Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Eigen/Eigen/src/Eigen2Support/SVD.h @ 10617

Last change on this file since 10617 was 9562, checked in by gkronber, 12 years ago

#1967 worked on Gaussian process evolution.

File size: 18.1 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra. Eigen itself is part of the KDE project.
3//
4// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN2_SVD_H
11#define EIGEN2_SVD_H
12
13namespace Eigen {
14
15/** \ingroup SVD_Module
16  * \nonstableyet
17  *
18  * \class SVD
19  *
20  * \brief Standard SVD decomposition of a matrix and associated features
21  *
22  * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
23  *
24  * This class performs a standard SVD decomposition of a real matrix A of size \c M x \c N
25  * with \c M \>= \c N.
26  *
27  *
28  * \sa MatrixBase::SVD()
29  */
30template<typename MatrixType> class SVD
31{
32  private:
33    typedef typename MatrixType::Scalar Scalar;
34    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
35
36    enum {
37      PacketSize = internal::packet_traits<Scalar>::size,
38      AlignmentMask = int(PacketSize)-1,
39      MinSize = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime)
40    };
41
42    typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVector;
43    typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> RowVector;
44
45    typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MinSize> MatrixUType;
46    typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixVType;
47    typedef Matrix<Scalar, MinSize, 1> SingularValuesType;
48
49  public:
50
51    SVD() {} // a user who relied on compiler-generated default compiler reported problems with MSVC in 2.0.7
52   
53    SVD(const MatrixType& matrix)
54      : m_matU(matrix.rows(), (std::min)(matrix.rows(), matrix.cols())),
55        m_matV(matrix.cols(),matrix.cols()),
56        m_sigma((std::min)(matrix.rows(),matrix.cols()))
57    {
58      compute(matrix);
59    }
60
61    template<typename OtherDerived, typename ResultType>
62    bool solve(const MatrixBase<OtherDerived> &b, ResultType* result) const;
63
64    const MatrixUType& matrixU() const { return m_matU; }
65    const SingularValuesType& singularValues() const { return m_sigma; }
66    const MatrixVType& matrixV() const { return m_matV; }
67
68    void compute(const MatrixType& matrix);
69    SVD& sort();
70
71    template<typename UnitaryType, typename PositiveType>
72    void computeUnitaryPositive(UnitaryType *unitary, PositiveType *positive) const;
73    template<typename PositiveType, typename UnitaryType>
74    void computePositiveUnitary(PositiveType *positive, UnitaryType *unitary) const;
75    template<typename RotationType, typename ScalingType>
76    void computeRotationScaling(RotationType *unitary, ScalingType *positive) const;
77    template<typename ScalingType, typename RotationType>
78    void computeScalingRotation(ScalingType *positive, RotationType *unitary) const;
79
80  protected:
81    /** \internal */
82    MatrixUType m_matU;
83    /** \internal */
84    MatrixVType m_matV;
85    /** \internal */
86    SingularValuesType m_sigma;
87};
88
89/** Computes / recomputes the SVD decomposition A = U S V^* of \a matrix
90  *
91  * \note this code has been adapted from JAMA (public domain)
92  */
93template<typename MatrixType>
94void SVD<MatrixType>::compute(const MatrixType& matrix)
95{
96  const int m = matrix.rows();
97  const int n = matrix.cols();
98  const int nu = (std::min)(m,n);
99  ei_assert(m>=n && "In Eigen 2.0, SVD only works for MxN matrices with M>=N. Sorry!");
100  ei_assert(m>1 && "In Eigen 2.0, SVD doesn't work on 1x1 matrices");
101
102  m_matU.resize(m, nu);
103  m_matU.setZero();
104  m_sigma.resize((std::min)(m,n));
105  m_matV.resize(n,n);
106
107  RowVector e(n);
108  ColVector work(m);
109  MatrixType matA(matrix);
110  const bool wantu = true;
111  const bool wantv = true;
112  int i=0, j=0, k=0;
113
114  // Reduce A to bidiagonal form, storing the diagonal elements
115  // in s and the super-diagonal elements in e.
116  int nct = (std::min)(m-1,n);
117  int nrt = (std::max)(0,(std::min)(n-2,m));
118  for (k = 0; k < (std::max)(nct,nrt); ++k)
119  {
120    if (k < nct)
121    {
122      // Compute the transformation for the k-th column and
123      // place the k-th diagonal in m_sigma[k].
