1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
5 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
---|
6 | // |
---|
7 | // This Source Code Form is subject to the terms of the Mozilla |
---|
8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
10 | |
---|
11 | #ifndef EIGEN_REDUX_H |
---|
12 | #define EIGEN_REDUX_H |
---|
13 | |
---|
14 | namespace Eigen { |
---|
15 | |
---|
16 | namespace internal { |
---|
17 | |
---|
18 | // TODO |
---|
19 | // * implement other kind of vectorization |
---|
20 | // * factorize code |
---|
21 | |
---|
22 | /*************************************************************************** |
---|
23 | * Part 1 : the logic deciding a strategy for vectorization and unrolling |
---|
24 | ***************************************************************************/ |
---|
25 | |
---|
26 | template<typename Func, typename Derived> |
---|
27 | struct redux_traits |
---|
28 | { |
---|
29 | public: |
---|
30 | enum { |
---|
31 | PacketSize = packet_traits<typename Derived::Scalar>::size, |
---|
32 | InnerMaxSize = int(Derived::IsRowMajor) |
---|
33 | ? Derived::MaxColsAtCompileTime |
---|
34 | : Derived::MaxRowsAtCompileTime |
---|
35 | }; |
---|
36 | |
---|
37 | enum { |
---|
38 | MightVectorize = (int(Derived::Flags)&ActualPacketAccessBit) |
---|
39 | && (functor_traits<Func>::PacketAccess), |
---|
40 | MayLinearVectorize = MightVectorize && (int(Derived::Flags)&LinearAccessBit), |
---|
41 | MaySliceVectorize = MightVectorize && int(InnerMaxSize)>=3*PacketSize |
---|
42 | }; |
---|
43 | |
---|
44 | public: |
---|
45 | enum { |
---|
46 | Traversal = int(MayLinearVectorize) ? int(LinearVectorizedTraversal) |
---|
47 | : int(MaySliceVectorize) ? int(SliceVectorizedTraversal) |
---|
48 | : int(DefaultTraversal) |
---|
49 | }; |
---|
50 | |
---|
51 | public: |
---|
52 | enum { |
---|
53 | Cost = ( Derived::SizeAtCompileTime == Dynamic |
---|
54 | || Derived::CoeffReadCost == Dynamic |
---|
55 | || (Derived::SizeAtCompileTime!=1 && functor_traits<Func>::Cost == Dynamic) |
---|
56 | ) ? Dynamic |
---|
57 | : Derived::SizeAtCompileTime * Derived::CoeffReadCost |
---|
58 | + (Derived::SizeAtCompileTime-1) * functor_traits<Func>::Cost, |
---|
59 | UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize)) |
---|
60 | }; |
---|
61 | |
---|
62 | public: |
---|
63 | enum { |
---|
64 | Unrolling = Cost != Dynamic && Cost <= UnrollingLimit |
---|
65 | ? CompleteUnrolling |
---|
66 | : NoUnrolling |
---|
67 | }; |
---|
68 | }; |
---|
69 | |
---|
70 | /*************************************************************************** |
---|
71 | * Part 2 : unrollers |
---|
72 | ***************************************************************************/ |
---|
73 | |
---|
74 | /*** no vectorization ***/ |
---|
75 | |
---|
76 | template<typename Func, typename Derived, int Start, int Length> |
---|
77 | struct redux_novec_unroller |
---|
78 | { |
---|
79 | enum { |
---|
80 | HalfLength = Length/2 |
---|
81 | }; |
---|
82 | |
---|
83 | typedef typename Derived::Scalar Scalar; |
---|
84 | |
---|
85 | static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func) |
---|
86 | { |
---|
87 | return func(redux_novec_unroller<Func, Derived, Start, HalfLength>::run(mat,func), |
---|
88 | redux_novec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func)); |
---|
89 | } |
---|
90 | }; |
---|
91 | |
---|
92 | template<typename Func, typename Derived, int Start> |
---|
93 | struct redux_novec_unroller<Func, Derived, Start, 1> |
---|
94 | { |
---|
95 | enum { |
---|
96 | outer = Start / Derived::InnerSizeAtCompileTime, |
---|
97 | inner = Start % Derived::InnerSizeAtCompileTime |
---|
98 | }; |
---|
99 | |
---|
100 | typedef typename Derived::Scalar Scalar; |
---|
101 | |
---|
102 | static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func&) |
---|
103 | { |
---|
104 | return mat.coeffByOuterInner(outer, inner); |
---|
105 | } |
---|
106 | }; |
---|
107 | |
---|
108 | // This is actually dead code and will never be called. It is required |
---|
109 | // to prevent false warnings regarding failed inlining though |
---|
110 | // for 0 length run() will never be called at all. |
---|
111 | template<typename Func, typename Derived, int Start> |
---|
112 | struct redux_novec_unroller<Func, Derived, Start, 0> |
---|
113 | { |
---|
