1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
---|
5 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
6 | // |
---|
7 | // This Source Code Form is subject to the terms of the Mozilla |
---|
8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
10 | |
---|
11 | #ifndef EIGEN_FUZZY_H |
---|
12 | #define EIGEN_FUZZY_H |
---|
13 | |
---|
14 | namespace Eigen { |
---|
15 | |
---|
16 | namespace internal |
---|
17 | { |
---|
18 | |
---|
19 | template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger> |
---|
20 | struct isApprox_selector |
---|
21 | { |
---|
22 | static bool run(const Derived& x, const OtherDerived& y, typename Derived::RealScalar prec) |
---|
23 | { |
---|
24 | using std::min; |
---|
25 | typename internal::nested<Derived,2>::type nested(x); |
---|
26 | typename internal::nested<OtherDerived,2>::type otherNested(y); |
---|
27 | return (nested - otherNested).cwiseAbs2().sum() <= prec * prec * (min)(nested.cwiseAbs2().sum(), otherNested.cwiseAbs2().sum()); |
---|
28 | } |
---|
29 | }; |
---|
30 | |
---|
31 | template<typename Derived, typename OtherDerived> |
---|
32 | struct isApprox_selector<Derived, OtherDerived, true> |
---|
33 | { |
---|
34 | static bool run(const Derived& x, const OtherDerived& y, typename Derived::RealScalar) |
---|
35 | { |
---|
36 | return x.matrix() == y.matrix(); |
---|
37 | } |
---|
38 | }; |
---|
39 | |
---|
40 | template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger> |
---|
41 | struct isMuchSmallerThan_object_selector |
---|
42 | { |
---|
43 | static bool run(const Derived& x, const OtherDerived& y, typename Derived::RealScalar prec) |
---|
44 | { |
---|
45 | return x.cwiseAbs2().sum() <= abs2(prec) * y.cwiseAbs2().sum(); |
---|
46 | } |
---|
47 | }; |
---|
48 | |
---|
49 | template<typename Derived, typename OtherDerived> |
---|
50 | struct isMuchSmallerThan_object_selector<Derived, OtherDerived, true> |
---|
51 | { |
---|
52 | static bool run(const Derived& x, const OtherDerived&, typename Derived::RealScalar) |
---|
53 | { |
---|
54 | return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix(); |
---|
55 | } |
---|
56 | }; |
---|
57 | |
---|
58 | template<typename Derived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger> |
---|
59 | struct isMuchSmallerThan_scalar_selector |
---|
60 | { |
---|
61 | static bool run(const Derived& x, const typename Derived::RealScalar& y, typename Derived::RealScalar prec) |
---|
62 | { |
---|
63 | return x.cwiseAbs2().sum() <= abs2(prec * y); |
---|
64 | } |
---|
65 | }; |
---|
66 | |
---|
67 | template<typename Derived> |
---|
68 | struct isMuchSmallerThan_scalar_selector<Derived, true> |
---|
69 | { |
---|
70 | static bool run(const Derived& x, const typename Derived::RealScalar&, typename Derived::RealScalar) |
---|
71 | { |
---|
72 | return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix(); |
---|
73 | } |
---|
74 | }; |
---|
75 | |
---|
76 | } // end namespace internal |
---|
77 | |
---|
78 | |
---|
79 | /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
---|
80 | * determined by \a prec. |
---|
81 | * |
---|
82 | * \note The fuzzy compares are done multiplicatively. Two vectors \f$ v \f$ and \f$ w \f$ |
---|
83 | * are considered to be approximately equal within precision \f$ p \f$ if |
---|
84 | * \f[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \f] |
---|
85 | * For matrices, the comparison is done using the Hilbert-Schmidt norm (aka Frobenius norm |
---|
86 | * L2 norm). |
---|
87 | * |
---|
88 | * \note Because of the multiplicativeness of this comparison, one can't use this function |
---|
89 | * to check whether \c *this is approximately equal to the zero matrix or vector. |
---|
90 | * Indeed, \c isApprox(zero) returns false unless \c *this itself is exactly the zero matrix |
---|
91 | * or vector. If you want to test whether \c *this is zero, use internal::isMuchSmallerThan(const |
---|
92 | * RealScalar&, RealScalar) instead. |
---|
93 | * |
---|
94 | * \sa internal::isMuchSmallerThan(const RealScalar&, RealScalar) const |
---|
95 | */ |
---|
96 | template<typename Derived> |
---|
97 | template<typename OtherDerived> |
---|
98 | bool DenseBase<Derived>::isApprox( |
---|
99 | const DenseBase<OtherDerived>& other, |
---|
100 | RealScalar prec |
---|
101 | ) const |
---|
102 | { |
---|
103 | return internal::isApprox_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec); |
---|
104 | } |
---|
105 | |
---|
106 | /** \returns \c true if the norm of \c *this is much smaller than \a other, |
---|
107 | * within the precision determined by \a prec. |
---|
108 | * |
---|
109 | * \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is |
---|
110 | * considered to be much smaller than \f$ x \f$ within precision \f$ p \f$ if |
---|
111 | * \f[ \Vert v \Vert \leqslant p\,\vert x\vert. \f] |
---|
112 | * |
---|
113 | * For matrices, the comparison is done using the Hilbert-Schmidt norm. For this reason, |
---|
114 | * the value of the reference scalar \a other should come from the Hilbert-Schmidt norm |
---|
115 | * of a reference matrix of same dimensions. |
---|
116 | * |
---|
117 | * \sa isApprox(), isMuchSmallerThan(const DenseBase<OtherDerived>&, RealScalar) const |
---|
118 | */ |
---|
119 | template<typename Derived> |
---|
120 | bool DenseBase<Derived>::isMuchSmallerThan( |
---|
121 | const typename NumTraits<Scalar>::Real& other, |
---|
122 | RealScalar prec |
---|
123 | ) const |
---|
124 | { |
---|
125 | return internal::isMuchSmallerThan_scalar_selector<Derived>::run(derived(), other, prec); |
---|
126 | } |
---|
127 | |
---|
128 | /** \returns \c true if the norm of \c *this is much smaller than the norm of \a other, |
---|
129 | * within the precision determined by \a prec. |
---|
130 | * |
---|
131 | * \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is |
---|
132 | * considered to be much smaller than a vector \f$ w \f$ within precision \f$ p \f$ if |
---|
133 | * \f[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \f] |
---|
134 | * For matrices, the comparison is done using the Hilbert-Schmidt norm. |
---|
135 | * |
---|
136 | * \sa isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const |
---|
137 | */ |
---|
138 | template<typename Derived> |
---|
139 | template<typename OtherDerived> |
---|
140 | bool DenseBase<Derived>::isMuchSmallerThan( |
---|
141 | const DenseBase<OtherDerived>& other, |
---|
142 | RealScalar prec |
---|
143 | ) const |
---|
144 | { |
---|
145 | return internal::isMuchSmallerThan_object_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec); |
---|
146 | } |
---|
147 | |
---|
148 | } // end namespace Eigen |
---|
149 | |
---|
150 | #endif // EIGEN_FUZZY_H |
---|