Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Eigen/Eigen/src/Core/GeneralProduct.h @ 9562

Last change on this file since 9562 was 9562, checked in by gkronber, 11 years ago

#1967 worked on Gaussian process evolution.

File size: 26.4 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_GENERAL_PRODUCT_H
12#define EIGEN_GENERAL_PRODUCT_H
13
14namespace Eigen {
15
16/** \class GeneralProduct
17  * \ingroup Core_Module
18  *
19  * \brief Expression of the product of two general matrices or vectors
20  *
21  * \param LhsNested the type used to store the left-hand side
22  * \param RhsNested the type used to store the right-hand side
23  * \param ProductMode the type of the product
24  *
25  * This class represents an expression of the product of two general matrices.
26  * We call a general matrix, a dense matrix with full storage. For instance,
27  * This excludes triangular, selfadjoint, and sparse matrices.
28  * It is the return type of the operator* between general matrices. Its template
29  * arguments are determined automatically by ProductReturnType. Therefore,
30  * GeneralProduct should never be used direclty. To determine the result type of a
31  * function which involves a matrix product, use ProductReturnType::Type.
32  *
33  * \sa ProductReturnType, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
34  */
35template<typename Lhs, typename Rhs, int ProductType = internal::product_type<Lhs,Rhs>::value>
36class GeneralProduct;
37
38enum {
39  Large = 2,
40  Small = 3
41};
42
43namespace internal {
44
45template<int Rows, int Cols, int Depth> struct product_type_selector;
46
47template<int Size, int MaxSize> struct product_size_category
48{
49  enum { is_large = MaxSize == Dynamic ||
50                    Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD,
51         value = is_large  ? Large
52               : Size == 1 ? 1
53                           : Small
54  };
55};
56
57template<typename Lhs, typename Rhs> struct product_type
58{
59  typedef typename remove_all<Lhs>::type _Lhs;
60  typedef typename remove_all<Rhs>::type _Rhs;
61  enum {
62    MaxRows  = _Lhs::MaxRowsAtCompileTime,
63    Rows  = _Lhs::RowsAtCompileTime,
64    MaxCols  = _Rhs::MaxColsAtCompileTime,
65    Cols  = _Rhs::ColsAtCompileTime,
66    MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::MaxColsAtCompileTime,
67                                           _Rhs::MaxRowsAtCompileTime),
68    Depth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::ColsAtCompileTime,
69                                        _Rhs::RowsAtCompileTime),
70    LargeThreshold = EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
71  };
72
73  // the splitting into different lines of code here, introducing the _select enums and the typedef below,
74  // is to work around an internal compiler error with gcc 4.1 and 4.2.
75private:
76  enum {
77    rows_select = product_size_category<Rows,MaxRows>::value,
78    cols_select = product_size_category<Cols,MaxCols>::value,
79    depth_select = product_size_category<Depth,MaxDepth>::value
80  };
81  typedef product_type_selector<rows_select, cols_select, depth_select> selector;
82
83public:
84  enum {
85    value = selector::ret
86  };
87#ifdef EIGEN_DEBUG_PRODUCT
88  static void debug()
89  {
90      EIGEN_DEBUG_VAR(Rows);
91      EIGEN_DEBUG_VAR(Cols);
92      EIGEN_DEBUG_VAR(Depth);
93      EIGEN_DEBUG_VAR(rows_select);
94      EIGEN_DEBUG_VAR(cols_select);
95      EIGEN_DEBUG_VAR(depth_select);
96      EIGEN_DEBUG_VAR(value);
97  }
98#endif
99};
100
101
102/* The following allows to select the kind of product at compile time
103 * based on the three dimensions of the product.
104 * This is a compile time mapping from {1,Small,Large}^3 -> {product types} */
105// FIXME I'm not sure the current mapping is the ideal one.
