1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. Eigen itself is part of the KDE project. |
---|
3 | // |
---|
4 | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
---|
5 | // |
---|
6 | // This Source Code Form is subject to the terms of the Mozilla |
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
9 | |
---|
10 | #ifndef EIGEN2_SVD_H |
---|
11 | #define EIGEN2_SVD_H |
---|
12 | |
---|
13 | namespace Eigen { |
---|
14 | |
---|
15 | /** \ingroup SVD_Module |
---|
16 | * \nonstableyet |
---|
17 | * |
---|
18 | * \class SVD |
---|
19 | * |
---|
20 | * \brief Standard SVD decomposition of a matrix and associated features |
---|
21 | * |
---|
22 | * \param MatrixType the type of the matrix of which we are computing the SVD decomposition |
---|
23 | * |
---|
24 | * This class performs a standard SVD decomposition of a real matrix A of size \c M x \c N |
---|
25 | * with \c M \>= \c N. |
---|
26 | * |
---|
27 | * |
---|
28 | * \sa MatrixBase::SVD() |
---|
29 | */ |
---|
30 | template<typename MatrixType> class SVD |
---|
31 | { |
---|
32 | private: |
---|
33 | typedef typename MatrixType::Scalar Scalar; |
---|
34 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
---|
35 | |
---|
36 | enum { |
---|
37 | PacketSize = internal::packet_traits<Scalar>::size, |
---|
38 | AlignmentMask = int(PacketSize)-1, |
---|
39 | MinSize = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime) |
---|
40 | }; |
---|
41 | |
---|
42 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVector; |
---|
43 | typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> RowVector; |
---|
44 | |
---|
45 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MinSize> MatrixUType; |
---|
46 | typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixVType; |
---|
47 | typedef Matrix<Scalar, MinSize, 1> SingularValuesType; |
---|
48 | |
---|
49 | public: |
---|
50 | |
---|
51 | SVD() {} // a user who relied on compiler-generated default compiler reported problems with MSVC in 2.0.7 |
---|
52 | |
---|
53 | SVD(const MatrixType& matrix) |
---|
54 | : m_matU(matrix.rows(), (std::min)(matrix.rows(), matrix.cols())), |
---|
55 | m_matV(matrix.cols(),matrix.cols()), |
---|
56 | m_sigma((std::min)(matrix.rows(),matrix.cols())) |
---|
57 | { |
---|
58 | compute(matrix); |
---|
59 | } |
---|
60 | |
---|
61 | template<typename OtherDerived, typename ResultType> |
---|
62 | bool solve(const MatrixBase<OtherDerived> &b, ResultType* result) const; |
---|
63 | |
---|
64 | const MatrixUType& matrixU() const { return m_matU; } |
---|
65 | const SingularValuesType& singularValues() const { return m_sigma; } |
---|
66 | const MatrixVType& matrixV() const { return m_matV; } |
---|
67 | |
---|
68 | void compute(const MatrixType& matrix); |
---|
69 | SVD& sort(); |
---|
70 | |
---|
71 | template<typename UnitaryType, typename PositiveType> |
---|
72 | void computeUnitaryPositive(UnitaryType *unitary, PositiveType *positive) const; |
---|
73 | template<typename PositiveType, typename UnitaryType> |
---|
74 | void computePositiveUnitary(PositiveType *positive, UnitaryType *unitary) const; |
---|
75 | template<typename RotationType, typename ScalingType> |
---|
76 | void computeRotationScaling(RotationType *unitary, ScalingType *positive) const; |
---|
