1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
---|
5 | // |
---|
6 | // This Source Code Form is subject to the terms of the Mozilla |
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
9 | |
---|
10 | #ifndef EIGEN_MATHFUNCTIONS_H |
---|
11 | #define EIGEN_MATHFUNCTIONS_H |
---|
12 | |
---|
13 | namespace Eigen { |
---|
14 | |
---|
15 | namespace internal { |
---|
16 | |
---|
17 | /** \internal \struct global_math_functions_filtering_base |
---|
18 | * |
---|
19 | * What it does: |
---|
20 | * Defines a typedef 'type' as follows: |
---|
21 | * - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then |
---|
22 | * global_math_functions_filtering_base<T>::type is a typedef for it. |
---|
23 | * - otherwise, global_math_functions_filtering_base<T>::type is a typedef for T. |
---|
24 | * |
---|
25 | * How it's used: |
---|
26 | * To allow to defined the global math functions (like sin...) in certain cases, like the Array expressions. |
---|
27 | * When you do sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know |
---|
28 | * is that it inherits ArrayBase. So we implement a partial specialization of sin_impl for ArrayBase<Derived>. |
---|
29 | * So we must make sure to use sin_impl<ArrayBase<Derived> > and not sin_impl<Derived>, otherwise our partial specialization |
---|
30 | * won't be used. How does sin know that? That's exactly what global_math_functions_filtering_base tells it. |
---|
31 | * |
---|
32 | * How it's implemented: |
---|
33 | * SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you replace |
---|
34 | * the typename dummy by an integer template parameter, it doesn't work anymore! |
---|
35 | */ |
---|
36 | |
---|
37 | template<typename T, typename dummy = void> |
---|
38 | struct global_math_functions_filtering_base |
---|
39 | { |
---|
40 | typedef T type; |
---|
41 | }; |
---|
42 | |
---|
43 | template<typename T> struct always_void { typedef void type; }; |
---|
44 | |
---|
45 | template<typename T> |
---|
46 | struct global_math_functions_filtering_base |
---|
47 | <T, |
---|
48 | typename always_void<typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type |
---|
49 | > |
---|
50 | { |
---|
51 | typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type; |
---|
52 | }; |
---|
53 | |
---|
54 | #define EIGEN_MATHFUNC_IMPL(func, scalar) func##_impl<typename global_math_functions_filtering_base<scalar>::type> |
---|
55 | #define EIGEN_MATHFUNC_RETVAL(func, scalar) typename func##_retval<typename global_math_functions_filtering_base<scalar>::type>::type |
---|
56 | |
---|
57 | |
---|
58 | /**************************************************************************** |
---|
59 | * Implementation of real * |
---|
60 | ****************************************************************************/ |
---|
61 | |
---|
62 | template<typename Scalar> |
---|
63 | struct real_impl |
---|
64 | { |
---|
65 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
66 | static inline RealScalar run(const Scalar& x) |
---|
67 | { |
---|
68 | return x; |
---|
69 | } |
---|
70 | }; |
---|
71 | |
---|
72 | template<typename RealScalar> |
---|
73 | struct real_impl<std::complex<RealScalar> > |
---|
74 | { |
---|
75 | static inline RealScalar run(const std::complex<RealScalar>& x) |
---|
76 | { |
---|
77 | using std::real; |
---|
78 | return real(x); |
---|
79 | } |
---|
80 | }; |
---|
81 | |
---|
82 | template<typename Scalar> |
---|
83 | struct real_retval |
---|
84 | { |
---|
85 | typedef typename NumTraits<Scalar>::Real type; |
---|
86 | }; |
---|
87 | |
---|
88 | template<typename Scalar> |
---|
89 | inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x) |
---|
90 | { |
---|
91 | return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x); |
---|
92 | } |
---|
93 | |
---|
94 | /**************************************************************************** |
---|
95 | * Implementation of imag * |
---|
96 | ****************************************************************************/ |