124      m_sigma[k] = matA.col(k).end(m-k).norm();
125      if (m_sigma[k] != 0.0) // FIXME
126      {
127        if (matA(k,k) < 0.0)
128          m_sigma[k] = -m_sigma[k];
129        matA.col(k).end(m-k) /= m_sigma[k];
130        matA(k,k) += 1.0;
131      }
132      m_sigma[k] = -m_sigma[k];
133    }
134
135    for (j = k+1; j < n; ++j)
136    {
137      if ((k < nct) && (m_sigma[k] != 0.0))
138      {
139        // Apply the transformation.
140        Scalar t = matA.col(k).end(m-k).eigen2_dot(matA.col(j).end(m-k)); // FIXME dot product or cwise prod + .sum() ??
141        t = -t/matA(k,k);
142        matA.col(j).end(m-k) += t * matA.col(k).end(m-k);
143      }
144
145      // Place the k-th row of A into e for the
146      // subsequent calculation of the row transformation.
147      e[j] = matA(k,j);
148    }
149
150    // Place the transformation in U for subsequent back multiplication.
151    if (wantu & (k < nct))
152      m_matU.col(k).end(m-k) = matA.col(k).end(m-k);
153
154    if (k < nrt)
155    {
156      // Compute the k-th row transformation and place the
157      // k-th super-diagonal in e[k].
158      e[k] = e.end(n-k-1).norm();
159      if (e[k] != 0.0)
160      {
161          if (e[k+1] < 0.0)
162            e[k] = -e[k];
163          e.end(n-k-1) /= e[k];
164          e[k+1] += 1.0;
165      }
166      e[k] = -e[k];
167      if ((k+1 < m) & (e[k] != 0.0))
168      {
169        // Apply the transformation.
170        work.end(m-k-1) = matA.corner(BottomRight,m-k-1,n-k-1) * e.end(n-k-1);
171        for (j = k+1; j < n; ++j)
172          matA.col(j).end(m-k-1) += (-e[j]/e[k+1]) * work.end(m-k-1);
173      }
174
175      // Place the transformation in V for subsequent back multiplication.
176      if (wantv)
177        m_matV.col(k).end(n-k-1) = e.end(n-k-1);
178    }
179  }
180
181
182  // Set up the final bidiagonal matrix or order p.
183  int p = (std::min)(n,m+1);
184  if (nct < n)
185    m_sigma[nct] = matA(nct,nct);
186  if (m < p)
187    m_sigma[p-1] = 0.0;
188  if (nrt+1 < p)
189    e[nrt] = matA(nrt,p-1);
190  e[p-1] = 0.0;
191
192  // If required, generate U.
193  if (wantu)
194  {
195    for (j = nct; j < nu; ++j)
196    {
197      m_matU.col(j).setZero();
198      m_matU(j,j) = 1.0;
199    }
200    for (k = nct-1; k >= 0; k--)
201    {
202      if (m_sigma[k] != 0.0)
203      {
204        for (j = k+1; j < nu; ++j)
205        {
206          Scalar t = m_matU.col(k).end(m-k).eigen2_dot(m_matU.col(j).end(m-k)); // FIXME is it really a dot product we want ?
207          t = -t/m_matU(k,k);
208          m_matU.col(j).end(m-k) += t * m_matU.col(k).end(m-k);
209        }
210        m_matU.col(k).end(m-k) = - m_matU.col(k).end(m-k);
211        m_matU(k,k) = Scalar(1) + m_matU(k,k);
212        if (k-1>0)
213          m_matU.col(k).start(k-1).setZero();
214      }
215      else
216      {
217        m_matU.col(k).setZero();
218        m_matU(k,k) = 1.0;
219      }
220    }
221  }
222
223  // If required, generate V.
224  if (wantv)
225  {
226    for (k = n-1; k >= 0; k--)
227    {
228      if ((k < nrt) & (e[k] != 0.0))
229      {
230        for (j = k+1; j < nu; ++j)
231        {
232          Scalar t = m_matV.col(k).end(n-k-1).eigen2_dot(m_matV.col(j).end(n-k-1)); // FIXME is it really a dot product we want ?
233          t = -t/m_matV(k+1,k);
234          m_matV.col(j).end(n-k-1) += t * m_matV.col(k).end(n-k-1);
235        }
236      }
237      m_matV.col(k).setZero();
238      m_matV(k,k) = 1.0;
239    }
240  }
241
242  // Main iteration loop for the singular values.