77 | template<typename ScalingType, typename RotationType> |
---|
78 | void computeScalingRotation(ScalingType *positive, RotationType *unitary) const; |
---|
79 | |
---|
80 | protected: |
---|
81 | /** \internal */ |
---|
82 | MatrixUType m_matU; |
---|
83 | /** \internal */ |
---|
84 | MatrixVType m_matV; |
---|
85 | /** \internal */ |
---|
86 | SingularValuesType m_sigma; |
---|
87 | }; |
---|
88 | |
---|
89 | /** Computes / recomputes the SVD decomposition A = U S V^* of \a matrix |
---|
90 | * |
---|
91 | * \note this code has been adapted from JAMA (public domain) |
---|
92 | */ |
---|
93 | template<typename MatrixType> |
---|
94 | void SVD<MatrixType>::compute(const MatrixType& matrix) |
---|
95 | { |
---|
96 | const int m = matrix.rows(); |
---|
97 | const int n = matrix.cols(); |
---|
98 | const int nu = (std::min)(m,n); |
---|
99 | ei_assert(m>=n && "In Eigen 2.0, SVD only works for MxN matrices with M>=N. Sorry!"); |
---|
100 | ei_assert(m>1 && "In Eigen 2.0, SVD doesn't work on 1x1 matrices"); |
---|
101 | |
---|
102 | m_matU.resize(m, nu); |
---|
103 | m_matU.setZero(); |
---|
104 | m_sigma.resize((std::min)(m,n)); |
---|
105 | m_matV.resize(n,n); |
---|
106 | |
---|
107 | RowVector e(n); |
---|
108 | ColVector work(m); |
---|
109 | MatrixType matA(matrix); |
---|
110 | const bool wantu = true; |
---|
111 | const bool wantv = true; |
---|
112 | int i=0, j=0, k=0; |
---|
113 | |
---|
114 | // Reduce A to bidiagonal form, storing the diagonal elements |
---|
115 | // in s and the super-diagonal elements in e. |
---|
116 | int nct = (std::min)(m-1,n); |
---|
117 | int nrt = (std::max)(0,(std::min)(n-2,m)); |
---|
118 | for (k = 0; k < (std::max)(nct,nrt); ++k) |
---|
119 | { |
---|
120 | if (k < nct) |
---|
121 | { |
---|
122 | // Compute the transformation for the k-th column and |
---|
123 | // place the k-th diagonal in m_sigma[k]. |
---|
124 | m_sigma[k] = matA.col(k).end(m-k).norm(); |
---|
125 | if (m_sigma[k] != 0.0) // FIXME |
---|
126 | { |
---|
127 | if (matA(k,k) < 0.0) |
---|
128 | m_sigma[k] = -m_sigma[k]; |
---|
129 | matA.col(k).end(m-k) /= m_sigma[k]; |
---|
130 | matA(k,k) += 1.0; |
---|
131 | } |
---|
132 | m_sigma[k] = -m_sigma[k]; |
---|
133 | } |
---|
134 | |
---|
135 | for (j = k+1; j < n; ++j) |
---|
136 | { |
---|
137 | if ((k < nct) && (m_sigma[k] != 0.0)) |
---|
138 | { |
---|
139 | // Apply the transformation. |
---|
140 | Scalar t = matA.col(k).end(m-k).eigen2_dot(matA.col(j).end(m-k)); // FIXME dot product or cwise prod + .sum() ?? |
---|
141 | t = -t/matA(k,k); |
---|
142 | matA.col(j).end(m-k) += t * matA.col(k).end(m-k); |
---|
143 | } |
---|
144 | |
---|
145 | // Place the k-th row of A into e for the |
---|
146 | // subsequent calculation of the row transformation. |
---|
147 | e[j] = matA(k,j); |
---|
148 | } |
---|
149 | |
---|
150 | // Place the transformation in U for subsequent back multiplication. |
---|
151 | if (wantu & (k < nct)) |
---|
152 | m_matU.col(k).end(m-k) = matA.col(k).end(m-k); |
---|
153 | |
---|
154 | if (k < nrt) |
---|
155 | { |
---|
156 | // Compute the k-th row transformation and place the |
---|
157 | // k-th super-diagonal in e[k]. |
---|
158 | e[k] = e.end(n-k-1).norm(); |
---|
159 | if (e[k] != 0.0) |
---|
160 | { |
---|
161 | if (e[k+1] < 0.0) |
---|
162 | e[k] = -e[k]; |
