Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Eigen/Eigen/src/Core/Functors.h @ 9562

Last change on this file since 9562 was 9562, checked in by gkronber, 11 years ago

#1967 worked on Gaussian process evolution.

File size: 35.8 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_FUNCTORS_H
11#define EIGEN_FUNCTORS_H
12
13namespace Eigen {
14
15namespace internal {
16
17// associative functors:
18
19/** \internal
20  * \brief Template functor to compute the sum of two scalars
21  *
22  * \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, MatrixBase::sum()
23  */
24template<typename Scalar> struct scalar_sum_op {
25  EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op)
26  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; }
27  template<typename Packet>
28  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
29  { return internal::padd(a,b); }
30  template<typename Packet>
31  EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
32  { return internal::predux(a); }
33};
34template<typename Scalar>
35struct functor_traits<scalar_sum_op<Scalar> > {
36  enum {
37    Cost = NumTraits<Scalar>::AddCost,
38    PacketAccess = packet_traits<Scalar>::HasAdd
39  };
40};
41
42/** \internal
43  * \brief Template functor to compute the product of two scalars
44  *
45  * \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux()
46  */
47template<typename LhsScalar,typename RhsScalar> struct scalar_product_op {
48  enum {
49    // TODO vectorize mixed product
50    Vectorizable = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasMul && packet_traits<RhsScalar>::HasMul
51  };
52  typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
53  EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op)
54  EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; }
55  template<typename Packet>
56  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
57  { return internal::pmul(a,b); }
58  template<typename Packet>
59  EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const
60  { return internal::predux_mul(a); }
61};
62template<typename LhsScalar,typename RhsScalar>
63struct functor_traits<scalar_product_op<LhsScalar,RhsScalar> > {
64  enum {
65    Cost = (NumTraits<LhsScalar>::MulCost + NumTraits<RhsScalar>::MulCost)/2, // rough estimate!
66    PacketAccess = scalar_product_op<LhsScalar,RhsScalar>::Vectorizable
67  };
68};
69
70/** \internal
71  * \brief Template functor to compute the conjugate product of two scalars
72  *
73  * This is a short cut for conj(x) * y which is needed for optimization purpose; in Eigen2 support mode, this becomes x * conj(y)
74  */
75template<typename LhsScalar,typename RhsScalar> struct scalar_conj_product_op {
76
77  enum {
78    Conj = NumTraits<LhsScalar>::IsComplex
79  };
80 
81  typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
82 
83  EIGEN_EMPTY_STRUCT_CTOR(scalar_conj_product_op)
84  EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const
85  { return conj_helper<LhsScalar,RhsScalar,Conj,false>().pmul(a,b); }
86 
87  template<typename Packet>
88  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
89  { return conj_helper<Packet,Packet,Conj,false>().pmul(a,b); }
90};
91template<typename LhsScalar,typename RhsScalar>
92struct functor_traits<scalar_conj_product_op<LhsScalar,RhsScalar> > {
93  enum {
94    Cost = NumTraits<LhsScalar>::MulCost,
95    PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMul
96  };
97};
98
99/** \internal
100  * \brief Template functor to compute the min of two scalars
101  *
102  * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff()
103  */
104template<typename Scalar> struct scalar_min_op {
105  EIGEN_EMPTY_STRUCT_CTOR(scalar_min_op)
106  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::min; return (min)(a, b); }
107  template<typename Packet>
108  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
109  { return internal::pmin(a,b); }
110  template<typename Packet>
111  EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
112  { return internal::predux_min(a); }
113};
114template<typename Scalar>
115struct functor_traits<scalar_min_op<Scalar> > {
116  enum {
117    Cost = NumTraits<Scalar>::AddCost,
118    PacketAccess = packet_traits<Scalar>::HasMin
119  };
120};
121
122/** \internal
123  * \brief Template functor to compute the max of two scalars
124  *
125  * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff()
126  */
127template<typename Scalar> struct scalar_max_op {
128  EIGEN_EMPTY_STRUCT_CTOR(scalar_max_op)
129  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::max; return (max)(a, b); }
130  template<typename Packet>
131  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
132  { return internal::pmax(a,b); }
133  template<typename Packet>
134  EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
135  { return internal::predux_max(a); }
136};
137template<typename Scalar>
138struct functor_traits<scalar_max_op<Scalar> > {
139  enum {
140    Cost = NumTraits<Scalar>::AddCost,
141    PacketAccess = packet_traits<Scalar>::HasMax
142  };
143};
144
145/** \internal
146  * \brief Template functor to compute the hypot of two scalars
147  *
148  * \sa MatrixBase::stableNorm(), class Redux
149  */
150template<typename Scalar> struct scalar_hypot_op {
151  EIGEN_EMPTY_STRUCT_CTOR(scalar_hypot_op)
152//   typedef typename NumTraits<Scalar>::Real result_type;