106template<int M, int N>  struct product_type_selector<M,N,1>              { enum { ret = OuterProduct }; };
107template<int Depth>     struct product_type_selector<1,    1,    Depth>  { enum { ret = InnerProduct }; };
108template<>              struct product_type_selector<1,    1,    1>      { enum { ret = InnerProduct }; };
109template<>              struct product_type_selector<Small,1,    Small>  { enum { ret = CoeffBasedProductMode }; };
110template<>              struct product_type_selector<1,    Small,Small>  { enum { ret = CoeffBasedProductMode }; };
111template<>              struct product_type_selector<Small,Small,Small>  { enum { ret = CoeffBasedProductMode }; };
112template<>              struct product_type_selector<Small, Small, 1>    { enum { ret = LazyCoeffBasedProductMode }; };
113template<>              struct product_type_selector<Small, Large, 1>    { enum { ret = LazyCoeffBasedProductMode }; };
114template<>              struct product_type_selector<Large, Small, 1>    { enum { ret = LazyCoeffBasedProductMode }; };
115template<>              struct product_type_selector<1,    Large,Small>  { enum { ret = CoeffBasedProductMode }; };
116template<>              struct product_type_selector<1,    Large,Large>  { enum { ret = GemvProduct }; };
117template<>              struct product_type_selector<1,    Small,Large>  { enum { ret = CoeffBasedProductMode }; };
118template<>              struct product_type_selector<Large,1,    Small>  { enum { ret = CoeffBasedProductMode }; };
119template<>              struct product_type_selector<Large,1,    Large>  { enum { ret = GemvProduct }; };
120template<>              struct product_type_selector<Small,1,    Large>  { enum { ret = CoeffBasedProductMode }; };
121template<>              struct product_type_selector<Small,Small,Large>  { enum { ret = GemmProduct }; };
122template<>              struct product_type_selector<Large,Small,Large>  { enum { ret = GemmProduct }; };
123template<>              struct product_type_selector<Small,Large,Large>  { enum { ret = GemmProduct }; };
124template<>              struct product_type_selector<Large,Large,Large>  { enum { ret = GemmProduct }; };
125template<>              struct product_type_selector<Large,Small,Small>  { enum { ret = GemmProduct }; };
126template<>              struct product_type_selector<Small,Large,Small>  { enum { ret = GemmProduct }; };
127template<>              struct product_type_selector<Large,Large,Small>  { enum { ret = GemmProduct }; };
128
129} // end namespace internal
130
131/** \class ProductReturnType
132  * \ingroup Core_Module
133  *
134  * \brief Helper class to get the correct and optimized returned type of operator*
135  *
136  * \param Lhs the type of the left-hand side
137  * \param Rhs the type of the right-hand side
138  * \param ProductMode the type of the product (determined automatically by internal::product_mode)
139  *
140  * This class defines the typename Type representing the optimized product expression
141  * between two matrix expressions. In practice, using ProductReturnType<Lhs,Rhs>::Type
142  * is the recommended way to define the result type of a function returning an expression
143  * which involve a matrix product. The class Product should never be
144  * used directly.
145  *
146  * \sa class Product, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
147  */
148template<typename Lhs, typename Rhs, int ProductType>
149struct ProductReturnType
150{
151  // TODO use the nested type to reduce instanciations ????
152//   typedef typename internal::nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
153//   typedef typename internal::nested<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
154
155  typedef GeneralProduct<Lhs/*Nested*/, Rhs/*Nested*/, ProductType> Type;
156};
157
158template<typename Lhs, typename Rhs>
159struct ProductReturnType<Lhs,Rhs,CoeffBasedProductMode>
160{
161  typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
162  typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
163  typedef CoeffBasedProduct<LhsNested, RhsNested, EvalBeforeAssigningBit | EvalBeforeNestingBit> Type;
164};
165
166template<typename Lhs, typename Rhs>
167struct ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
168{
169  typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
170  typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
171  typedef CoeffBasedProduct<LhsNested, RhsNested, NestByRefBit> Type;
172};
173
174// this is a workaround for sun CC
175template<typename Lhs, typename Rhs>
176struct LazyProductReturnType : public ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
177{};
178
179/***********************************************************************
180*  Implementation of Inner Vector Vector Product
181***********************************************************************/
182
183// FIXME : maybe the "inner product" could return a Scalar
184// instead of a 1x1 matrix ??