---|
163 | e.end(n-k-1) /= e[k]; |
---|
164 | e[k+1] += 1.0; |
---|
165 | } |
---|
166 | e[k] = -e[k]; |
---|
167 | if ((k+1 < m) & (e[k] != 0.0)) |
---|
168 | { |
---|
169 | // Apply the transformation. |
---|
170 | work.end(m-k-1) = matA.corner(BottomRight,m-k-1,n-k-1) * e.end(n-k-1); |
---|
171 | for (j = k+1; j < n; ++j) |
---|
172 | matA.col(j).end(m-k-1) += (-e[j]/e[k+1]) * work.end(m-k-1); |
---|
173 | } |
---|
174 | |
---|
175 | // Place the transformation in V for subsequent back multiplication. |
---|
176 | if (wantv) |
---|
177 | m_matV.col(k).end(n-k-1) = e.end(n-k-1); |
---|
178 | } |
---|
179 | } |
---|
180 | |
---|
181 | |
---|
182 | // Set up the final bidiagonal matrix or order p. |
---|
183 | int p = (std::min)(n,m+1); |
---|
184 | if (nct < n) |
---|
185 | m_sigma[nct] = matA(nct,nct); |
---|
186 | if (m < p) |
---|
187 | m_sigma[p-1] = 0.0; |
---|
188 | if (nrt+1 < p) |
---|
189 | e[nrt] = matA(nrt,p-1); |
---|
190 | e[p-1] = 0.0; |
---|
191 | |
---|
192 | // If required, generate U. |
---|
193 | if (wantu) |
---|
194 | { |
---|
195 | for (j = nct; j < nu; ++j) |
---|
196 | { |
---|
197 | m_matU.col(j).setZero(); |
---|
198 | m_matU(j,j) = 1.0; |
---|
199 | } |
---|
200 | for (k = nct-1; k >= 0; k--) |
---|
201 | { |
---|
202 | if (m_sigma[k] != 0.0) |
---|
203 | { |
---|
204 | for (j = k+1; j < nu; ++j) |
---|
205 | { |
---|
206 | Scalar t = m_matU.col(k).end(m-k).eigen2_dot(m_matU.col(j).end(m-k)); // FIXME is it really a dot product we want ? |
---|
207 | t = -t/m_matU(k,k); |
---|
208 | m_matU.col(j).end(m-k) += t * m_matU.col(k).end(m-k); |
---|
209 | } |
---|
210 | m_matU.col(k).end(m-k) = - m_matU.col(k).end(m-k); |
---|
211 | m_matU(k,k) = Scalar(1) + m_matU(k,k); |
---|
212 | if (k-1>0) |
---|
213 | m_matU.col(k).start(k-1).setZero(); |
---|
214 | } |
---|
215 | else |
---|
216 | { |
---|
217 | m_matU.col(k).setZero(); |
---|
218 | m_matU(k,k) = 1.0; |
---|
219 | } |
---|
220 | } |
---|
221 | } |
---|
222 | |
---|
223 | // If required, generate V. |
---|
224 | if (wantv) |
---|
225 | { |
---|
226 | for (k = n-1; k >= 0; k--) |
---|
227 | { |
---|
228 | if ((k < nrt) & (e[k] != 0.0)) |
---|
229 | { |
---|
230 | for (j = k+1; j < nu; ++j) |
---|
231 | { |
---|
232 | Scalar t = m_matV.col(k).end(n-k-1).eigen2_dot(m_matV.col(j).end(n-k-1)); // FIXME is it really a dot product we want ? |
---|
233 | t = -t/m_matV(k+1,k); |
---|
234 | m_matV.col(j).end(n-k-1) += t * m_matV.col(k).end(n-k-1); |
---|
235 | } |
---|
236 | } |
---|
237 | m_matV.col(k).setZero(); |
---|
238 | m_matV(k,k) = 1.0; |
---|
239 | } |
---|
240 | } |
---|
241 | |
---|
242 | // Main iteration loop for the singular values. |
---|
243 | int pp = p-1; |
---|
244 | int iter = 0; |
---|
245 | Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52)); |
---|
246 | while (p > 0) |
---|
247 | { |
---|
248 | int k=0; |
---|
249 | int kase=0; |
---|
250 | |
---|
251 | // Here is where a test for too many iterations would go. |
---|
252 | |
---|
253 | // This section of the program inspects for |
---|
254 | // negligible elements in the s and e arrays. On |
---|
255 | // completion the variables kase and k are set as follows. |
---|
256 | |
---|
257 | // kase = 1 if s(p) and e[k-1] are negligible and k<p |
---|
258 | // kase = 2 if s(k) is negligible and k<p |
