as many eigenvalues as |
---|
175 | * rows in the matrix. The eigenvalues are not sorted in any particular |
---|
176 | * order. |
---|
177 | * |
---|
178 | * Example: \include ComplexEigenSolver_eigenvalues.cpp |
---|
179 | * Output: \verbinclude ComplexEigenSolver_eigenvalues.out |
---|
180 | */ |
---|
181 | const EigenvalueType& eigenvalues() const |
---|
182 | { |
---|
183 | eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); |
---|
184 | return m_eivalues; |
---|
185 | } |
---|
186 | |
---|
187 | /** \brief Computes eigendecomposition of given matrix. |
---|
188 | * |
---|
189 | * \param[in] matrix Square matrix whose eigendecomposition is to be computed. |
---|
190 | * \param[in] computeEigenvectors If true, both the eigenvectors and the |
---|
191 | * eigenvalues are computed; if false, only the eigenvalues are |
---|
192 | * computed. |
---|
193 | * \returns Reference to \c *this |
---|
194 | * |
---|
195 | * This function computes the eigenvalues of the complex matrix \p matrix. |
---|
196 | * The eigenvalues() function can be used to retrieve them. If |
---|
197 | * \p computeEigenvectors is true, then the eigenvectors are also computed |
---|
198 | * and can be retrieved by calling eigenvectors(). |
---|
199 | * |
---|
200 | * The matrix is first reduced to Schur form using the |
---|
201 | * ComplexSchur class. The Schur decomposition is then used to |
---|
202 | * compute the eigenvalues and eigenvectors. |
---|
203 | * |
---|
204 | * The cost of the computation is dominated by the cost of the |
---|
205 | * Schur decomposition, which is \f$ O(n^3) \f$ where \f$ n \f$ |
---|
206 | * is the size of the matrix. |
---|
207 | * |
---|
208 | * Example: \include ComplexEigenSolver_compute.cpp |
---|
209 | * Output: \verbinclude ComplexEigenSolver_compute.out |
---|
210 | */ |
---|
211 | ComplexEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true); |
---|
212 | |
---|
213 | /** \brief Reports whether previous computation was successful. |
---|
214 | * |
---|
215 | * \returns \c Success if computation was succesful, \c NoConvergence otherwise. |
---|
216 | */ |
---|
217 | ComputationInfo info() const |
---|
218 | { |
---|
219 | eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); |
---|
220 | return m_schur.info(); |
---|
221 | } |
---|
222 | |
---|
223 | protected: |
---|
224 | EigenvectorType m_eivec; |
---|
225 | EigenvalueType m_eivalues; |
---|
226 | ComplexSchur<MatrixType> m_schur; |
---|
227 | bool m_isInitialized; |
---|
228 | bool m_eigenvectorsOk; |
---|
229 | EigenvectorType m_matX; |
---|
230 | |
---|
231 | private: |
---|
232 | void doComputeEigenvectors(RealScalar matrixnorm); |
---|
233 | void sortEigenvalues(bool computeEigenvectors); |
---|
234 | }; |
---|
235 | |
---|
236 | |
---|
237 | template<typename MatrixType> |
---|
238 | ComplexEigenSolver<MatrixType>& ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors) |
---|
239 | { |
---|
240 | // this code is inspired from Jampack |
---|
241 | assert(matrix.cols() == matrix.rows()); |
---|
242 | |
---|
243 | // Do a complex Schur decomposition, A = U T U^* |
---|
244 | // The eigenvalues are on the diagonal of T. |
---|
245 | m_schur.compute(matrix, computeEigenvectors); |
---|
246 | |
---|
247 | if(m_schur.info() == Success) |
---|
248 | { |
---|
249 | m_eivalues = m_schur.matrixT().diagonal(); |
---|
250 | if(computeEigenvectors) |
---|
251 | doComputeEigenvectors(matrix.norm()); |
---|
252 | sortEigenvalues(computeEigenvectors); |
---|
253 | } |
---|
254 | |
---|
255 | m_isInitialized = true; |
---|
256 | m_eigenvectorsOk = computeEigenvectors; |
---|
257 | return *this; |
---|
258 | } |
---|
259 | |
---|
260 | |
---|
261 | template<typename MatrixType> |
---|
262 | void ComplexEigenSolver<MatrixType>::doComputeEigenvectors(RealScalar matrixnorm) |
---|
263 | { |
---|
264 | const Index n = m_eivalues.size(); |
---|
265 | |
---|
266 | // Compute X such that T = X D X^(-1), where D is the diagonal of T. |
---|
267 | // The matrix X is unit triangular. |
---|
268 | m_matX = EigenvectorType::Zero(n, n); |
---|
269 | for(Index k=n-1 ; k>=0 ; k--) |
---|
270 | { |
---|
271 | m_matX.coeffRef(k,k) = ComplexScalar(1.0,0.0); |
---|
272 | // Compute X(i,k) using the (i,k) entry of the equation X T = D X |
---|
273 | for(Index i=k-1 ; i>=0 ; i--) |
---|
274 | { |
---|
275 | m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k); |
---|
276 | if(k-i-1>0) |
---|
277 | m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k-i-1)).value(); |
---|
278 | ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k); |
---|
279 | if(z==ComplexScalar(0)) |
---|
280 | { |
---|
281 | // If the i-th and k-th eigenvalue are equal, then z equals 0. |
---|
282 | // Use a small value instead, to prevent division by zero. |
---|
283 | internal::real_ref(z) = NumTraits<RealScalar>::epsilon() * matrixnorm; |
---|
284 | } |
---|
285 | m_matX.coeffRef(i,k) = m_matX.coeff(i,k) / z; |
---|
286 | } |
---|
287 | } |
---|
288 | |
---|
289 | // Compute V as V = U X; now A = U T U^* = U X D X^(-1) U^* = V D V^(-1) |
---|
290 | m_eivec.noalias() = m_schur.matrixU() * m_matX; |
---|
291 | // .. and normalize the eigenvectors |
---|
292 | for(Index k=0 ; k<n ; k++) |
---|
293 | { |
---|
294 | m_eivec.col(k).normalize(); |
---|
295 | } |
---|
296 | } |
---|
297 | |
---|
298 | |
---|
299 | template<typename MatrixType> |
---|
300 | void ComplexEigenSolver<MatrixType>::sortEigenvalues(bool computeEigenvectors) |
---|
301 | { |
---|
302 | const Index n = m_eivalues.size(); |
---|
303 | for (Index i=0; i<n; i++) |
---|
304 | { |
---|
305 | Index k; |
---|
306 | m_eivalues.cwiseAbs().tail(n-i).minCoeff(&k); |
---|
307 | if (k != 0) |
---|
308 | { |
---|
309 | k += i; |
---|
310 | std::swap(m_eivalues[k],m_eivalues[i]); |
---|
311 | if(computeEigenvectors) |
---|
312 | m_eivec.col(i).swap(m_eivec.col(k)); |
---|
313 | } |
---|
314 | } |
---|
315 | } |
---|
316 | |
---|
317 | } // end namespace Eigen |
---|
318 | |
---|
319 | #endif // EIGEN_COMPLEX_EIGEN_SOLVER_H |
---|