243  int pp = p-1;
244  int iter = 0;
245  Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52));
246  while (p > 0)
247  {
248    int k=0;
249    int kase=0;
250
251    // Here is where a test for too many iterations would go.
252
253    // This section of the program inspects for
254    // negligible elements in the s and e arrays.  On
255    // completion the variables kase and k are set as follows.
256
257    // kase = 1     if s(p) and e[k-1] are negligible and k<p
258    // kase = 2     if s(k) is negligible and k<p
259    // kase = 3     if e[k-1] is negligible, k<p, and
260    //              s(k), ..., s(p) are not negligible (qr step).
261    // kase = 4     if e(p-1) is negligible (convergence).
262
263    for (k = p-2; k >= -1; --k)
264    {
265      if (k == -1)
266          break;
267      if (ei_abs(e[k]) <= eps*(ei_abs(m_sigma[k]) + ei_abs(m_sigma[k+1])))
268      {
269          e[k] = 0.0;
270          break;
271      }
272    }
273    if (k == p-2)
274    {
275      kase = 4;
276    }
277    else
278    {
279      int ks;
280      for (ks = p-1; ks >= k; --ks)
281      {
282        if (ks == k)
283          break;
284        Scalar t = (ks != p ? ei_abs(e[ks]) : Scalar(0)) + (ks != k+1 ? ei_abs(e[ks-1]) : Scalar(0));
285        if (ei_abs(m_sigma[ks]) <= eps*t)
286        {
287          m_sigma[ks] = 0.0;
288          break;
289        }
290      }
291      if (ks == k)
292      {
293        kase = 3;
294      }
295      else if (ks == p-1)
296      {
297        kase = 1;
298      }
299      else
300      {
301        kase = 2;
302        k = ks;
303      }
304    }
305    ++k;
306
307    // Perform the task indicated by kase.
308    switch (kase)
309    {
310
311      // Deflate negligible s(p).
312      case 1:
313      {
314        Scalar f(e[p-2]);
315        e[p-2] = 0.0;
316        for (j = p-2; j >= k; --j)
317        {
318          Scalar t(internal::hypot(m_sigma[j],f));
319          Scalar cs(m_sigma[j]/t);
320          Scalar sn(f/t);
321          m_sigma[j] = t;
322          if (j != k)
323          {
324            f = -sn*e[j-1];
325            e[j-1] = cs*e[j-1];
326          }
327          if (wantv)
328          {
329            for (i = 0; i < n; ++i)
330            {
331              t = cs*m_matV(i,j) + sn*m_matV(i,p-1);
332              m_matV(i,p-1) = -sn*m_matV(i,j) + cs*m_matV(i,p-1);
333              m_matV(i,j) = t;
334            }
335          }
336        }
337      }
338      break;
339
340      // Split at negligible s(k).
341      case 2:
342      {
343        Scalar f(e[k-1]);
344        e[k-1] = 0.0;
345        for (j = k; j < p; ++j)
346        {
347          Scalar t(internal::hypot(m_sigma[j],f));
348          Scalar cs( m_sigma[j]/t);
349          Scalar sn(f/t);
350          m_sigma[j] = t;
351          f = -sn*e[j];
352          e[j] = cs*e[j];
353          if (wantu)
354          {
355            for (i = 0; i < m; ++i)
356            {
357              t = cs*m_matU(i,j) + sn*m_matU(i,k-1);
358              m_matU(i,k-1) = -sn*m_matU(i,j) + cs*m_matU(i,k-1);
359              m_matU(i,j) = t;
360            }
361          }
362        }
363      }
364      break;
365
366      // Perform one qr step.
367      case 3:
368      {
369        // Calculate the shift.
370        Scalar scale = (std::max)((std::max)((std::max)((std::max)(
371                        ei_abs(m_sigma[p-1]),ei_abs(m_sigma[p-2])),ei_abs(e[p-2])),
372                        ei_abs(m_sigma[k])),ei_abs(e[k]));
373        Scalar sp = m_sigma[p-1]/scale;
374        Scalar spm1 = m_sigma[p-2]/scale;
375        Scalar epm1 = e[p-2]/scale;
376        Scalar sk = m_sigma[k]/scale;
377        Scalar ek = e[k]/scale;
378        Scalar b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/Scalar(2);
379        Scalar c = (sp*epm1)*(sp*epm1);
380        Scalar shift(0);
381        if ((b != 0.0) || (c != 0.0))
382        {
383          shift = ei_sqrt(b*b + c);
384          if (b < 0.0)
385            shift = -shift;
386          shift = c/(b + shift);
387        }
388        Scalar f = (sk + sp)*(sk - sp) + shift;
389        Scalar g = sk*ek;
390
391        // Chase zeros.