---|
259 | // kase = 3 if e[k-1] is negligible, k<p, and |
---|
260 | // s(k), ..., s(p) are not negligible (qr step). |
---|
261 | // kase = 4 if e(p-1) is negligible (convergence). |
---|
262 | |
---|
263 | for (k = p-2; k >= -1; --k) |
---|
264 | { |
---|
265 | if (k == -1) |
---|
266 | break; |
---|
267 | if (ei_abs(e[k]) <= eps*(ei_abs(m_sigma[k]) + ei_abs(m_sigma[k+1]))) |
---|
268 | { |
---|
269 | e[k] = 0.0; |
---|
270 | break; |
---|
271 | } |
---|
272 | } |
---|
273 | if (k == p-2) |
---|
274 | { |
---|
275 | kase = 4; |
---|
276 | } |
---|
277 | else |
---|
278 | { |
---|
279 | int ks; |
---|
280 | for (ks = p-1; ks >= k; --ks) |
---|
281 | { |
---|
282 | if (ks == k) |
---|
283 | break; |
---|
284 | Scalar t = (ks != p ? ei_abs(e[ks]) : Scalar(0)) + (ks != k+1 ? ei_abs(e[ks-1]) : Scalar(0)); |
---|
285 | if (ei_abs(m_sigma[ks]) <= eps*t) |
---|
286 | { |
---|
287 | m_sigma[ks] = 0.0; |
---|
288 | break; |
---|
289 | } |
---|
290 | } |
---|
291 | if (ks == k) |
---|
292 | { |
---|
293 | kase = 3; |
---|
294 | } |
---|
295 | else if (ks == p-1) |
---|
296 | { |
---|
297 | kase = 1; |
---|
298 | } |
---|
299 | else |
---|
300 | { |
---|
301 | kase = 2; |
---|
302 | k = ks; |
---|
303 | } |
---|
304 | } |
---|
305 | ++k; |
---|
306 | |
---|
307 | // Perform the task indicated by kase. |
---|
308 | switch (kase) |
---|
309 | { |
---|
310 | |
---|
311 | // Deflate negligible s(p). |
---|
312 | case 1: |
---|
313 | { |
---|
314 | Scalar f(e[p-2]); |
---|
315 | e[p-2] = 0.0; |
---|
316 | for (j = p-2; j >= k; --j) |
---|
317 | { |
---|
318 | Scalar t(internal::hypot(m_sigma[j],f)); |
---|
319 | Scalar cs(m_sigma[j]/t); |
---|
320 | Scalar sn(f/t); |
---|
321 | m_sigma[j] = t; |
---|
322 | if (j != k) |
---|
323 | { |
---|
324 | f = -sn*e[j-1]; |
---|
325 | e[j-1] = cs*e[j-1]; |
---|
326 | } |
---|
327 | if (wantv) |
---|
328 | { |
---|
329 | for (i = 0; i < n; ++i) |
---|
330 | { |
---|
331 | t = cs*m_matV(i,j) + sn*m_matV(i,p-1); |
---|
332 | m_matV(i,p-1) = -sn*m_matV(i,j) + cs*m_matV(i,p-1); |
---|
333 | m_matV(i,j) = t; |
---|
334 | } |
---|
335 | } |
---|
336 | } |
---|
337 | } |
---|
338 | break; |
---|
339 | |
---|
340 | // Split at negligible s(k). |
---|
341 | case 2: |
---|
342 | { |
---|
343 | Scalar f(e[k-1]); |
---|
344 | e[k-1] = 0.0; |
---|
345 | for (j = k; j < p; ++j) |
---|
346 | { |
---|
347 | Scalar t(internal::hypot(m_sigma[j],f)); |
---|
348 | Scalar cs( m_sigma[j]/t); |
---|
349 | Scalar sn(f/t); |
---|
350 | m_sigma[j] = t; |
---|
351 | f = -sn*e[j]; |
---|
352 | e[j] = cs*e[j]; |
---|
353 | if (wantu) |
---|
354 | { |
---|
355 | for (i = 0; i < m; ++i) |
---|
356 | { |
---|
357 | t = cs*m_matU(i,j) + sn*m_matU(i,k-1); |
---|
358 | m_matU(i,k-1) = -sn*m_matU(i,j) + cs*m_matU(i,k-1); |
---|
359 | m_matU(i,j) = t; |
---|
360 | } |
---|
361 | } |
---|
362 | } |
---|
363 | } |
---|
364 | break; |
---|
365 | |
---|
366 | // Perform one qr step. |
---|
367 | case 3: |
---|
368 | { |
---|
369 | // Calculate the shift. |
---|
370 | Scalar scale = (std::max)((std::max)((std::max)((std::max)( |
---|
371 | ei_abs(m_sigma[p-1]),ei_abs(m_sigma[p-2])),ei_abs(e[p-2])), |
---|
372 | ei_abs(m_sigma[k])),ei_abs(e[k])); |
---|
373 | Scalar sp = m_sigma[p-1]/scale; |
---|
374 | Scalar spm1 = m_sigma[p-2]/scale; |