---|
97 | |
---|
98 | template<typename Scalar> |
---|
99 | struct imag_impl |
---|
100 | { |
---|
101 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
102 | static inline RealScalar run(const Scalar&) |
---|
103 | { |
---|
104 | return RealScalar(0); |
---|
105 | } |
---|
106 | }; |
---|
107 | |
---|
108 | template<typename RealScalar> |
---|
109 | struct imag_impl<std::complex<RealScalar> > |
---|
110 | { |
---|
111 | static inline RealScalar run(const std::complex<RealScalar>& x) |
---|
112 | { |
---|
113 | using std::imag; |
---|
114 | return imag(x); |
---|
115 | } |
---|
116 | }; |
---|
117 | |
---|
118 | template<typename Scalar> |
---|
119 | struct imag_retval |
---|
120 | { |
---|
121 | typedef typename NumTraits<Scalar>::Real type; |
---|
122 | }; |
---|
123 | |
---|
124 | template<typename Scalar> |
---|
125 | inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x) |
---|
126 | { |
---|
127 | return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x); |
---|
128 | } |
---|
129 | |
---|
130 | /**************************************************************************** |
---|
131 | * Implementation of real_ref * |
---|
132 | ****************************************************************************/ |
---|
133 | |
---|
134 | template<typename Scalar> |
---|
135 | struct real_ref_impl |
---|
136 | { |
---|
137 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
138 | static inline RealScalar& run(Scalar& x) |
---|
139 | { |
---|
140 | return reinterpret_cast<RealScalar*>(&x)[0]; |
---|
141 | } |
---|
142 | static inline const RealScalar& run(const Scalar& x) |
---|
143 | { |
---|
144 | return reinterpret_cast<const RealScalar*>(&x)[0]; |
---|
145 | } |
---|
146 | }; |
---|
147 | |
---|
148 | template<typename Scalar> |
---|
149 | struct real_ref_retval |
---|
150 | { |
---|
151 | typedef typename NumTraits<Scalar>::Real & type; |
---|
152 | }; |
---|
153 | |
---|
154 | template<typename Scalar> |
---|
155 | inline typename add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x) |
---|
156 | { |
---|
157 | return real_ref_impl<Scalar>::run(x); |
---|
158 | } |
---|
159 | |
---|
160 | template<typename Scalar> |
---|
161 | inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x) |
---|
162 | { |
---|
163 | return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x); |
---|
164 | } |
---|
165 | |
---|
166 | /**************************************************************************** |
---|
167 | * Implementation of imag_ref * |
---|
168 | ****************************************************************************/ |
---|
169 | |
---|
170 | template<typename Scalar, bool IsComplex> |
---|
171 | struct imag_ref_default_impl |
---|
172 | { |
---|
173 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
174 | static inline RealScalar& run(Scalar& x) |
---|
175 | { |
---|
176 | return reinterpret_cast<RealScalar*>(&x)[1]; |
---|
177 | } |
---|
178 | static inline const RealScalar& run(const Scalar& x) |
---|
179 | { |
---|
180 | return reinterpret_cast<RealScalar*>(&x)[1]; |
---|
181 | } |
---|
182 | }; |
---|
183 | |
---|
184 | template<typename Scalar> |
---|
185 | struct imag_ref_default_impl<Scalar, false> |
---|
186 | { |
---|
187 | static inline Scalar run(Scalar&) |
---|
188 | { |
---|
189 | return Scalar(0); |
---|
190 | } |
---|
191 | static inline const Scalar run(const Scalar&) |
---|
192 | { |
---|
193 | return Scalar(0); |
---|
194 | } |
---|
195 | }; |
---|
196 | |
---|
197 | template<typename Scalar> |
---|
198 | struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {}; |
---|
199 | |
---|
200 | template<typename Scalar> |
---|
201 | struct imag_ref_retval |
---|
202 | { |
---|
203 | typedef typename NumTraits<Scalar>::Real & type; |
---|
204 | }; |
---|
205 | |
---|
206 | template<typename Scalar> |
---|
207 | inline typename add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x) |
---|
208 | { |
---|
209 | return imag_ref_impl<Scalar>::run(x); |
