1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
5 | // |
---|
6 | // This Source Code Form is subject to the terms of the Mozilla |
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
9 | |
---|
10 | #ifndef EIGEN_CHOLMODSUPPORT_H |
---|
11 | #define EIGEN_CHOLMODSUPPORT_H |
---|
12 | |
---|
13 | namespace Eigen { |
---|
14 | |
---|
15 | namespace internal { |
---|
16 | |
---|
17 | template<typename Scalar, typename CholmodType> |
---|
18 | void cholmod_configure_matrix(CholmodType& mat) |
---|
19 | { |
---|
20 | if (internal::is_same<Scalar,float>::value) |
---|
21 | { |
---|
22 | mat.xtype = CHOLMOD_REAL; |
---|
23 | mat.dtype = CHOLMOD_SINGLE; |
---|
24 | } |
---|
25 | else if (internal::is_same<Scalar,double>::value) |
---|
26 | { |
---|
27 | mat.xtype = CHOLMOD_REAL; |
---|
28 | mat.dtype = CHOLMOD_DOUBLE; |
---|
29 | } |
---|
30 | else if (internal::is_same<Scalar,std::complex<float> >::value) |
---|
31 | { |
---|
32 | mat.xtype = CHOLMOD_COMPLEX; |
---|
33 | mat.dtype = CHOLMOD_SINGLE; |
---|
34 | } |
---|
35 | else if (internal::is_same<Scalar,std::complex<double> >::value) |
---|
36 | { |
---|
37 | mat.xtype = CHOLMOD_COMPLEX; |
---|
38 | mat.dtype = CHOLMOD_DOUBLE; |
---|
39 | } |
---|
40 | else |
---|
41 | { |
---|
42 | eigen_assert(false && "Scalar type not supported by CHOLMOD"); |
---|
43 | } |
---|
44 | } |
---|
45 | |
---|
46 | } // namespace internal |
---|
47 | |
---|
48 | /** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object. |
---|
49 | * Note that the data are shared. |
---|
50 | */ |
---|
51 | template<typename _Scalar, int _Options, typename _Index> |
---|
52 | cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_Index>& mat) |
---|
53 | { |
---|
54 | typedef SparseMatrix<_Scalar,_Options,_Index> MatrixType; |
---|
55 | cholmod_sparse res; |
---|
56 | res.nzmax = mat.nonZeros(); |
---|
57 | res.nrow = mat.rows();; |
---|
58 | res.ncol = mat.cols(); |
---|
59 | res.p = mat.outerIndexPtr(); |
---|
60 | res.i = mat.innerIndexPtr(); |
---|
61 | res.x = mat.valuePtr(); |
---|
62 | res.sorted = 1; |
---|
63 | if(mat.isCompressed()) |
---|
64 | { |
---|
65 | res.packed = 1; |
---|
66 | } |
---|
67 | else |
---|
68 | { |
---|
69 | res.packed = 0; |
---|
70 | res.nz = mat.innerNonZeroPtr(); |
---|
71 | } |
---|
72 | |
---|
73 | res.dtype = 0; |
---|
74 | res.stype = -1; |
---|
75 | |
---|
76 | if (internal::is_same<_Index,int>::value) |
---|
77 | { |
---|
78 | res.itype = CHOLMOD_INT; |
---|
79 | } |
---|
80 | else |
---|
81 | { |
---|
82 | eigen_assert(false && "Index type different than int is not supported yet"); |
---|
83 | } |
---|
84 | |
---|
85 | // setup res.xtype |
---|
86 | internal::cholmod_configure_matrix<_Scalar>(res); |
---|
87 | |
---|
88 | res.stype = 0; |
---|
89 | |
---|
90 | return res; |
---|
91 | } |
---|
92 | |
---|
93 | template<typename _Scalar, int _Options, typename _Index> |
---|
94 | const cholmod_sparse viewAsCholmod(const SparseMatrix<_Scalar,_Options,_Index>& mat) |
---|
95 | { |
---|
96 | cholmod_sparse res = viewAsCholmod(mat.const_cast_derived()); |
---|
97 | return res; |
---|
98 | } |
---|
99 | |
---|
100 | /** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix. |
---|
101 | * The data are not copied but shared. */ |
---|
102 | template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo> |
---|
103 | cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<SparseMatrix<_Scalar,_Options,_Index>, UpLo>& mat) |