114 | typedef typename Derived::Scalar Scalar; |
---|
115 | static EIGEN_STRONG_INLINE Scalar run(const Derived&, const Func&) { return Scalar(); } |
---|
116 | }; |
---|
117 | |
---|
118 | /*** vectorization ***/ |
---|
119 | |
---|
120 | template<typename Func, typename Derived, int Start, int Length> |
---|
121 | struct redux_vec_unroller |
---|
122 | { |
---|
123 | enum { |
---|
124 | PacketSize = packet_traits<typename Derived::Scalar>::size, |
---|
125 | HalfLength = Length/2 |
---|
126 | }; |
---|
127 | |
---|
128 | typedef typename Derived::Scalar Scalar; |
---|
129 | typedef typename packet_traits<Scalar>::type PacketScalar; |
---|
130 | |
---|
131 | static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func& func) |
---|
132 | { |
---|
133 | return func.packetOp( |
---|
134 | redux_vec_unroller<Func, Derived, Start, HalfLength>::run(mat,func), |
---|
135 | redux_vec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func) ); |
---|
136 | } |
---|
137 | }; |
---|
138 | |
---|
139 | template<typename Func, typename Derived, int Start> |
---|
140 | struct redux_vec_unroller<Func, Derived, Start, 1> |
---|
141 | { |
---|
142 | enum { |
---|
143 | index = Start * packet_traits<typename Derived::Scalar>::size, |
---|
144 | outer = index / int(Derived::InnerSizeAtCompileTime), |
---|
145 | inner = index % int(Derived::InnerSizeAtCompileTime), |
---|
146 | alignment = (Derived::Flags & AlignedBit) ? Aligned : Unaligned |
---|
147 | }; |
---|
148 | |
---|
149 | typedef typename Derived::Scalar Scalar; |
---|
150 | typedef typename packet_traits<Scalar>::type PacketScalar; |
---|
151 | |
---|
152 | static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func&) |
---|
153 | { |
---|
154 | return mat.template packetByOuterInner<alignment>(outer, inner); |
---|
155 | } |
---|
156 | }; |
---|
157 | |
---|
158 | /*************************************************************************** |
---|
159 | * Part 3 : implementation of all cases |
---|
160 | ***************************************************************************/ |
---|
161 | |
---|
162 | template<typename Func, typename Derived, |
---|
163 | int Traversal = redux_traits<Func, Derived>::Traversal, |
---|
164 | int Unrolling = redux_traits<Func, Derived>::Unrolling |
---|
165 | > |
---|
166 | struct redux_impl; |
---|
167 | |
---|
168 | template<typename Func, typename Derived> |
---|
169 | struct redux_impl<Func, Derived, DefaultTraversal, NoUnrolling> |
---|
170 | { |
---|
171 | typedef typename Derived::Scalar Scalar; |
---|
172 | typedef typename Derived::Index Index; |
---|
173 | static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func) |
---|
174 | { |
---|
175 | eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix"); |
---|
176 | Scalar res; |
---|
177 | res = mat.coeffByOuterInner(0, 0); |
---|
178 | for(Index i = 1; i < mat.innerSize(); ++i) |
---|
179 | res = func(res, mat.coeffByOuterInner(0, i)); |
---|
180 | for(Index i = 1; i < mat.outerSize(); ++i) |
---|
181 | for(Index j = 0; j < mat.innerSize(); ++j) |
---|
182 | res = func(res, mat.coeffByOuterInner(i, j)); |
---|
183 | return res; |
---|
184 | } |
---|
185 | }; |
---|
186 | |
---|
187 | template<typename Func, typename Derived> |
---|
188 | struct redux_impl<Func,Derived, DefaultTraversal, CompleteUnrolling> |
---|
189 | : public redux_novec_unroller<Func,Derived, 0, Derived::SizeAtCompileTime> |
---|
190 | {}; |
---|
191 | |
---|
192 | template<typename Func, typename Derived> |
---|
193 | struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling> |
---|
194 | { |
---|
195 | typedef typename Derived::Scalar Scalar; |
---|
196 | typedef typename packet_traits<Scalar>::type PacketScalar; |
---|
197 | typedef typename Derived::Index Index; |
---|
198 | |
---|
199 | static Scalar run(const Derived& mat, const Func& func) |
---|
200 | { |
---|
201 | const Index size = mat.size(); |
---|
202 | eigen_assert(size && "you are using an empty matrix"); |
---|
203 | const Index packetSize = packet_traits<Scalar>::size; |
---|
204 | const Index alignedStart = internal::first_aligned(mat); |
---|
205 | enum { |
---|
206 | alignment = bool(Derived::Flags & DirectAccessBit) || bool(Derived::Flags & AlignedBit) |
---|
207 | ? Aligned : Unaligned |
---|
208 | }; |
---|
209 | const Index alignedSize2 = ((size-alignedStart)/(2*packetSize))*(2*packetSize); |