---|
210 | } |
---|
211 | |
---|
212 | template<typename Scalar> |
---|
213 | inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x) |
---|
214 | { |
---|
215 | return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x); |
---|
216 | } |
---|
217 | |
---|
218 | /**************************************************************************** |
---|
219 | * Implementation of conj * |
---|
220 | ****************************************************************************/ |
---|
221 | |
---|
222 | template<typename Scalar> |
---|
223 | struct conj_impl |
---|
224 | { |
---|
225 | static inline Scalar run(const Scalar& x) |
---|
226 | { |
---|
227 | return x; |
---|
228 | } |
---|
229 | }; |
---|
230 | |
---|
231 | template<typename RealScalar> |
---|
232 | struct conj_impl<std::complex<RealScalar> > |
---|
233 | { |
---|
234 | static inline std::complex<RealScalar> run(const std::complex<RealScalar>& x) |
---|
235 | { |
---|
236 | using std::conj; |
---|
237 | return conj(x); |
---|
238 | } |
---|
239 | }; |
---|
240 | |
---|
241 | template<typename Scalar> |
---|
242 | struct conj_retval |
---|
243 | { |
---|
244 | typedef Scalar type; |
---|
245 | }; |
---|
246 | |
---|
247 | template<typename Scalar> |
---|
248 | inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x) |
---|
249 | { |
---|
250 | return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x); |
---|
251 | } |
---|
252 | |
---|
253 | /**************************************************************************** |
---|
254 | * Implementation of abs * |
---|
255 | ****************************************************************************/ |
---|
256 | |
---|
257 | template<typename Scalar> |
---|
258 | struct abs_impl |
---|
259 | { |
---|
260 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
261 | static inline RealScalar run(const Scalar& x) |
---|
262 | { |
---|
263 | using std::abs; |
---|
264 | return abs(x); |
---|
265 | } |
---|
266 | }; |
---|
267 | |
---|
268 | template<typename Scalar> |
---|
269 | struct abs_retval |
---|
270 | { |
---|
271 | typedef typename NumTraits<Scalar>::Real type; |
---|
272 | }; |
---|
273 | |
---|
274 | template<typename Scalar> |
---|
275 | inline EIGEN_MATHFUNC_RETVAL(abs, Scalar) abs(const Scalar& x) |
---|
276 | { |
---|
277 | return EIGEN_MATHFUNC_IMPL(abs, Scalar)::run(x); |
---|
278 | } |
---|
279 | |
---|
280 | /**************************************************************************** |
---|
281 | * Implementation of abs2 * |
---|
282 | ****************************************************************************/ |
---|
283 | |
---|
284 | template<typename Scalar> |
---|
285 | struct abs2_impl |
---|
286 | { |
---|
287 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
288 | static inline RealScalar run(const Scalar& x) |
---|
289 | { |
---|
290 | return x*x; |
---|
291 | } |
---|
292 | }; |
---|
293 | |
---|
294 | template<typename RealScalar> |
---|
295 | struct abs2_impl<std::complex<RealScalar> > |
---|
296 | { |
---|
297 | static inline RealScalar run(const std::complex<RealScalar>& x) |
---|
298 | { |
---|
299 | return real(x)*real(x) + imag(x)*imag(x); |
---|
300 | } |
---|
301 | }; |
---|
302 | |
---|
303 | template<typename Scalar> |
---|
304 | struct abs2_retval |
---|
305 | { |
---|
306 | typedef typename NumTraits<Scalar>::Real type; |
---|
307 | }; |
---|
308 | |
---|
309 | template<typename Scalar> |
---|
310 | inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x) |
---|
311 | { |
---|
312 | return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x); |
---|
313 | } |
---|
314 | |
---|
315 | /**************************************************************************** |
---|
316 | * Implementation of norm1 * |
---|
317 | ****************************************************************************/ |
---|
318 | |
---|
319 | template<typename Scalar, bool IsComplex> |
---|
320 | struct norm1_default_impl |
---|
321 | { |
---|