---|
375 | Scalar epm1 = e[p-2]/scale; |
---|
376 | Scalar sk = m_sigma[k]/scale; |
---|
377 | Scalar ek = e[k]/scale; |
---|
378 | Scalar b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/Scalar(2); |
---|
379 | Scalar c = (sp*epm1)*(sp*epm1); |
---|
380 | Scalar shift(0); |
---|
381 | if ((b != 0.0) || (c != 0.0)) |
---|
382 | { |
---|
383 | shift = ei_sqrt(b*b + c); |
---|
384 | if (b < 0.0) |
---|
385 | shift = -shift; |
---|
386 | shift = c/(b + shift); |
---|
387 | } |
---|
388 | Scalar f = (sk + sp)*(sk - sp) + shift; |
---|
389 | Scalar g = sk*ek; |
---|
390 | |
---|
391 | // Chase zeros. |
---|
392 | |
---|
393 | for (j = k; j < p-1; ++j) |
---|
394 | { |
---|
395 | Scalar t = internal::hypot(f,g); |
---|
396 | Scalar cs = f/t; |
---|
397 | Scalar sn = g/t; |
---|
398 | if (j != k) |
---|
399 | e[j-1] = t; |
---|
400 | f = cs*m_sigma[j] + sn*e[j]; |
---|
401 | e[j] = cs*e[j] - sn*m_sigma[j]; |
---|
402 | g = sn*m_sigma[j+1]; |
---|
403 | m_sigma[j+1] = cs*m_sigma[j+1]; |
---|
404 | if (wantv) |
---|
405 | { |
---|
406 | for (i = 0; i < n; ++i) |
---|
407 | { |
---|
408 | t = cs*m_matV(i,j) + sn*m_matV(i,j+1); |
---|
409 | m_matV(i,j+1) = -sn*m_matV(i,j) + cs*m_matV(i,j+1); |
---|
410 | m_matV(i,j) = t; |
---|
411 | } |
---|
412 | } |
---|
413 | t = internal::hypot(f,g); |
---|
414 | cs = f/t; |
---|
415 | sn = g/t; |
---|
416 | m_sigma[j] = t; |
---|
417 | f = cs*e[j] + sn*m_sigma[j+1]; |
---|
418 | m_sigma[j+1] = -sn*e[j] + cs*m_sigma[j+1]; |
---|
419 | g = sn*e[j+1]; |
---|
420 | e[j+1] = cs*e[j+1]; |
---|
421 | if (wantu && (j < m-1)) |
---|
422 | { |
---|
423 | for (i = 0; i < m; ++i) |
---|
424 | { |
---|
425 | t = cs*m_matU(i,j) + sn*m_matU(i,j+1); |
---|
426 | m_matU(i,j+1) = -sn*m_matU(i,j) + cs*m_matU(i,j+1); |
---|
427 | m_matU(i,j) = t; |
---|
428 | } |
---|
429 | } |
---|
430 | } |
---|
431 | e[p-2] = f; |
---|
432 | iter = iter + 1; |
---|
433 | } |
---|
434 | break; |
---|
435 | |
---|
436 | // Convergence. |
---|
437 | case 4: |
---|
438 | { |
---|
439 | // Make the singular values positive. |
---|
440 | if (m_sigma[k] <= 0.0) |
---|
441 | { |
---|
442 | m_sigma[k] = m_sigma[k] < Scalar(0) ? -m_sigma[k] : Scalar(0); |
---|
443 | if (wantv) |
---|
444 | m_matV.col(k).start(pp+1) = -m_matV.col(k).start(pp+1); |
---|
445 | } |
---|
446 | |
---|
447 | // Order the singular values. |
---|
448 | while (k < pp) |
---|
449 | { |
---|
450 | if (m_sigma[k] >= m_sigma[k+1]) |
---|
451 | break; |
---|
452 | Scalar t = m_sigma[k]; |
---|
453 | m_sigma[k] = m_sigma[k+1]; |
---|
454 | m_sigma[k+1] = t; |
---|
455 | if (wantv && (k < n-1)) |
---|
456 | m_matV.col(k).swap(m_matV.col(k+1)); |
---|
457 | if (wantu && (k < m-1)) |
---|
458 | m_matU.col(k).swap(m_matU.col(k+1)); |
---|
459 | ++k; |
---|
460 | } |
---|
461 | iter = 0; |
---|
462 | p--; |
---|
463 | } |
---|
464 | break; |
---|
465 | } // end big switch |
---|
466 | } // end iterations |
---|
467 | } |
---|
468 | |
---|
469 | template<typename MatrixType> |
---|
470 | SVD<MatrixType>& SVD<MatrixType>::sort() |
---|
471 | { |
---|
472 | int mu = m_matU.rows(); |
---|
473 | int mv = m_matV.rows(); |
---|
474 | int n = m_matU.cols(); |
---|
475 | |
---|
476 | for (int i=0; i<n; ++i) |
---|
477 | { |
---|
478 | int k = i; |
---|
479 | Scalar p = m_sigma.coeff(i); |