---|
210 | const Index alignedSize = ((size-alignedStart)/(packetSize))*(packetSize); |
---|
211 | const Index alignedEnd2 = alignedStart + alignedSize2; |
---|
212 | const Index alignedEnd = alignedStart + alignedSize; |
---|
213 | Scalar res; |
---|
214 | if(alignedSize) |
---|
215 | { |
---|
216 | PacketScalar packet_res0 = mat.template packet<alignment>(alignedStart); |
---|
217 | if(alignedSize>packetSize) // we have at least two packets to partly unroll the loop |
---|
218 | { |
---|
219 | PacketScalar packet_res1 = mat.template packet<alignment>(alignedStart+packetSize); |
---|
220 | for(Index index = alignedStart + 2*packetSize; index < alignedEnd2; index += 2*packetSize) |
---|
221 | { |
---|
222 | packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment>(index)); |
---|
223 | packet_res1 = func.packetOp(packet_res1, mat.template packet<alignment>(index+packetSize)); |
---|
224 | } |
---|
225 | |
---|
226 | packet_res0 = func.packetOp(packet_res0,packet_res1); |
---|
227 | if(alignedEnd>alignedEnd2) |
---|
228 | packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment>(alignedEnd2)); |
---|
229 | } |
---|
230 | res = func.predux(packet_res0); |
---|
231 | |
---|
232 | for(Index index = 0; index < alignedStart; ++index) |
---|
233 | res = func(res,mat.coeff(index)); |
---|
234 | |
---|
235 | for(Index index = alignedEnd; index < size; ++index) |
---|
236 | res = func(res,mat.coeff(index)); |
---|
237 | } |
---|
238 | else // too small to vectorize anything. |
---|
239 | // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. |
---|
240 | { |
---|
241 | res = mat.coeff(0); |
---|
242 | for(Index index = 1; index < size; ++index) |
---|
243 | res = func(res,mat.coeff(index)); |
---|
244 | } |
---|
245 | |
---|
246 | return res; |
---|
247 | } |
---|
248 | }; |
---|
249 | |
---|
250 | template<typename Func, typename Derived> |
---|
251 | struct redux_impl<Func, Derived, SliceVectorizedTraversal, NoUnrolling> |
---|
252 | { |
---|
253 | typedef typename Derived::Scalar Scalar; |
---|
254 | typedef typename packet_traits<Scalar>::type PacketScalar; |
---|
255 | typedef typename Derived::Index Index; |
---|
256 | |
---|
257 | static Scalar run(const Derived& mat, const Func& func) |
---|
258 | { |
---|
259 | eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix"); |
---|
260 | const Index innerSize = mat.innerSize(); |
---|
261 | const Index outerSize = mat.outerSize(); |
---|
262 | enum { |
---|
263 | packetSize = packet_traits<Scalar>::size |
---|
264 | }; |
---|
265 | const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize; |
---|
266 | Scalar res; |
---|
267 | if(packetedInnerSize) |
---|
268 | { |
---|
269 | PacketScalar packet_res = mat.template packet<Unaligned>(0,0); |
---|
270 | for(Index j=0; j<outerSize; ++j) |
---|
271 | for(Index i=(j==0?packetSize:0); i<packetedInnerSize; i+=Index(packetSize)) |
---|
272 | packet_res = func.packetOp(packet_res, mat.template packetByOuterInner<Unaligned>(j,i)); |
---|
273 | |
---|
274 | res = func.predux(packet_res); |
---|
275 | for(Index j=0; j<outerSize; ++j) |
---|
276 | for(Index i=packetedInnerSize; i<innerSize; ++i) |
---|
277 | res = func(res, mat.coeffByOuterInner(j,i)); |
---|
278 | } |
---|
279 | else // too small to vectorize anything. |
---|
280 | // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. |
---|
281 | { |
---|
282 | res = redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>::run(mat, func); |
---|
283 | } |
---|
284 | |
---|
285 | return res; |
---|
286 | } |
---|
287 | }; |
---|
288 | |
---|
289 | template<typename Func, typename Derived> |
---|
290 | struct redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling> |
---|
291 | { |
---|
292 | typedef typename Derived::Scalar Scalar; |
---|
293 | typedef typename packet_traits<Scalar>::type PacketScalar; |
---|
294 | enum { |
---|
295 | PacketSize = packet_traits<Scalar>::size, |
---|
296 | Size = Derived::SizeAtCompileTime, |
---|
297 | VectorizedSize = (Size / PacketSize) * PacketSize |
---|
298 | }; |
---|
299 | static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func) |
---|
300 | { |
---|
301 | eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix"); |
---|
302 | Scalar res = func.predux(redux_vec_unroller<Func, Derived, 0, Size / PacketSize>::run(mat,func)); |