185// Pro: more natural for the user
186// Cons: this could be a problem if in a meta unrolled algorithm a matrix-matrix
187// product ends up to a row-vector times col-vector product... To tackle this use
188// case, we could have a specialization for Block<MatrixType,1,1> with: operator=(Scalar x);
189
190namespace internal {
191
192template<typename Lhs, typename Rhs>
193struct traits<GeneralProduct<Lhs,Rhs,InnerProduct> >
194 : traits<Matrix<typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> >
195{};
196
197}
198
199template<typename Lhs, typename Rhs>
200class GeneralProduct<Lhs, Rhs, InnerProduct>
201  : internal::no_assignment_operator,
202    public Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1>
203{
204    typedef Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> Base;
205  public:
206    GeneralProduct(const Lhs& lhs, const Rhs& rhs)
207    {
208      EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
209        YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
210
211      Base::coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
212    }
213
214    /** Convertion to scalar */
215    operator const typename Base::Scalar() const {
216      return Base::coeff(0,0);
217    }
218};
219
220/***********************************************************************
221*  Implementation of Outer Vector Vector Product
222***********************************************************************/
223
224namespace internal {
225template<int StorageOrder> struct outer_product_selector;
226
227template<typename Lhs, typename Rhs>
228struct traits<GeneralProduct<Lhs,Rhs,OuterProduct> >
229 : traits<ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs> >
230{};
231
232}
233
234template<typename Lhs, typename Rhs>
235class GeneralProduct<Lhs, Rhs, OuterProduct>
236  : public ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs>
237{
238  public:
239    EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
240
241    GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
242    {
243      EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
244        YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
245    }
246
247    template<typename Dest> void scaleAndAddTo(Dest& dest, Scalar alpha) const
248    {
249      internal::outer_product_selector<(int(Dest::Flags)&RowMajorBit) ? RowMajor : ColMajor>::run(*this, dest, alpha);
250    }
251};
252
253namespace internal {
254
255template<> struct outer_product_selector<ColMajor> {
256  template<typename ProductType, typename Dest>
257  static EIGEN_DONT_INLINE void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) {
258    typedef typename Dest::Index Index;
259    // FIXME make sure lhs is sequentially stored
260    // FIXME not very good if rhs is real and lhs complex while alpha is real too
261    const Index cols = dest.cols();
262    for (Index j=0; j<cols; ++j)
263      dest.col(j) += (alpha * prod.rhs().coeff(j)) * prod.lhs();
264  }
265};
266
267template<> struct outer_product_selector<RowMajor> {
268  template<typename ProductType, typename Dest>
269  static EIGEN_DONT_INLINE void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) {
270    typedef typename Dest::Index Index;
271    // FIXME make sure rhs is sequentially stored
272    // FIXME not very good if lhs is real and rhs complex while alpha is real too
273    const Index rows = dest.rows();
274    for (Index i=0; i<rows; ++i)
275      dest.row(i) += (alpha * prod.lhs().coeff(i)) * prod.rhs();
276  }
277};
278
279} // end namespace internal
280
281/***********************************************************************
282*  Implementation of General Matrix Vector Product
283***********************************************************************/
284
285/*  According to the shape/flags of the matrix we have to distinghish 3 different cases:
286 *   1 - the matrix is col-major, BLAS compatible and M is large => call fast BLAS-like colmajor routine
287 *   2 - the matrix is row-major, BLAS compatible and N is large => call fast BLAS-like rowmajor routine
288 *   3 - all other cases are handled using a simple loop along the outer-storage direction.
289 *  Therefore we need a lower level meta selector.
290 *  Furthermore, if the matrix is the rhs, then the product has to be transposed.
291 */
292namespace internal {
293
294template<typename Lhs, typename Rhs>
295struct traits<GeneralProduct<Lhs,Rhs,GemvProduct> >
296 : traits<ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs> >
297{};
298
299template<int Side, int StorageOrder, bool BlasCompatible>
300struct gemv_selector;
301
302} // end namespace internal
303
304template<typename Lhs, typename Rhs>
305class GeneralProduct<Lhs, Rhs, GemvProduct>
306  : public ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs>
307{
308  public:
309    EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
310
311    typedef typename Lhs::Scalar LhsScalar;
312    typedef typename Rhs::Scalar RhsScalar;
313
314    GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
315    {
316//       EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::Scalar, typename Rhs::Scalar>::value),
317//         YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
318    }
319
320    enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
321    typedef typename internal::conditional<int(Side)==OnTheRight,_LhsNested,_RhsNested>::type MatrixType;
322
323    template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const
324    {
325      eigen_assert(m_lhs.rows() == dst.rows() && m_rhs.cols() == dst.cols());
326      internal::gemv_selector<Side,(int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
327                       bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)>::run(*this, dst, alpha);
328    }
329};
330
331namespace internal {
332
333// The vector is on the left => transposition
334template<int StorageOrder, bool BlasCompatible>
335struct gemv_selector<OnTheLeft,StorageOrder,BlasCompatible>
336{
337  template<typename ProductType, typename Dest>
338  static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
339  {
340    Transpose<Dest> destT(dest);
341    enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor };
342    gemv_selector<OnTheRight,OtherStorageOrder,BlasCompatible>
343      ::run(GeneralProduct<Transpose<const typename ProductType::_RhsNested>,Transpose<const typename ProductType::_LhsNested>, GemvProduct>
344        (prod.rhs().transpose(), prod.lhs().transpose()), destT, alpha);
345  }
346};
347
348template<typename Scalar,int Size,int MaxSize,bool Cond> struct gemv_static_vector_if;
349
350template<typename Scalar,int Size,int MaxSize>
351struct gemv_static_vector_if<Scalar,Size,MaxSize,false>
352{
353  EIGEN_STRONG_INLINE  Scalar* data() { eigen_internal_assert(false && "should never be called"); return 0; }
354};
355
356template<typename Scalar,int Size>
357struct gemv_static_vector_if<Scalar,Size,Dynamic,true>
358{
359  EIGEN_STRONG_INLINE Scalar* data() { return 0; }
360};
361
362template<typename Scalar,int Size,int MaxSize>
363struct gemv_static_vector_if<Scalar,Size,MaxSize,true>
364{
365  #if EIGEN_ALIGN_STATICALLY
366  internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize),0> m_data;
367  EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; }
368  #else
369  // Some architectures cannot align on the stack,
370  // => let's manually enforce alignment by allocating more data and return the address of the first aligned element.