322 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
323 | static inline RealScalar run(const Scalar& x) |
---|
324 | { |
---|
325 | return abs(real(x)) + abs(imag(x)); |
---|
326 | } |
---|
327 | }; |
---|
328 | |
---|
329 | template<typename Scalar> |
---|
330 | struct norm1_default_impl<Scalar, false> |
---|
331 | { |
---|
332 | static inline Scalar run(const Scalar& x) |
---|
333 | { |
---|
334 | return abs(x); |
---|
335 | } |
---|
336 | }; |
---|
337 | |
---|
338 | template<typename Scalar> |
---|
339 | struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {}; |
---|
340 | |
---|
341 | template<typename Scalar> |
---|
342 | struct norm1_retval |
---|
343 | { |
---|
344 | typedef typename NumTraits<Scalar>::Real type; |
---|
345 | }; |
---|
346 | |
---|
347 | template<typename Scalar> |
---|
348 | inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x) |
---|
349 | { |
---|
350 | return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x); |
---|
351 | } |
---|
352 | |
---|
353 | /**************************************************************************** |
---|
354 | * Implementation of hypot * |
---|
355 | ****************************************************************************/ |
---|
356 | |
---|
357 | template<typename Scalar> |
---|
358 | struct hypot_impl |
---|
359 | { |
---|
360 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
361 | static inline RealScalar run(const Scalar& x, const Scalar& y) |
---|
362 | { |
---|
363 | using std::max; |
---|
364 | using std::min; |
---|
365 | RealScalar _x = abs(x); |
---|
366 | RealScalar _y = abs(y); |
---|
367 | RealScalar p = (max)(_x, _y); |
---|
368 | RealScalar q = (min)(_x, _y); |
---|
369 | RealScalar qp = q/p; |
---|
370 | return p * sqrt(RealScalar(1) + qp*qp); |
---|
371 | } |
---|
372 | }; |
---|
373 | |
---|
374 | template<typename Scalar> |
---|
375 | struct hypot_retval |
---|
376 | { |
---|
377 | typedef typename NumTraits<Scalar>::Real type; |
---|
378 | }; |
---|
379 | |
---|
380 | template<typename Scalar> |
---|
381 | inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y) |
---|
382 | { |
---|
383 | return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y); |
---|
384 | } |
---|
385 | |
---|
386 | /**************************************************************************** |
---|
387 | * Implementation of cast * |
---|
388 | ****************************************************************************/ |
---|
389 | |
---|
390 | template<typename OldType, typename NewType> |
---|
391 | struct cast_impl |
---|
392 | { |
---|
393 | static inline NewType run(const OldType& x) |
---|
394 | { |
---|
395 | return static_cast<NewType>(x); |
---|
396 | } |
---|
397 | }; |
---|
398 | |
---|
399 | // here, for once, we're plainly returning NewType: we don't want cast to do weird things. |
---|
400 | |
---|
401 | template<typename OldType, typename NewType> |
---|
402 | inline NewType cast(const OldType& x) |
---|
403 | { |
---|
404 | return cast_impl<OldType, NewType>::run(x); |
---|
405 | } |
---|
406 | |
---|
407 | /**************************************************************************** |
---|
408 | * Implementation of sqrt * |
---|
409 | ****************************************************************************/ |
---|
410 | |
---|
411 | template<typename Scalar, bool IsInteger> |
---|
412 | struct sqrt_default_impl |
---|
413 | { |
---|
414 | static inline Scalar run(const Scalar& x) |
---|
415 | { |
---|
416 | using std::sqrt; |
---|
417 | return sqrt(x); |
---|
418 | } |
---|
419 | }; |
---|
420 | |
---|
421 | template<typename Scalar> |
---|
422 | struct sqrt_default_impl<Scalar, true> |
---|
423 | { |
---|
424 | static inline Scalar run(const Scalar&) |
---|
425 | { |
---|
426 | #ifdef EIGEN2_SUPPORT |
---|
427 | eigen_assert(!NumTraits<Scalar>::IsInteger); |
---|
428 | #else |
---|
429 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) |
---|
430 | #endif |
---|
431 | return Scalar(0); |
---|
432 | } |
---|