---|
303 | if (VectorizedSize != Size) |
---|
304 | res = func(res,redux_novec_unroller<Func, Derived, VectorizedSize, Size-VectorizedSize>::run(mat,func)); |
---|
305 | return res; |
---|
306 | } |
---|
307 | }; |
---|
308 | |
---|
309 | } // end namespace internal |
---|
310 | |
---|
311 | /*************************************************************************** |
---|
312 | * Part 4 : public API |
---|
313 | ***************************************************************************/ |
---|
314 | |
---|
315 | |
---|
316 | /** \returns the result of a full redux operation on the whole matrix or vector using \a func |
---|
317 | * |
---|
318 | * The template parameter \a BinaryOp is the type of the functor \a func which must be |
---|
319 | * an associative operator. Both current STL and TR1 functor styles are handled. |
---|
320 | * |
---|
321 | * \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise() |
---|
322 | */ |
---|
323 | template<typename Derived> |
---|
324 | template<typename Func> |
---|
325 | EIGEN_STRONG_INLINE typename internal::result_of<Func(typename internal::traits<Derived>::Scalar)>::type |
---|
326 | DenseBase<Derived>::redux(const Func& func) const |
---|
327 | { |
---|
328 | typedef typename internal::remove_all<typename Derived::Nested>::type ThisNested; |
---|
329 | return internal::redux_impl<Func, ThisNested> |
---|
330 | ::run(derived(), func); |
---|
331 | } |
---|
332 | |
---|
333 | /** \returns the minimum of all coefficients of *this |
---|
334 | */ |
---|
335 | template<typename Derived> |
---|
336 | EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar |
---|
337 | DenseBase<Derived>::minCoeff() const |
---|
338 | { |
---|
339 | return this->redux(Eigen::internal::scalar_min_op<Scalar>()); |
---|
340 | } |
---|
341 | |
---|
342 | /** \returns the maximum of all coefficients of *this |
---|
343 | */ |
---|
344 | template<typename Derived> |
---|
345 | EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar |
---|
346 | DenseBase<Derived>::maxCoeff() const |
---|
347 | { |
---|
348 | return this->redux(Eigen::internal::scalar_max_op<Scalar>()); |
---|
349 | } |
---|
350 | |
---|
351 | /** \returns the sum of all coefficients of *this |
---|
352 | * |
---|
353 | * \sa trace(), prod(), mean() |
---|
354 | */ |
---|
355 | template<typename Derived> |
---|
356 | EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar |
---|
357 | DenseBase<Derived>::sum() const |
---|
358 | { |
---|
359 | if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0)) |
---|
360 | return Scalar(0); |
---|
361 | return this->redux(Eigen::internal::scalar_sum_op<Scalar>()); |
---|
362 | } |
---|
363 | |
---|
364 | /** \returns the mean of all coefficients of *this |
---|
365 | * |
---|
366 | * \sa trace(), prod(), sum() |
---|
367 | */ |
---|
368 | template<typename Derived> |
---|
369 | EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar |
---|
370 | DenseBase<Derived>::mean() const |
---|
371 | { |
---|
372 | return Scalar(this->redux(Eigen::internal::scalar_sum_op<Scalar>())) / Scalar(this->size()); |
---|
373 | } |
---|
374 | |
---|
375 | /** \returns the product of all coefficients of *this |
---|
376 | * |
---|
377 | * Example: \include MatrixBase_prod.cpp |
---|
378 | * Output: \verbinclude MatrixBase_prod.out |
---|
379 | * |
---|
380 | * \sa sum(), mean(), trace() |
---|
381 | */ |
---|
382 | template<typename Derived> |
---|
383 | EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar |
---|
384 | DenseBase<Derived>::prod() const |
---|
385 | { |
---|
386 | if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0)) |
---|
387 | return Scalar(1); |
---|
388 | return this->redux(Eigen::internal::scalar_product_op<Scalar>()); |
---|
389 | } |
---|
390 | |
---|
391 | /** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal. |
---|
392 | * |
---|
393 | * \c *this can be any matrix, not necessarily square. |
---|
394 | * |
---|
395 | * \sa diagonal(), sum() |
---|
396 | */ |
---|
397 | template<typename Derived> |
---|
398 | EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar |
---|
399 | MatrixBase<Derived>::trace() const |
---|
400 | { |
---|
401 | return derived().diagonal().sum(); |
---|
402 | } |
---|
403 | |
---|
404 | } // end namespace Eigen |
---|
405 | |
---|
406 | #endif // EIGEN_REDUX_H |
---|