---|
480 | |
---|
481 | for (int j=i+1; j<n; ++j) |
---|
482 | { |
---|
483 | if (m_sigma.coeff(j) > p) |
---|
484 | { |
---|
485 | k = j; |
---|
486 | p = m_sigma.coeff(j); |
---|
487 | } |
---|
488 | } |
---|
489 | if (k != i) |
---|
490 | { |
---|
491 | m_sigma.coeffRef(k) = m_sigma.coeff(i); // i.e. |
---|
492 | m_sigma.coeffRef(i) = p; // swaps the i-th and the k-th elements |
---|
493 | |
---|
494 | int j = mu; |
---|
495 | for(int s=0; j!=0; ++s, --j) |
---|
496 | std::swap(m_matU.coeffRef(s,i), m_matU.coeffRef(s,k)); |
---|
497 | |
---|
498 | j = mv; |
---|
499 | for (int s=0; j!=0; ++s, --j) |
---|
500 | std::swap(m_matV.coeffRef(s,i), m_matV.coeffRef(s,k)); |
---|
501 | } |
---|
502 | } |
---|
503 | return *this; |
---|
504 | } |
---|
505 | |
---|
506 | /** \returns the solution of \f$ A x = b \f$ using the current SVD decomposition of A. |
---|
507 | * The parts of the solution corresponding to zero singular values are ignored. |
---|
508 | * |
---|
509 | * \sa MatrixBase::svd(), LU::solve(), LLT::solve() |
---|
510 | */ |
---|
511 | template<typename MatrixType> |
---|
512 | template<typename OtherDerived, typename ResultType> |
---|
513 | bool SVD<MatrixType>::solve(const MatrixBase<OtherDerived> &b, ResultType* result) const |
---|
514 | { |
---|
515 | const int rows = m_matU.rows(); |
---|
516 | ei_assert(b.rows() == rows); |
---|
517 | |
---|
518 | Scalar maxVal = m_sigma.cwise().abs().maxCoeff(); |
---|
519 | for (int j=0; j<b.cols(); ++j) |
---|
520 | { |
---|
521 | Matrix<Scalar,MatrixUType::RowsAtCompileTime,1> aux = m_matU.transpose() * b.col(j); |
---|
522 | |
---|
523 | for (int i = 0; i <m_matU.cols(); ++i) |
---|
524 | { |
---|
525 | Scalar si = m_sigma.coeff(i); |
---|
526 | if (ei_isMuchSmallerThan(ei_abs(si),maxVal)) |
---|
527 | aux.coeffRef(i) = 0; |
---|
528 | else |
---|
529 | aux.coeffRef(i) /= si; |
---|
530 | } |
---|
531 | |
---|
532 | result->col(j) = m_matV * aux; |
---|
533 | } |
---|
534 | return true; |
---|
535 | } |
---|
536 | |
---|
537 | /** Computes the polar decomposition of the matrix, as a product unitary x positive. |
---|
538 | * |
---|
539 | * If either pointer is zero, the corresponding computation is skipped. |
---|
540 | * |
---|
541 | * Only for square matrices. |
---|
542 | * |
---|
543 | * \sa computePositiveUnitary(), computeRotationScaling() |
---|
544 | */ |
---|
545 | template<typename MatrixType> |
---|
546 | template<typename UnitaryType, typename PositiveType> |
---|
547 | void SVD<MatrixType>::computeUnitaryPositive(UnitaryType *unitary, |
---|
548 | PositiveType *positive) const |
---|
549 | { |
---|
550 | ei_assert(m_matU.cols() == m_matV.cols() && "Polar decomposition is only for square matrices"); |
---|
551 | if(unitary) *unitary = m_matU * m_matV.adjoint(); |
---|
552 | if(positive) *positive = m_matV * m_sigma.asDiagonal() * m_matV.adjoint(); |
---|
553 | } |
---|
554 | |
---|
555 | /** Computes the polar decomposition of the matrix, as a product positive x unitary. |
---|
556 | * |
---|
557 | * If either pointer is zero, the corresponding computation is skipped. |
---|
558 | * |
---|
559 | * Only for square matrices. |
---|
560 | * |
---|
561 | * \sa computeUnitaryPositive(), computeRotationScaling() |
---|
562 | */ |
---|