433 | }; |
---|
434 | |
---|
435 | template<typename Scalar> |
---|
436 | struct sqrt_impl : sqrt_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {}; |
---|
437 | |
---|
438 | template<typename Scalar> |
---|
439 | struct sqrt_retval |
---|
440 | { |
---|
441 | typedef Scalar type; |
---|
442 | }; |
---|
443 | |
---|
444 | template<typename Scalar> |
---|
445 | inline EIGEN_MATHFUNC_RETVAL(sqrt, Scalar) sqrt(const Scalar& x) |
---|
446 | { |
---|
447 | return EIGEN_MATHFUNC_IMPL(sqrt, Scalar)::run(x); |
---|
448 | } |
---|
449 | |
---|
450 | /**************************************************************************** |
---|
451 | * Implementation of standard unary real functions (exp, log, sin, cos, ... * |
---|
452 | ****************************************************************************/ |
---|
453 | |
---|
454 | // This macro instanciate all the necessary template mechanism which is common to all unary real functions. |
---|
455 | #define EIGEN_MATHFUNC_STANDARD_REAL_UNARY(NAME) \ |
---|
456 | template<typename Scalar, bool IsInteger> struct NAME##_default_impl { \ |
---|
457 | static inline Scalar run(const Scalar& x) { using std::NAME; return NAME(x); } \ |
---|
458 | }; \ |
---|
459 | template<typename Scalar> struct NAME##_default_impl<Scalar, true> { \ |
---|
460 | static inline Scalar run(const Scalar&) { \ |
---|
461 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) \ |
---|
462 | return Scalar(0); \ |
---|
463 | } \ |
---|
464 | }; \ |
---|
465 | template<typename Scalar> struct NAME##_impl \ |
---|
466 | : NAME##_default_impl<Scalar, NumTraits<Scalar>::IsInteger> \ |
---|
467 | {}; \ |
---|
468 | template<typename Scalar> struct NAME##_retval { typedef Scalar type; }; \ |
---|
469 | template<typename Scalar> \ |
---|
470 | inline EIGEN_MATHFUNC_RETVAL(NAME, Scalar) NAME(const Scalar& x) { \ |
---|
471 | return EIGEN_MATHFUNC_IMPL(NAME, Scalar)::run(x); \ |
---|
472 | } |
---|
473 | |
---|
474 | EIGEN_MATHFUNC_STANDARD_REAL_UNARY(exp) |
---|
475 | EIGEN_MATHFUNC_STANDARD_REAL_UNARY(log) |
---|
476 | EIGEN_MATHFUNC_STANDARD_REAL_UNARY(sin) |
---|
477 | EIGEN_MATHFUNC_STANDARD_REAL_UNARY(cos) |
---|
478 | EIGEN_MATHFUNC_STANDARD_REAL_UNARY(tan) |
---|
479 | EIGEN_MATHFUNC_STANDARD_REAL_UNARY(asin) |
---|
480 | EIGEN_MATHFUNC_STANDARD_REAL_UNARY(acos) |
---|
481 | |
---|
482 | /**************************************************************************** |
---|
483 | * Implementation of atan2 * |
---|
484 | ****************************************************************************/ |
---|
485 | |
---|
486 | template<typename Scalar, bool IsInteger> |
---|
487 | struct atan2_default_impl |
---|
488 | { |
---|
489 | typedef Scalar retval; |
---|
490 | static inline Scalar run(const Scalar& x, const Scalar& y) |
---|
491 | { |
---|
492 | using std::atan2; |
---|
493 | return atan2(x, y); |
---|
494 | } |
---|
495 | }; |
---|
496 | |
---|
497 | template<typename Scalar> |
---|
498 | struct atan2_default_impl<Scalar, true> |
---|
499 | { |
---|
500 | static inline Scalar run(const Scalar&, const Scalar&) |
---|
501 | { |
---|
502 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) |
---|
503 | return Scalar(0); |
---|
504 | } |
---|
505 | }; |
---|
506 | |
---|
507 | template<typename Scalar> |
---|
508 | struct atan2_impl : atan2_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {}; |
---|
509 | |
---|
510 | template<typename Scalar> |
---|
511 | struct atan2_retval |
---|
512 | { |
---|
513 | typedef Scalar type; |
---|
514 | }; |
---|
515 | |
---|
516 | template<typename Scalar> |
---|
517 | inline EIGEN_MATHFUNC_RETVAL(atan2, Scalar) atan2(const Scalar& x, const Scalar& y) |
---|
518 | { |
---|
519 | return EIGEN_MATHFUNC_IMPL(atan2, Scalar)::run(x, y); |
---|
520 | } |
---|
521 | |
---|
522 | /**************************************************************************** |
---|
523 | * Implementation of pow * |
---|
524 | ****************************************************************************/ |