153  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const
154  {
155    using std::max;
156    using std::min;
157    Scalar p = (max)(_x, _y);
158    Scalar q = (min)(_x, _y);
159    Scalar qp = q/p;
160    return p * sqrt(Scalar(1) + qp*qp);
161  }
162};
163template<typename Scalar>
164struct functor_traits<scalar_hypot_op<Scalar> > {
165  enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess=0 };
166};
167
168/** \internal
169  * \brief Template functor to compute the pow of two scalars
170  */
171template<typename Scalar, typename OtherScalar> struct scalar_binary_pow_op {
172  EIGEN_EMPTY_STRUCT_CTOR(scalar_binary_pow_op)
173  inline Scalar operator() (const Scalar& a, const OtherScalar& b) const { return internal::pow(a, b); }
174};
175template<typename Scalar, typename OtherScalar>
176struct functor_traits<scalar_binary_pow_op<Scalar,OtherScalar> > {
177  enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false };
178};
179
180// other binary functors:
181
182/** \internal
183  * \brief Template functor to compute the difference of two scalars
184  *
185  * \sa class CwiseBinaryOp, MatrixBase::operator-
186  */
187template<typename Scalar> struct scalar_difference_op {
188  EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op)
189  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; }
190  template<typename Packet>
191  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
192  { return internal::psub(a,b); }
193};
194template<typename Scalar>
195struct functor_traits<scalar_difference_op<Scalar> > {
196  enum {
197    Cost = NumTraits<Scalar>::AddCost,
198    PacketAccess = packet_traits<Scalar>::HasSub
199  };
200};
201
202/** \internal
203  * \brief Template functor to compute the quotient of two scalars
204  *
205  * \sa class CwiseBinaryOp, Cwise::operator/()
206  */
207template<typename Scalar> struct scalar_quotient_op {
208  EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op)
209  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a / b; }
210  template<typename Packet>
211  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
212  { return internal::pdiv(a,b); }
213};
214template<typename Scalar>
215struct functor_traits<scalar_quotient_op<Scalar> > {
216  enum {
217    Cost = 2 * NumTraits<Scalar>::MulCost,
218    PacketAccess = packet_traits<Scalar>::HasDiv
219  };
220};
221
222/** \internal
223  * \brief Template functor to compute the and of two booleans
224  *
225  * \sa class CwiseBinaryOp, ArrayBase::operator&&
226  */
227struct scalar_boolean_and_op {
228  EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_and_op)
229  EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a && b; }
230};
231template<> struct functor_traits<scalar_boolean_and_op> {
232  enum {
233    Cost = NumTraits<bool>::AddCost,
234    PacketAccess = false
235  };
236};
237
238/** \internal
239  * \brief Template functor to compute the or of two booleans
240  *
241  * \sa class CwiseBinaryOp, ArrayBase::operator||
242  */
243struct scalar_boolean_or_op {
244  EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_or_op)
245  EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a || b; }
246};
247template<> struct functor_traits<scalar_boolean_or_op> {
248  enum {
249    Cost = NumTraits<bool>::AddCost,
250    PacketAccess = false
251  };
252};
253
254// unary functors:
255
256/** \internal
257  * \brief Template functor to compute the opposite of a scalar
258  *
259  * \sa class CwiseUnaryOp, MatrixBase::operator-
260  */
261template<typename Scalar> struct scalar_opposite_op {
262  EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op)
263  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; }
264  template<typename Packet>
265  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
266  { return internal::pnegate(a); }
267};
268template<typename Scalar>
269struct functor_traits<scalar_opposite_op<Scalar> >
270{ enum {
271    Cost = NumTraits<Scalar>::AddCost,
272    PacketAccess = packet_traits<Scalar>::HasNegate };
273};
274
275/** \internal
276  * \brief Template functor to compute the absolute value of a scalar
277  *
278  * \sa class CwiseUnaryOp, Cwise::abs
279  */
280template<typename Scalar> struct scalar_abs_op {
281  EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op)
282  typedef typename NumTraits<Scalar>::Real result_type;
283  EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return internal::abs(a); }
284  template<typename Packet>
285  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
286  { return internal::pabs(a); }
287};
288template<typename Scalar>
289struct functor_traits<scalar_abs_op<Scalar> >
290{
291  enum {
292    Cost = NumTraits<Scalar>::AddCost,
293    PacketAccess = packet_traits<Scalar>::HasAbs
294  };
295};
296
297/** \internal
298  * \brief Template functor to compute the squared absolute value of a scalar
299  *
300  * \sa class CwiseUnaryOp, Cwise::abs2
301  */
302template<typename Scalar> struct scalar_abs2_op {
303  EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op)
304  typedef typename NumTraits<Scalar>::Real result_type;
305  EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return internal::abs2(a); }
306  template<typename Packet>
307  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
308  { return internal::pmul(a,a); }
309};