371  enum {
372    ForceAlignment  = internal::packet_traits<Scalar>::Vectorizable,
373    PacketSize      = internal::packet_traits<Scalar>::size
374  };
375  internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize)+(ForceAlignment?PacketSize:0),0> m_data;
376  EIGEN_STRONG_INLINE Scalar* data() {
377    return ForceAlignment
378            ? reinterpret_cast<Scalar*>((reinterpret_cast<size_t>(m_data.array) & ~(size_t(15))) + 16)
379            : m_data.array;
380  }
381  #endif
382};
383
384template<> struct gemv_selector<OnTheRight,ColMajor,true>
385{
386  template<typename ProductType, typename Dest>
387  static inline void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
388  {
389    typedef typename ProductType::Index Index;
390    typedef typename ProductType::LhsScalar   LhsScalar;
391    typedef typename ProductType::RhsScalar   RhsScalar;
392    typedef typename ProductType::Scalar      ResScalar;
393    typedef typename ProductType::RealScalar  RealScalar;
394    typedef typename ProductType::ActualLhsType ActualLhsType;
395    typedef typename ProductType::ActualRhsType ActualRhsType;
396    typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
397    typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
398    typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
399
400    ActualLhsType actualLhs = LhsBlasTraits::extract(prod.lhs());
401    ActualRhsType actualRhs = RhsBlasTraits::extract(prod.rhs());
402
403    ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
404                                  * RhsBlasTraits::extractScalarFactor(prod.rhs());
405
406    enum {
407      // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
408      // on, the other hand it is good for the cache to pack the vector anyways...
409      EvalToDestAtCompileTime = Dest::InnerStrideAtCompileTime==1,
410      ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex),
411      MightCannotUseDest = (Dest::InnerStrideAtCompileTime!=1) || ComplexByReal
412    };
413
414    gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;
415
416    bool alphaIsCompatible = (!ComplexByReal) || (imag(actualAlpha)==RealScalar(0));
417    bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
418   
419    RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha);
420
421    ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
422                                                  evalToDest ? dest.data() : static_dest.data());
423   
424    if(!evalToDest)
425    {
426      #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
427      int size = dest.size();
428      EIGEN_DENSE_STORAGE_CTOR_PLUGIN
429      #endif
430      if(!alphaIsCompatible)
431      {
432        MappedDest(actualDestPtr, dest.size()).setZero();
433        compatibleAlpha = RhsScalar(1);
434      }
435      else
436        MappedDest(actualDestPtr, dest.size()) = dest;
437    }
438
439    general_matrix_vector_product
440      <Index,LhsScalar,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
441        actualLhs.rows(), actualLhs.cols(),
442        actualLhs.data(), actualLhs.outerStride(),
443        actualRhs.data(), actualRhs.innerStride(),
444        actualDestPtr, 1,
445        compatibleAlpha);
446
447    if (!evalToDest)
448    {
449      if(!alphaIsCompatible)
450        dest += actualAlpha * MappedDest(actualDestPtr, dest.size());
451      else
452        dest = MappedDest(actualDestPtr, dest.size());
453    }
454  }
455};
456
457template<> struct gemv_selector<OnTheRight,RowMajor,true>
458{
459  template<typename ProductType, typename Dest>
460  static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
461  {
462    typedef typename ProductType::LhsScalar LhsScalar;
463    typedef typename ProductType::RhsScalar RhsScalar;
464    typedef typename ProductType::Scalar    ResScalar;
465    typedef typename ProductType::Index Index;
466    typedef typename ProductType::ActualLhsType ActualLhsType;
467    typedef typename ProductType::ActualRhsType ActualRhsType;
468    typedef typename ProductType::_ActualRhsType _ActualRhsType;
469    typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
470    typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
471
472    typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
473    typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
474
475    ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
476                                  * RhsBlasTraits::extractScalarFactor(prod.rhs());
477
478    enum {
479      // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
480      // on, the other hand it is good for the cache to pack the vector anyways...