---|
525 | |
---|
526 | template<typename Scalar, bool IsInteger> |
---|
527 | struct pow_default_impl |
---|
528 | { |
---|
529 | typedef Scalar retval; |
---|
530 | static inline Scalar run(const Scalar& x, const Scalar& y) |
---|
531 | { |
---|
532 | using std::pow; |
---|
533 | return pow(x, y); |
---|
534 | } |
---|
535 | }; |
---|
536 | |
---|
537 | template<typename Scalar> |
---|
538 | struct pow_default_impl<Scalar, true> |
---|
539 | { |
---|
540 | static inline Scalar run(Scalar x, Scalar y) |
---|
541 | { |
---|
542 | Scalar res(1); |
---|
543 | eigen_assert(!NumTraits<Scalar>::IsSigned || y >= 0); |
---|
544 | if(y & 1) res *= x; |
---|
545 | y >>= 1; |
---|
546 | while(y) |
---|
547 | { |
---|
548 | x *= x; |
---|
549 | if(y&1) res *= x; |
---|
550 | y >>= 1; |
---|
551 | } |
---|
552 | return res; |
---|
553 | } |
---|
554 | }; |
---|
555 | |
---|
556 | template<typename Scalar> |
---|
557 | struct pow_impl : pow_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {}; |
---|
558 | |
---|
559 | template<typename Scalar> |
---|
560 | struct pow_retval |
---|
561 | { |
---|
562 | typedef Scalar type; |
---|
563 | }; |
---|
564 | |
---|
565 | template<typename Scalar> |
---|
566 | inline EIGEN_MATHFUNC_RETVAL(pow, Scalar) pow(const Scalar& x, const Scalar& y) |
---|
567 | { |
---|
568 | return EIGEN_MATHFUNC_IMPL(pow, Scalar)::run(x, y); |
---|
569 | } |
---|
570 | |
---|
571 | /**************************************************************************** |
---|
572 | * Implementation of random * |
---|
573 | ****************************************************************************/ |
---|
574 | |
---|
575 | template<typename Scalar, |
---|
576 | bool IsComplex, |
---|
577 | bool IsInteger> |
---|
578 | struct random_default_impl {}; |
---|
579 | |
---|
580 | template<typename Scalar> |
---|
581 | struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {}; |
---|
582 | |
---|
583 | template<typename Scalar> |
---|
584 | struct random_retval |
---|
585 | { |
---|
586 | typedef Scalar type; |
---|
587 | }; |
---|
588 | |
---|
589 | template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y); |
---|
590 | template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(); |
---|
591 | |
---|
592 | template<typename Scalar> |
---|
593 | struct random_default_impl<Scalar, false, false> |
---|
594 | { |
---|
595 | static inline Scalar run(const Scalar& x, const Scalar& y) |
---|
596 | { |
---|
597 | return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX); |
---|
598 | } |
---|
599 | static inline Scalar run() |
---|
600 | { |
---|
601 | return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1)); |
---|
602 | } |
---|
603 | }; |
---|
604 | |
---|
605 | enum { |
---|
606 | floor_log2_terminate, |
---|
607 | floor_log2_move_up, |
---|
608 | floor_log2_move_down, |
---|
609 | floor_log2_bogus |
---|
610 | }; |
---|
611 | |
---|
612 | template<unsigned int n, int lower, int upper> struct floor_log2_selector |
---|
613 | { |
---|
614 | enum { middle = (lower + upper) / 2, |
---|
615 | value = (upper <= lower + 1) ? int(floor_log2_terminate) |
---|
616 | : (n < (1 << middle)) ? int(floor_log2_move_down) |
---|
617 | : (n==0) ? int(floor_log2_bogus) |
---|
618 | : int(floor_log2_move_up) |
---|
619 | }; |
---|
620 | }; |
---|
621 | |
---|
622 | template<unsigned int n, |
---|
623 | int lower = 0, |
---|
624 | int upper = sizeof(unsigned int) * CHAR_BIT - 1, |
---|
625 | int selector = floor_log2_selector<n, lower, upper>::value> |
---|
626 | struct floor_log2 {}; |
---|
627 | |
---|
628 | template<unsigned int n, int lower, int upper> |
---|
629 | struct floor_log2<n, lower, upper, floor_log2_move_down> |
---|
630 | { |
---|
631 | enum { value = floor_log2<n, lower, floor_log2_selector<n, lower, upper>::middle>::value }; |
---|
632 | }; |
---|
633 | |
---|
634 | template<unsigned int n, int lower, int upper> |
---|
635 | struct floor_log2<n, lower, upper, floor_log2_move_up> |