310template<typename Scalar>
311struct functor_traits<scalar_abs2_op<Scalar> >
312{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasAbs2 }; };
313
314/** \internal
315  * \brief Template functor to compute the conjugate of a complex value
316  *
317  * \sa class CwiseUnaryOp, MatrixBase::conjugate()
318  */
319template<typename Scalar> struct scalar_conjugate_op {
320  EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op)
321  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return internal::conj(a); }
322  template<typename Packet>
323  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); }
324};
325template<typename Scalar>
326struct functor_traits<scalar_conjugate_op<Scalar> >
327{
328  enum {
329    Cost = NumTraits<Scalar>::IsComplex ? NumTraits<Scalar>::AddCost : 0,
330    PacketAccess = packet_traits<Scalar>::HasConj
331  };
332};
333
334/** \internal
335  * \brief Template functor to cast a scalar to another type
336  *
337  * \sa class CwiseUnaryOp, MatrixBase::cast()
338  */
339template<typename Scalar, typename NewType>
340struct scalar_cast_op {
341  EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op)
342  typedef NewType result_type;
343  EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast<Scalar, NewType>(a); }
344};
345template<typename Scalar, typename NewType>
346struct functor_traits<scalar_cast_op<Scalar,NewType> >
347{ enum { Cost = is_same<Scalar, NewType>::value ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; };
348
349/** \internal
350  * \brief Template functor to extract the real part of a complex
351  *
352  * \sa class CwiseUnaryOp, MatrixBase::real()
353  */
354template<typename Scalar>
355struct scalar_real_op {
356  EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op)
357  typedef typename NumTraits<Scalar>::Real result_type;
358  EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return internal::real(a); }
359};
360template<typename Scalar>
361struct functor_traits<scalar_real_op<Scalar> >
362{ enum { Cost = 0, PacketAccess = false }; };
363
364/** \internal
365  * \brief Template functor to extract the imaginary part of a complex
366  *
367  * \sa class CwiseUnaryOp, MatrixBase::imag()
368  */
369template<typename Scalar>
370struct scalar_imag_op {
371  EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op)
372  typedef typename NumTraits<Scalar>::Real result_type;
373  EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return internal::imag(a); }
374};
375template<typename Scalar>
376struct functor_traits<scalar_imag_op<Scalar> >
377{ enum { Cost = 0, PacketAccess = false }; };
378
379/** \internal
380  * \brief Template functor to extract the real part of a complex as a reference
381  *
382  * \sa class CwiseUnaryOp, MatrixBase::real()
383  */
384template<typename Scalar>
385struct scalar_real_ref_op {
386  EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op)
387  typedef typename NumTraits<Scalar>::Real result_type;
388  EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return internal::real_ref(*const_cast<Scalar*>(&a)); }
389};
390template<typename Scalar>
391struct functor_traits<scalar_real_ref_op<Scalar> >
392{ enum { Cost = 0, PacketAccess = false }; };
393
394/** \internal
395  * \brief Template functor to extract the imaginary part of a complex as a reference
396  *
397  * \sa class CwiseUnaryOp, MatrixBase::imag()
398  */
399template<typename Scalar>
400struct scalar_imag_ref_op {
401  EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op)
402  typedef typename NumTraits<Scalar>::Real result_type;
403  EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return internal::imag_ref(*const_cast<Scalar*>(&a)); }
404};
405template<typename Scalar>
406struct functor_traits<scalar_imag_ref_op<Scalar> >
407{ enum { Cost = 0, PacketAccess = false }; };
408
409/** \internal
410  *
411  * \brief Template functor to compute the exponential of a scalar
412  *
413  * \sa class CwiseUnaryOp, Cwise::exp()
414  */
415template<typename Scalar> struct scalar_exp_op {
416  EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op)
417  inline const Scalar operator() (const Scalar& a) const { return internal::exp(a); }
418  typedef typename packet_traits<Scalar>::type Packet;
419  inline Packet packetOp(const Packet& a) const { return internal::pexp(a); }
420};
421template<typename Scalar>
422struct functor_traits<scalar_exp_op<Scalar> >
423{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasExp }; };
424
425/** \internal
426  *
427  * \brief Template functor to compute the logarithm of a scalar
428  *
429  * \sa class CwiseUnaryOp, Cwise::log()
430  */
431template<typename Scalar> struct scalar_log_op {
432  EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op)
433  inline const Scalar operator() (const Scalar& a) const { return internal::log(a); }
434  typedef typename packet_traits<Scalar>::type Packet;
435  inline Packet packetOp(const Packet& a) const { return internal::plog(a); }
436};
437template<typename Scalar>
438struct functor_traits<scalar_log_op<Scalar> >
439{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasLog }; };
440
441/** \internal
442  * \brief Template functor to multiply a scalar by a fixed other one
443  *
444  * \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/
445  */
446/* NOTE why doing the pset1() in packetOp *is* an optimization ?