392
393        for (j = k; j < p-1; ++j)
394        {
395          Scalar t = internal::hypot(f,g);
396          Scalar cs = f/t;
397          Scalar sn = g/t;
398          if (j != k)
399            e[j-1] = t;
400          f = cs*m_sigma[j] + sn*e[j];
401          e[j] = cs*e[j] - sn*m_sigma[j];
402          g = sn*m_sigma[j+1];
403          m_sigma[j+1] = cs*m_sigma[j+1];
404          if (wantv)
405          {
406            for (i = 0; i < n; ++i)
407            {
408              t = cs*m_matV(i,j) + sn*m_matV(i,j+1);
409              m_matV(i,j+1) = -sn*m_matV(i,j) + cs*m_matV(i,j+1);
410              m_matV(i,j) = t;
411            }
412          }
413          t = internal::hypot(f,g);
414          cs = f/t;
415          sn = g/t;
416          m_sigma[j] = t;
417          f = cs*e[j] + sn*m_sigma[j+1];
418          m_sigma[j+1] = -sn*e[j] + cs*m_sigma[j+1];
419          g = sn*e[j+1];
420          e[j+1] = cs*e[j+1];
421          if (wantu && (j < m-1))
422          {
423            for (i = 0; i < m; ++i)
424            {
425              t = cs*m_matU(i,j) + sn*m_matU(i,j+1);
426              m_matU(i,j+1) = -sn*m_matU(i,j) + cs*m_matU(i,j+1);
427              m_matU(i,j) = t;
428            }
429          }
430        }
431        e[p-2] = f;
432        iter = iter + 1;
433      }
434      break;
435
436      // Convergence.
437      case 4:
438      {
439        // Make the singular values positive.
440        if (m_sigma[k] <= 0.0)
441        {
442          m_sigma[k] = m_sigma[k] < Scalar(0) ? -m_sigma[k] : Scalar(0);
443          if (wantv)
444            m_matV.col(k).start(pp+1) = -m_matV.col(k).start(pp+1);
445        }
446
447        // Order the singular values.
448        while (k < pp)
449        {
450          if (m_sigma[k] >= m_sigma[k+1])
451            break;
452          Scalar t = m_sigma[k];
453          m_sigma[k] = m_sigma[k+1];
454          m_sigma[k+1] = t;
455          if (wantv && (k < n-1))
456            m_matV.col(k).swap(m_matV.col(k+1));
457          if (wantu && (k < m-1))
458            m_matU.col(k).swap(m_matU.col(k+1));
459          ++k;
460        }
461        iter = 0;
462        p--;
463      }
464      break;
465    } // end big switch
466  } // end iterations
467}
468
469template<typename MatrixType>
470SVD<MatrixType>& SVD<MatrixType>::sort()
471{
472  int mu = m_matU.rows();
473  int mv = m_matV.rows();
474  int n  = m_matU.cols();
475
476  for (int i=0; i<n; ++i)
477  {
478    int  k = i;
479    Scalar p = m_sigma.coeff(i);
480
481    for (int j=i+1; j<n; ++j)
482    {
483      if (m_sigma.coeff(j) > p)
484      {
485        k = j;
486        p = m_sigma.coeff(j);
487      }
488    }
489    if (k != i)
490    {
491      m_sigma.coeffRef(k) = m_sigma.coeff(i);  // i.e.
492      m_sigma.coeffRef(i) = p;                 // swaps the i-th and the k-th elements
493
494      int j = mu;
495      for(int s=0; j!=0; ++s, --j)
496        std::swap(m_matU.coeffRef(s,i), m_matU.coeffRef(s,k));
497
498      j = mv;
499      for (int s=0; j!=0; ++s, --j)
500        std::swap(m_matV.coeffRef(s,i), m_matV.coeffRef(s,k));
501    }
502  }
503  return *this;
504}
505
506/** \returns the solution of \f$ A x = b \f$ using the current SVD decomposition of A.
507  * The parts of the solution corresponding to zero singular values are ignored.