---|
636 | { |
---|
637 | enum { value = floor_log2<n, floor_log2_selector<n, lower, upper>::middle, upper>::value }; |
---|
638 | }; |
---|
639 | |
---|
640 | template<unsigned int n, int lower, int upper> |
---|
641 | struct floor_log2<n, lower, upper, floor_log2_terminate> |
---|
642 | { |
---|
643 | enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower }; |
---|
644 | }; |
---|
645 | |
---|
646 | template<unsigned int n, int lower, int upper> |
---|
647 | struct floor_log2<n, lower, upper, floor_log2_bogus> |
---|
648 | { |
---|
649 | // no value, error at compile time |
---|
650 | }; |
---|
651 | |
---|
652 | template<typename Scalar> |
---|
653 | struct random_default_impl<Scalar, false, true> |
---|
654 | { |
---|
655 | typedef typename NumTraits<Scalar>::NonInteger NonInteger; |
---|
656 | |
---|
657 | static inline Scalar run(const Scalar& x, const Scalar& y) |
---|
658 | { |
---|
659 | return x + Scalar((NonInteger(y)-x+1) * std::rand() / (RAND_MAX + NonInteger(1))); |
---|
660 | } |
---|
661 | |
---|
662 | static inline Scalar run() |
---|
663 | { |
---|
664 | #ifdef EIGEN_MAKING_DOCS |
---|
665 | return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10)); |
---|
666 | #else |
---|
667 | enum { rand_bits = floor_log2<(unsigned int)(RAND_MAX)+1>::value, |
---|
668 | scalar_bits = sizeof(Scalar) * CHAR_BIT, |
---|
669 | shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)) |
---|
670 | }; |
---|
671 | Scalar x = Scalar(std::rand() >> shift); |
---|
672 | Scalar offset = NumTraits<Scalar>::IsSigned ? Scalar(1 << (rand_bits-1)) : Scalar(0); |
---|
673 | return x - offset; |
---|
674 | #endif |
---|
675 | } |
---|
676 | }; |
---|
677 | |
---|
678 | template<typename Scalar> |
---|
679 | struct random_default_impl<Scalar, true, false> |
---|
680 | { |
---|
681 | static inline Scalar run(const Scalar& x, const Scalar& y) |
---|
682 | { |
---|
683 | return Scalar(random(real(x), real(y)), |
---|
684 | random(imag(x), imag(y))); |
---|
685 | } |
---|
686 | static inline Scalar run() |
---|
687 | { |
---|
688 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
689 | return Scalar(random<RealScalar>(), random<RealScalar>()); |
---|
690 | } |
---|
691 | }; |
---|
692 | |
---|
693 | template<typename Scalar> |
---|
694 | inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y) |
---|
695 | { |
---|
696 | return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y); |
---|
697 | } |
---|
698 | |
---|
699 | template<typename Scalar> |
---|
700 | inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random() |
---|
701 | { |
---|
702 | return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(); |
---|
703 | } |
---|
704 | |
---|
705 | /**************************************************************************** |
---|
706 | * Implementation of fuzzy comparisons * |
---|
707 | ****************************************************************************/ |
---|
708 | |
---|
709 | template<typename Scalar, |
---|
710 | bool IsComplex, |
---|
711 | bool IsInteger> |
---|
712 | struct scalar_fuzzy_default_impl {}; |
---|
713 | |
---|
714 | template<typename Scalar> |
---|
715 | struct scalar_fuzzy_default_impl<Scalar, false, false> |
---|
716 | { |
---|
717 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
718 | template<typename OtherScalar> |
---|
719 | static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec) |
---|
720 | { |
---|
721 | return abs(x) <= abs(y) * prec; |
---|
722 | } |
---|
723 | static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec) |
---|
724 | { |
---|
725 | using std::min; |
---|
726 | return abs(x - y) <= (min)(abs(x), abs(y)) * prec; |
---|
727 | } |
---|
728 | static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec) |
---|
729 | { |
---|
730 | return x <= y || isApprox(x, y, prec); |
---|
731 | } |
---|
732 | }; |
---|
733 | |
---|
734 | template<typename Scalar> |
---|
735 | struct scalar_fuzzy_default_impl<Scalar, false, true> |