447 * indeed it seems better to declare m_other as a Packet and do the pset1() once
448 * in the constructor. However, in practice:
449 *  - GCC does not like m_other as a Packet and generate a load every time it needs it
450 *  - on the other hand GCC is able to moves the pset1() outside the loop :)
451 *  - simpler code ;)
452 * (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y)
453 */
454template<typename Scalar>
455struct scalar_multiple_op {
456  typedef typename packet_traits<Scalar>::type Packet;
457  // FIXME default copy constructors seems bugged with std::complex<>
458  EIGEN_STRONG_INLINE scalar_multiple_op(const scalar_multiple_op& other) : m_other(other.m_other) { }
459  EIGEN_STRONG_INLINE scalar_multiple_op(const Scalar& other) : m_other(other) { }
460  EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
461  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
462  { return internal::pmul(a, pset1<Packet>(m_other)); }
463  typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other;
464};
465template<typename Scalar>
466struct functor_traits<scalar_multiple_op<Scalar> >
467{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
468
469template<typename Scalar1, typename Scalar2>
470struct scalar_multiple2_op {
471  typedef typename scalar_product_traits<Scalar1,Scalar2>::ReturnType result_type;
472  EIGEN_STRONG_INLINE scalar_multiple2_op(const scalar_multiple2_op& other) : m_other(other.m_other) { }
473  EIGEN_STRONG_INLINE scalar_multiple2_op(const Scalar2& other) : m_other(other) { }
474  EIGEN_STRONG_INLINE result_type operator() (const Scalar1& a) const { return a * m_other; }
475  typename add_const_on_value_type<typename NumTraits<Scalar2>::Nested>::type m_other;
476};
477template<typename Scalar1,typename Scalar2>
478struct functor_traits<scalar_multiple2_op<Scalar1,Scalar2> >
479{ enum { Cost = NumTraits<Scalar1>::MulCost, PacketAccess = false }; };
480
481/** \internal
482  * \brief Template functor to divide a scalar by a fixed other one
483  *
484  * This functor is used to implement the quotient of a matrix by
485  * a scalar where the scalar type is not necessarily a floating point type.
486  *
487  * \sa class CwiseUnaryOp, MatrixBase::operator/
488  */
489template<typename Scalar>
490struct scalar_quotient1_op {
491  typedef typename packet_traits<Scalar>::type Packet;
492  // FIXME default copy constructors seems bugged with std::complex<>
493  EIGEN_STRONG_INLINE scalar_quotient1_op(const scalar_quotient1_op& other) : m_other(other.m_other) { }
494  EIGEN_STRONG_INLINE scalar_quotient1_op(const Scalar& other) : m_other(other) {}
495  EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; }
496  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
497  { return internal::pdiv(a, pset1<Packet>(m_other)); }
498  typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other;
499};
500template<typename Scalar>
501struct functor_traits<scalar_quotient1_op<Scalar> >
502{ enum { Cost = 2 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; };
503
504// nullary functors
505
506template<typename Scalar>
507struct scalar_constant_op {
508  typedef typename packet_traits<Scalar>::type Packet;
509  EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { }
510  EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { }
511  template<typename Index>
512  EIGEN_STRONG_INLINE const Scalar operator() (Index, Index = 0) const { return m_other; }
513  template<typename Index>
514  EIGEN_STRONG_INLINE const Packet packetOp(Index, Index = 0) const { return internal::pset1<Packet>(m_other); }
515  const Scalar m_other;
516};
517template<typename Scalar>
518struct functor_traits<scalar_constant_op<Scalar> >
519// FIXME replace this packet test by a safe one
520{ enum { Cost = 1, PacketAccess = packet_traits<Scalar>::Vectorizable, IsRepeatable = true }; };
521
522template<typename Scalar> struct scalar_identity_op {
523  EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op)
524  template<typename Index>
525  EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const { return row==col ? Scalar(1) : Scalar(0); }
526};
527template<typename Scalar>
528struct functor_traits<scalar_identity_op<Scalar> >
529{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; };
530
531template <typename Scalar, bool RandomAccess> struct linspaced_op_impl;
532
533// linear access for packet ops:
534// 1) initialization
535//   base = [low, ..., low] + ([step, ..., step] * [-size, ..., 0])
536// 2) each step (where size is 1 for coeff access or PacketSize for packet access)
537//   base += [size*step, ..., size*step]
538//
539// TODO: Perhaps it's better to initialize lazily (so not in the constructor but in packetOp)
540//       in order to avoid the padd() in operator() ?