508  *
509  * \sa MatrixBase::svd(), LU::solve(), LLT::solve()
510  */
511template<typename MatrixType>
512template<typename OtherDerived, typename ResultType>
513bool SVD<MatrixType>::solve(const MatrixBase<OtherDerived> &b, ResultType* result) const
514{
515  const int rows = m_matU.rows();
516  ei_assert(b.rows() == rows);
517
518  Scalar maxVal = m_sigma.cwise().abs().maxCoeff();
519  for (int j=0; j<b.cols(); ++j)
520  {
521    Matrix<Scalar,MatrixUType::RowsAtCompileTime,1> aux = m_matU.transpose() * b.col(j);
522
523    for (int i = 0; i <m_matU.cols(); ++i)
524    {
525      Scalar si = m_sigma.coeff(i);
526      if (ei_isMuchSmallerThan(ei_abs(si),maxVal))
527        aux.coeffRef(i) = 0;
528      else
529        aux.coeffRef(i) /= si;
530    }
531
532    result->col(j) = m_matV * aux;
533  }
534  return true;
535}
536
537/** Computes the polar decomposition of the matrix, as a product unitary x positive.
538  *
539  * If either pointer is zero, the corresponding computation is skipped.
540  *
541  * Only for square matrices.
542  *
543  * \sa computePositiveUnitary(), computeRotationScaling()
544  */
545template<typename MatrixType>
546template<typename UnitaryType, typename PositiveType>
547void SVD<MatrixType>::computeUnitaryPositive(UnitaryType *unitary,
548                                             PositiveType *positive) const
549{
550  ei_assert(m_matU.cols() == m_matV.cols() && "Polar decomposition is only for square matrices");
551  if(unitary) *unitary = m_matU * m_matV.adjoint();
552  if(positive) *positive = m_matV * m_sigma.asDiagonal() * m_matV.adjoint();
553}
554
555/** Computes the polar decomposition of the matrix, as a product positive x unitary.
556  *
557  * If either pointer is zero, the corresponding computation is skipped.
558  *
559  * Only for square matrices.
560  *
561  * \sa computeUnitaryPositive(), computeRotationScaling()
562  */
563template<typename MatrixType>
564template<typename UnitaryType, typename PositiveType>
565void SVD<MatrixType>::computePositiveUnitary(UnitaryType *positive,
566                                             PositiveType *unitary) const
567{
568  ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
569  if(unitary) *unitary = m_matU * m_matV.adjoint();
570  if(positive) *positive = m_matU * m_sigma.asDiagonal() * m_matU.adjoint();
571}
572
573/** decomposes the matrix as a product rotation x scaling, the scaling being
574  * not necessarily positive.
575  *
576  * If either pointer is zero, the corresponding computation is skipped.
577  *
578  * This method requires the Geometry module.
579  *
580  * \sa computeScalingRotation(), computeUnitaryPositive()
581  */
582template<typename MatrixType>
583template<typename RotationType, typename ScalingType>
584void SVD<MatrixType>::computeRotationScaling(RotationType *rotation, ScalingType *scaling) const
585{
586  ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
587  Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
588  Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
589  sv.coeffRef(0) *= x;
590  if(scaling) scaling->lazyAssign(m_matV * sv.asDiagonal() * m_matV.adjoint());
591  if(rotation)
592  {
593    MatrixType m(m_matU);
594    m.col(0) /= x;
595    rotation->lazyAssign(m * m_matV.adjoint());
596  }
597}
598
599/** decomposes the matrix as a product scaling x rotation, the scaling being
600  * not necessarily positive.
601  *
602  * If either pointer is zero, the corresponding computation is skipped.
603  *
604  * This method requires the Geometry module.
605  *
606  * \sa computeRotationScaling(), computeUnitaryPositive()
607  */
608template<typename MatrixType>
609template<typename ScalingType, typename RotationType>
610void SVD<MatrixType>::computeScalingRotation(ScalingType *scaling, RotationType *rotation) const
611{
612  ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
613  Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
614  Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
615  sv.coeffRef(0) *= x;
616  if(scaling) scaling->lazyAssign(m_matU * sv.asDiagonal() * m_matU.adjoint());
617  if(rotation)
618  {
619    MatrixType m(m_matU);
620    m.col(0) /= x;
621    rotation->lazyAssign(m * m_matV.adjoint());
622  }
623}
624
625
626/** \svd_module
627  * \returns the SVD decomposition of \c *this
628  */
629template<typename Derived>
630inline SVD<typename MatrixBase<Derived>::PlainObject>
631MatrixBase<Derived>::svd() const
632{
633  return SVD<PlainObject>(derived());
634}
635
636} // end namespace Eigen
637
638#endif // EIGEN2_SVD_H
Note: See TracBrowser for help on using the repository browser.