481      DirectlyUseRhs = _ActualRhsType::InnerStrideAtCompileTime==1
482    };
483
484    gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
485
486    ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(),
487        DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data());
488
489    if(!DirectlyUseRhs)
490    {
491      #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
492      int size = actualRhs.size();
493      EIGEN_DENSE_STORAGE_CTOR_PLUGIN
494      #endif
495      Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
496    }
497
498    general_matrix_vector_product
499      <Index,LhsScalar,RowMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
500        actualLhs.rows(), actualLhs.cols(),
501        actualLhs.data(), actualLhs.outerStride(),
502        actualRhsPtr, 1,
503        dest.data(), dest.innerStride(),
504        actualAlpha);
505  }
506};
507
508template<> struct gemv_selector<OnTheRight,ColMajor,false>
509{
510  template<typename ProductType, typename Dest>
511  static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
512  {
513    typedef typename Dest::Index Index;
514    // TODO makes sure dest is sequentially stored in memory, otherwise use a temp
515    const Index size = prod.rhs().rows();
516    for(Index k=0; k<size; ++k)
517      dest += (alpha*prod.rhs().coeff(k)) * prod.lhs().col(k);
518  }
519};
520
521template<> struct gemv_selector<OnTheRight,RowMajor,false>
522{
523  template<typename ProductType, typename Dest>
524  static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
525  {
526    typedef typename Dest::Index Index;
527    // TODO makes sure rhs is sequentially stored in memory, otherwise use a temp
528    const Index rows = prod.rows();
529    for(Index i=0; i<rows; ++i)
530      dest.coeffRef(i) += alpha * (prod.lhs().row(i).cwiseProduct(prod.rhs().transpose())).sum();
531  }
532};
533
534} // end namespace internal
535
536/***************************************************************************
537* Implementation of matrix base methods
538***************************************************************************/
539
540/** \returns the matrix product of \c *this and \a other.
541  *
542  * \note If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*().
543  *
544  * \sa lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*()
545  */
546template<typename Derived>
547template<typename OtherDerived>
548inline const typename ProductReturnType<Derived, OtherDerived>::Type
549MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
550{
551  // A note regarding the function declaration: In MSVC, this function will sometimes
552  // not be inlined since DenseStorage is an unwindable object for dynamic
553  // matrices and product types are holding a member to store the result.
554  // Thus it does not help tagging this function with EIGEN_STRONG_INLINE.
555  enum {
556    ProductIsValid =  Derived::ColsAtCompileTime==Dynamic
557                   || OtherDerived::RowsAtCompileTime==Dynamic
558                   || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
559    AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
560    SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
561  };
562  // note to the lost user:
563  //    * for a dot product use: v1.dot(v2)
564  //    * for a coeff-wise product use: v1.cwiseProduct(v2)
565  EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
566    INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
567  EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
568    INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
569  EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
570#ifdef EIGEN_DEBUG_PRODUCT
571  internal::product_type<Derived,OtherDerived>::debug();
572#endif
573  return typename ProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
574}
575
576/** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation.
577  *
578  * The returned product will behave like any other expressions: the coefficients of the product will be
579  * computed once at a time as requested. This might be useful in some extremely rare cases when only
580  * a small and no coherent fraction of the result's coefficients have to be computed.
581  *
582  * \warning This version of the matrix product can be much much slower. So use it only if you know
583  * what you are doing and that you measured a true speed improvement.
584  *
585  * \sa operator*(const MatrixBase&)
586  */
587template<typename Derived>
588template<typename OtherDerived>
589const typename LazyProductReturnType<Derived,OtherDerived>::Type
590MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const
591{
592  enum {
593    ProductIsValid =  Derived::ColsAtCompileTime==Dynamic
594                   || OtherDerived::RowsAtCompileTime==Dynamic
595                   || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
596    AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
597    SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
598  };
599  // note to the lost user:
600  //    * for a dot product use: v1.dot(v2)
601  //    * for a coeff-wise product use: v1.cwiseProduct(v2)
602  EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
603    INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
604  EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
605    INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
606  EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
607
608  return typename LazyProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
609}
610
611} // end namespace Eigen
612
613#endif // EIGEN_PRODUCT_H
Note: See TracBrowser for help on using the repository browser.