541template <typename Scalar>
542struct linspaced_op_impl<Scalar,false>
543{
544  typedef typename packet_traits<Scalar>::type Packet;
545
546  linspaced_op_impl(Scalar low, Scalar step) :
547  m_low(low), m_step(step),
548  m_packetStep(pset1<Packet>(packet_traits<Scalar>::size*step)),
549  m_base(padd(pset1<Packet>(low), pmul(pset1<Packet>(step),plset<Scalar>(-packet_traits<Scalar>::size)))) {}
550
551  template<typename Index>
552  EIGEN_STRONG_INLINE const Scalar operator() (Index i) const
553  {
554    m_base = padd(m_base, pset1<Packet>(m_step));
555    return m_low+i*m_step;
556  }
557
558  template<typename Index>
559  EIGEN_STRONG_INLINE const Packet packetOp(Index) const { return m_base = padd(m_base,m_packetStep); }
560
561  const Scalar m_low;
562  const Scalar m_step;
563  const Packet m_packetStep;
564  mutable Packet m_base;
565};
566
567// random access for packet ops:
568// 1) each step
569//   [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) )
570template <typename Scalar>
571struct linspaced_op_impl<Scalar,true>
572{
573  typedef typename packet_traits<Scalar>::type Packet;
574
575  linspaced_op_impl(Scalar low, Scalar step) :
576  m_low(low), m_step(step),
577  m_lowPacket(pset1<Packet>(m_low)), m_stepPacket(pset1<Packet>(m_step)), m_interPacket(plset<Scalar>(0)) {}
578
579  template<typename Index>
580  EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; }
581
582  template<typename Index>
583  EIGEN_STRONG_INLINE const Packet packetOp(Index i) const
584  { return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(i),m_interPacket))); }
585
586  const Scalar m_low;
587  const Scalar m_step;
588  const Packet m_lowPacket;
589  const Packet m_stepPacket;
590  const Packet m_interPacket;
591};
592
593// ----- Linspace functor ----------------------------------------------------------------
594
595// Forward declaration (we default to random access which does not really give
596// us a speed gain when using packet access but it allows to use the functor in
597// nested expressions).
598template <typename Scalar, bool RandomAccess = true> struct linspaced_op;
599template <typename Scalar, bool RandomAccess> struct functor_traits< linspaced_op<Scalar,RandomAccess> >
600{ enum { Cost = 1, PacketAccess = packet_traits<Scalar>::HasSetLinear, IsRepeatable = true }; };
601template <typename Scalar, bool RandomAccess> struct linspaced_op
602{
603  typedef typename packet_traits<Scalar>::type Packet;
604  linspaced_op(Scalar low, Scalar high, int num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/(num_steps-1))) {}
605
606  template<typename Index>
607  EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); }
608
609  // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
610  // there row==0 and col is used for the actual iteration.
611  template<typename Index>
612  EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const
613  {
614    eigen_assert(col==0 || row==0);
615    return impl(col + row);
616  }
617
618  template<typename Index>
619  EIGEN_STRONG_INLINE const Packet packetOp(Index i) const { return impl.packetOp(i); }
620
621  // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
622  // there row==0 and col is used for the actual iteration.