563 | template<typename MatrixType> |
---|
564 | template<typename UnitaryType, typename PositiveType> |
---|
565 | void SVD<MatrixType>::computePositiveUnitary(UnitaryType *positive, |
---|
566 | PositiveType *unitary) const |
---|
567 | { |
---|
568 | ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices"); |
---|
569 | if(unitary) *unitary = m_matU * m_matV.adjoint(); |
---|
570 | if(positive) *positive = m_matU * m_sigma.asDiagonal() * m_matU.adjoint(); |
---|
571 | } |
---|
572 | |
---|
573 | /** decomposes the matrix as a product rotation x scaling, the scaling being |
---|
574 | * not necessarily positive. |
---|
575 | * |
---|
576 | * If either pointer is zero, the corresponding computation is skipped. |
---|
577 | * |
---|
578 | * This method requires the Geometry module. |
---|
579 | * |
---|
580 | * \sa computeScalingRotation(), computeUnitaryPositive() |
---|
581 | */ |
---|
582 | template<typename MatrixType> |
---|
583 | template<typename RotationType, typename ScalingType> |
---|
584 | void SVD<MatrixType>::computeRotationScaling(RotationType *rotation, ScalingType *scaling) const |
---|
585 | { |
---|
586 | ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices"); |
---|
587 | Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1 |
---|
588 | Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma); |
---|
589 | sv.coeffRef(0) *= x; |
---|
590 | if(scaling) scaling->lazyAssign(m_matV * sv.asDiagonal() * m_matV.adjoint()); |
---|
591 | if(rotation) |
---|
592 | { |
---|
593 | MatrixType m(m_matU); |
---|
594 | m.col(0) /= x; |
---|
595 | rotation->lazyAssign(m * m_matV.adjoint()); |
---|
596 | } |
---|
597 | } |
---|
598 | |
---|
599 | /** decomposes the matrix as a product scaling x rotation, the scaling being |
---|
600 | * not necessarily positive. |
---|
601 | * |
---|
602 | * If either pointer is zero, the corresponding computation is skipped. |
---|
603 | * |
---|
604 | * This method requires the Geometry module. |
---|
605 | * |
---|
606 | * \sa computeRotationScaling(), computeUnitaryPositive() |
---|
607 | */ |
---|
608 | template<typename MatrixType> |
---|
609 | template<typename ScalingType, typename RotationType> |
---|
610 | void SVD<MatrixType>::computeScalingRotation(ScalingType *scaling, RotationType *rotation) const |
---|
611 | { |
---|
612 | ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices"); |
---|
613 | Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1 |
---|
614 | Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma); |
---|
615 | sv.coeffRef(0) *= x; |
---|
616 | if(scaling) scaling->lazyAssign(m_matU * sv.asDiagonal() * m_matU.adjoint()); |
---|
617 | if(rotation) |
---|
618 | { |
---|
619 | MatrixType m(m_matU); |
---|
620 | m.col(0) /= x; |
---|
621 | rotation->lazyAssign(m * m_matV.adjoint()); |
---|
622 | } |
---|
623 | } |
---|
624 | |
---|
625 | |
---|
626 | /** \svd_module |
---|
627 | * \returns the SVD decomposition of \c *this |
---|
628 | */ |
---|
629 | template<typename Derived> |
---|
630 | inline SVD<typename MatrixBase<Derived>::PlainObject> |
---|
631 | MatrixBase<Derived>::svd() const |
---|
632 | { |
---|
633 | return SVD<PlainObject>(derived()); |
---|
634 | } |
---|
635 | |
---|
636 | } // end namespace Eigen |
---|
637 | |
---|
638 | #endif // EIGEN2_SVD_H |
---|