---|
736 | { |
---|
737 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
738 | template<typename OtherScalar> |
---|
739 | static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&) |
---|
740 | { |
---|
741 | return x == Scalar(0); |
---|
742 | } |
---|
743 | static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&) |
---|
744 | { |
---|
745 | return x == y; |
---|
746 | } |
---|
747 | static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&) |
---|
748 | { |
---|
749 | return x <= y; |
---|
750 | } |
---|
751 | }; |
---|
752 | |
---|
753 | template<typename Scalar> |
---|
754 | struct scalar_fuzzy_default_impl<Scalar, true, false> |
---|
755 | { |
---|
756 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
757 | template<typename OtherScalar> |
---|
758 | static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec) |
---|
759 | { |
---|
760 | return abs2(x) <= abs2(y) * prec * prec; |
---|
761 | } |
---|
762 | static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec) |
---|
763 | { |
---|
764 | using std::min; |
---|
765 | return abs2(x - y) <= (min)(abs2(x), abs2(y)) * prec * prec; |
---|
766 | } |
---|
767 | }; |
---|
768 | |
---|
769 | template<typename Scalar> |
---|
770 | struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {}; |
---|
771 | |
---|
772 | template<typename Scalar, typename OtherScalar> |
---|
773 | inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, |
---|
774 | typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) |
---|
775 | { |
---|
776 | return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision); |
---|
777 | } |
---|
778 | |
---|
779 | template<typename Scalar> |
---|
780 | inline bool isApprox(const Scalar& x, const Scalar& y, |
---|
781 | typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) |
---|
782 | { |
---|
783 | return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision); |
---|
784 | } |
---|
785 | |
---|
786 | template<typename Scalar> |
---|
787 | inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, |
---|
788 | typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) |
---|
789 | { |
---|
790 | return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision); |
---|
791 | } |
---|
792 | |
---|
793 | /****************************************** |
---|
794 | *** The special case of the bool type *** |
---|
795 | ******************************************/ |
---|
796 | |
---|
797 | template<> struct random_impl<bool> |
---|
798 | { |
---|
799 | static inline bool run() |
---|
800 | { |
---|
801 | return random<int>(0,1)==0 ? false : true; |
---|
802 | } |
---|
803 | }; |
---|
804 | |
---|
805 | template<> struct scalar_fuzzy_impl<bool> |
---|
806 | { |
---|
807 | typedef bool RealScalar; |
---|
808 | |
---|
809 | template<typename OtherScalar> |
---|
810 | static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&) |
---|
811 | { |
---|
812 | return !x; |
---|
813 | } |
---|
814 | |
---|
815 | static inline bool isApprox(bool x, bool y, bool) |
---|
816 | { |
---|
817 | return x == y; |
---|
818 | } |
---|
819 | |
---|
820 | static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&) |
---|
821 | { |
---|
822 | return (!x) || y; |
---|
823 | } |
---|
824 | |
---|
825 | }; |
---|
826 | |
---|
827 | /**************************************************************************** |
---|
828 | * Special functions * |
---|
829 | ****************************************************************************/ |
---|
830 | |
---|
831 | // std::isfinite is non standard, so let's define our own version, |
---|
832 | // even though it is not very efficient. |
---|
833 | template<typename T> bool (isfinite)(const T& x) |
---|
834 | { |
---|
835 | return x<NumTraits<T>::highest() && x>NumTraits<T>::lowest(); |
---|
836 | } |
---|
837 | |
---|
838 | } // end namespace internal |
---|
839 | |
---|
840 | } // end namespace Eigen |
---|
841 | |
---|
842 | #endif // EIGEN_MATHFUNCTIONS_H |
---|