623  template<typename Index>
624  EIGEN_STRONG_INLINE const Packet packetOp(Index row, Index col) const
625  {
626    eigen_assert(col==0 || row==0);
627    return impl.packetOp(col + row);
628  }
629
630  // This proxy object handles the actual required temporaries, the different
631  // implementations (random vs. sequential access) as well as the
632  // correct piping to size 2/4 packet operations.
633  const linspaced_op_impl<Scalar,RandomAccess> impl;
634};
635
636// all functors allow linear access, except scalar_identity_op. So we fix here a quick meta
637// to indicate whether a functor allows linear access, just always answering 'yes' except for
638// scalar_identity_op.
639// FIXME move this to functor_traits adding a functor_default
640template<typename Functor> struct functor_has_linear_access { enum { ret = 1 }; };
641template<typename Scalar> struct functor_has_linear_access<scalar_identity_op<Scalar> > { enum { ret = 0 }; };
642
643// in CwiseBinaryOp, we require the Lhs and Rhs to have the same scalar type, except for multiplication
644// where we only require them to have the same _real_ scalar type so one may multiply, say, float by complex<float>.
645// FIXME move this to functor_traits adding a functor_default
646template<typename Functor> struct functor_allows_mixing_real_and_complex { enum { ret = 0 }; };
647template<typename LhsScalar,typename RhsScalar> struct functor_allows_mixing_real_and_complex<scalar_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
648template<typename LhsScalar,typename RhsScalar> struct functor_allows_mixing_real_and_complex<scalar_conj_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
649
650
651/** \internal
652  * \brief Template functor to add a scalar to a fixed other one
653  * \sa class CwiseUnaryOp, Array::operator+
654  */
655/* If you wonder why doing the pset1() in packetOp() is an optimization check scalar_multiple_op */
656template<typename Scalar>
657struct scalar_add_op {
658  typedef typename packet_traits<Scalar>::type Packet;
659  // FIXME default copy constructors seems bugged with std::complex<>
660  inline scalar_add_op(const scalar_add_op& other) : m_other(other.m_other) { }
661  inline scalar_add_op(const Scalar& other) : m_other(other) { }
662  inline Scalar operator() (const Scalar& a) const { return a + m_other; }
663  inline const Packet packetOp(const Packet& a) const
664  { return internal::padd(a, pset1<Packet>(m_other)); }
665  const Scalar m_other;
666};
667template<typename Scalar>
668struct functor_traits<scalar_add_op<Scalar> >
669{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = packet_traits<Scalar>::HasAdd }; };
670
671/** \internal
672  * \brief Template functor to compute the square root of a scalar
673  * \sa class CwiseUnaryOp, Cwise::sqrt()
674  */
675template<typename Scalar> struct scalar_sqrt_op {
676  EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op)
677  inline const Scalar operator() (const Scalar& a) const { return internal::sqrt(a); }
678  typedef typename packet_traits<Scalar>::type Packet;
679  inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); }
680};
681template<typename Scalar>
682struct functor_traits<scalar_sqrt_op<Scalar> >
683{ enum {
684    Cost = 5 * NumTraits<Scalar>::MulCost,
685    PacketAccess = packet_traits<Scalar>::HasSqrt
686  };
687};
688
689/** \internal
690  * \brief Template functor to compute the cosine of a scalar
691  * \sa class CwiseUnaryOp, ArrayBase::cos()
692  */
693template<typename Scalar> struct scalar_cos_op {
694  EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op)
695  inline Scalar operator() (const Scalar& a) const { return internal::cos(a); }
696  typedef typename packet_traits<Scalar>::type Packet;
697  inline Packet packetOp(const Packet& a) const { return internal::pcos(a); }
698};
699template<typename Scalar>
700struct functor_traits<scalar_cos_op<Scalar> >
701{
702  enum {
703    Cost = 5 * NumTraits<Scalar>::MulCost,
704    PacketAccess = packet_traits<Scalar>::HasCos
705  };
706};
707
708/** \internal
709  * \brief Template functor to compute the sine of a scalar
710  * \sa class CwiseUnaryOp, ArrayBase::sin()
711  */
712template<typename Scalar> struct scalar_sin_op {
713  EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op)
714  inline const Scalar operator() (const Scalar& a) const { return internal::sin(a); }
715  typedef typename packet_traits<Scalar>::type Packet;
716  inline Packet packetOp(const Packet& a) const { return internal::psin(a); }
717};
718template<typename Scalar>
719struct functor_traits<scalar_sin_op<Scalar> >
720{
721  enum {
722    Cost = 5 * NumTraits<Scalar>::MulCost,
723    PacketAccess = packet_traits<Scalar>::HasSin
724  };
725};
726
727
728/** \internal
729  * \brief Template functor to compute the tan of a scalar
730  * \sa class CwiseUnaryOp, ArrayBase::tan()
731  */
732template<typename Scalar> struct scalar_tan_op {
733  EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op)
734  inline const Scalar operator() (const Scalar& a) const { return internal::tan(a); }
735  typedef typename packet_traits<Scalar>::type Packet;
736  inline Packet packetOp(const Packet& a) const { return internal::ptan(a); }
737};
738template<typename Scalar>
739struct functor_traits<scalar_tan_op<Scalar> >
740{
741  enum {
742    Cost = 5 * NumTraits<Scalar>::MulCost,
743    PacketAccess = packet_traits<Scalar>::HasTan
744  };
745};
746
747/** \internal
748  * \brief Template functor to compute the arc cosine of a scalar
749  * \sa class CwiseUnaryOp, ArrayBase::acos()
750  */
751template<typename Scalar> struct scalar_acos_op {
752  EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op)
753  inline const Scalar operator() (const Scalar& a) const { return internal::acos(a); }
754  typedef typename packet_traits<Scalar>::type Packet;
755  inline Packet packetOp(const Packet& a) const { return internal::pacos(a); }
756};
757template<typename Scalar>
758struct functor_traits<scalar_acos_op<Scalar> >
759{
760  enum {
761    Cost = 5 * NumTraits<Scalar>::MulCost,
762    PacketAccess = packet_traits<Scalar>::HasACos
763  };
764};
765
766/** \internal
767  * \brief Template functor to compute the arc sine of a scalar
768  * \sa class CwiseUnaryOp, ArrayBase::asin()
769  */
770template<typename Scalar> struct scalar_asin_op {
771  EIGEN_EMPTY_STRUCT_CTOR(scalar_asin_op)
772  inline const Scalar operator() (const Scalar& a) const { return internal::asin(a); }
773  typedef typename packet_traits<Scalar>::type Packet;
774  inline Packet packetOp(const Packet& a) const { return internal::pasin(a); }
775};
776template<typename Scalar>
777struct functor_traits<scalar_asin_op<Scalar> >
778{
779  enum {
780    Cost = 5 * NumTraits<Scalar>::MulCost,
781    PacketAccess = packet_traits<Scalar>::HasASin
782  };
783};
784
785/** \internal
786  * \brief Template functor to raise a scalar to a power
787  * \sa class CwiseUnaryOp, Cwise::pow
788  */
789template<typename Scalar>
790struct scalar_pow_op {
791  // FIXME default copy constructors seems bugged with std::complex<>
792  inline scalar_pow_op(const scalar_pow_op& other) : m_exponent(other.m_exponent) { }
793  inline scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {}
794  inline Scalar operator() (const Scalar& a) const { return internal::pow(a, m_exponent); }
795  const Scalar m_exponent;
796};
797template<typename Scalar>
798struct functor_traits<scalar_pow_op<Scalar> >
799{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
800
801/** \internal
802  * \brief Template functor to compute the quotient between a scalar and array entries.
803  * \sa class CwiseUnaryOp, Cwise::inverse()
804  */
805template<typename Scalar>
806struct scalar_inverse_mult_op {
807  scalar_inverse_mult_op(const Scalar& other) : m_other(other) {}
808  inline Scalar operator() (const Scalar& a) const { return m_other / a; }
809  template<typename Packet>
810  inline const Packet packetOp(const Packet& a) const
811  { return internal::pdiv(pset1<Packet>(m_other),a); }
812  Scalar m_other;
813};
814
815/** \internal
816  * \brief Template functor to compute the inverse of a scalar
817  * \sa class CwiseUnaryOp, Cwise::inverse()
818  */
819template<typename Scalar>
820struct scalar_inverse_op {
821  EIGEN_EMPTY_STRUCT_CTOR(scalar_inverse_op)
822  inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; }
823  template<typename Packet>
824  inline const Packet packetOp(const Packet& a) const
825  { return internal::pdiv(pset1<Packet>(Scalar(1)),a); }
826};
827template<typename Scalar>
828struct functor_traits<scalar_inverse_op<Scalar> >
829{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; };
830
831/** \internal
832  * \brief Template functor to compute the square of a scalar
833  * \sa class CwiseUnaryOp, Cwise::square()
834  */
835template<typename Scalar>
836struct scalar_square_op {
837  EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op)
838  inline Scalar operator() (const Scalar& a) const { return a*a; }
839  template<typename Packet>
840  inline const Packet packetOp(const Packet& a) const
841  { return internal::pmul(a,a); }
842};
843template<typename Scalar>
844struct functor_traits<scalar_square_op<Scalar> >
845{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
846
847/** \internal
848  * \brief Template functor to compute the cube of a scalar
849  * \sa class CwiseUnaryOp, Cwise::cube()
850  */
851template<typename Scalar>
852struct scalar_cube_op {
853  EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op)
854  inline Scalar operator() (const Scalar& a) const { return a*a*a; }
855  template<typename Packet>
856  inline const Packet packetOp(const Packet& a) const
857  { return internal::pmul(a,pmul(a,a)); }
858};
859template<typename Scalar>
860struct functor_traits<scalar_cube_op<Scalar> >
861{ enum { Cost = 2*NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
862
863// default functor traits for STL functors:
864
865template<typename T>
866struct functor_traits<std::multiplies<T> >
867{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
868
869template<typename T>
870struct functor_traits<std::divides<T> >
871{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
872
873template<typename T>
874struct functor_traits<std::plus<T> >
875{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
876
877template<typename T>
878struct functor_traits<std::minus<T> >
879{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
880
881template<typename T>
882struct functor_traits<std::negate<T> >
883{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
884
885template<typename T>
886struct functor_traits<std::logical_or<T> >
887{ enum { Cost = 1, PacketAccess = false }; };
888
889template<typename T>
890struct functor_traits<std::logical_and<T> >
891{ enum { Cost = 1, PacketAccess = false }; };
892
893template<typename T>
894struct functor_traits<std::logical_not<T> >
895{ enum { Cost = 1, PacketAccess = false }; };
896
897template<typename T>
898struct functor_traits<std::greater<T> >
899{ enum { Cost = 1, PacketAccess = false }; };
900
901template<typename T>
902struct functor_traits<std::less<T> >
903{ enum { Cost = 1, PacketAccess = false }; };
904
905template<typename T>
906struct functor_traits<std::greater_equal<T> >
907{ enum { Cost = 1, PacketAccess = false }; };
908
909template<typename T>
910struct functor_traits<std::less_equal<T> >
911{ enum { Cost = 1, PacketAccess = false }; };
912
913template<typename T>
914struct functor_traits<std::equal_to<T> >
915{ enum { Cost = 1, PacketAccess = false }; };
916
917template<typename T>
918struct functor_traits<std::not_equal_to<T> >
919{ enum { Cost = 1, PacketAccess = false }; };
920
921template<typename T>
922struct functor_traits<std::binder2nd<T> >
923{ enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
924
925template<typename T>
926struct functor_traits<std::binder1st<T> >
927{ enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
928
929template<typename T>
930struct functor_traits<std::unary_negate<T> >
931{ enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
932
933template<typename T>
934struct functor_traits<std::binary_negate<T> >
935{ enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
936
937#ifdef EIGEN_STDEXT_SUPPORT
938
939template<typename T0,typename T1>
940struct functor_traits<std::project1st<T0,T1> >
941{ enum { Cost = 0, PacketAccess = false }; };
942
943template<typename T0,typename T1>
944struct functor_traits<std::project2nd<T0,T1> >
945{ enum { Cost = 0, PacketAccess = false }; };
946
947template<typename T0,typename T1>
948struct functor_traits<std::select2nd<std::pair<T0,T1> > >
949{ enum { Cost = 0, PacketAccess = false }; };
950
951template<typename T0,typename T1>
952struct functor_traits<std::select1st<std::pair<T0,T1> > >
953{ enum { Cost = 0, PacketAccess = false }; };
954
955template<typename T0,typename T1>
956struct functor_traits<std::unary_compose<T0,T1> >
957{ enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost, PacketAccess = false }; };
958
959template<typename T0,typename T1,typename T2>
960struct functor_traits<std::binary_compose<T0,T1,T2> >
961{ enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost + functor_traits<T2>::Cost, PacketAccess = false }; };
962
963#endif // EIGEN_STDEXT_SUPPORT
964
965// allow to add new functors and specializations of functor_traits from outside Eigen.
966// this macro is really needed because functor_traits must be specialized after it is declared but before it is used...
967#ifdef EIGEN_FUNCTORS_PLUGIN
968#include EIGEN_FUNCTORS_PLUGIN
969#endif
970
971} // end namespace internal
972
973} // end namespace Eigen
974
975#endif // EIGEN_FUNCTORS_H
Note: See TracBrowser for help on using the repository browser.