---|
104 | { |
---|
105 | cholmod_sparse res = viewAsCholmod(mat.matrix().const_cast_derived()); |
---|
106 | |
---|
107 | if(UpLo==Upper) res.stype = 1; |
---|
108 | if(UpLo==Lower) res.stype = -1; |
---|
109 | |
---|
110 | return res; |
---|
111 | } |
---|
112 | |
---|
113 | /** Returns a view of the Eigen \b dense matrix \a mat as Cholmod dense matrix. |
---|
114 | * The data are not copied but shared. */ |
---|
115 | template<typename Derived> |
---|
116 | cholmod_dense viewAsCholmod(MatrixBase<Derived>& mat) |
---|
117 | { |
---|
118 | EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); |
---|
119 | typedef typename Derived::Scalar Scalar; |
---|
120 | |
---|
121 | cholmod_dense res; |
---|
122 | res.nrow = mat.rows(); |
---|
123 | res.ncol = mat.cols(); |
---|
124 | res.nzmax = res.nrow * res.ncol; |
---|
125 | res.d = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride(); |
---|
126 | res.x = mat.derived().data(); |
---|
127 | res.z = 0; |
---|
128 | |
---|
129 | internal::cholmod_configure_matrix<Scalar>(res); |
---|
130 | |
---|
131 | return res; |
---|
132 | } |
---|
133 | |
---|
134 | /** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix. |
---|
135 | * The data are not copied but shared. */ |
---|
136 | template<typename Scalar, int Flags, typename Index> |
---|
137 | MappedSparseMatrix<Scalar,Flags,Index> viewAsEigen(cholmod_sparse& cm) |
---|
138 | { |
---|
139 | return MappedSparseMatrix<Scalar,Flags,Index> |
---|
140 | (cm.nrow, cm.ncol, reinterpret_cast<Index*>(cm.p)[cm.ncol], |
---|
141 | reinterpret_cast<Index*>(cm.p), reinterpret_cast<Index*>(cm.i),reinterpret_cast<Scalar*>(cm.x) ); |
---|
142 | } |
---|
143 | |
---|
144 | enum CholmodMode { |
---|
145 | CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt |
---|
146 | }; |
---|
147 | |
---|
148 | |
---|
149 | /** \ingroup CholmodSupport_Module |
---|
150 | * \class CholmodBase |
---|
151 | * \brief The base class for the direct Cholesky factorization of Cholmod |
---|
152 | * \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT |
---|
153 | */ |
---|
154 | template<typename _MatrixType, int _UpLo, typename Derived> |
---|
155 | class CholmodBase : internal::noncopyable |
---|
156 | { |
---|
157 | public: |
---|
158 | typedef _MatrixType MatrixType; |
---|
159 | enum { UpLo = _UpLo }; |
---|
160 | typedef typename MatrixType::Scalar Scalar; |
---|
161 | typedef typename MatrixType::RealScalar RealScalar; |
---|
162 | typedef MatrixType CholMatrixType; |
---|
163 | typedef typename MatrixType::Index Index; |
---|
164 | |
---|
165 | public: |
---|
166 | |
---|
167 | CholmodBase() |
---|
168 | : m_cholmodFactor(0), m_info(Success), m_isInitialized(false) |
---|
169 | { |
---|
170 | cholmod_start(&m_cholmod); |
---|
171 | } |
---|
172 | |
---|
173 | CholmodBase(const MatrixType& matrix) |
---|
174 | : m_cholmodFactor(0), m_info(Success), m_isInitialized(false) |
---|
175 | { |
---|
176 | cholmod_start(&m_cholmod); |
---|
177 | compute(matrix); |
---|
178 | } |
---|
179 | |
---|
180 | ~CholmodBase() |
---|
181 | { |
---|
182 | if(m_cholmodFactor) |
---|
183 | cholmod_free_factor(&m_cholmodFactor, &m_cholmod); |
---|
184 | cholmod_finish(&m_cholmod); |
---|
185 | } |
---|
186 | |
---|
187 | inline Index cols() const { return m_cholmodFactor->n; } |
---|
188 | inline Index rows() const { return m_cholmodFactor->n; } |
---|
189 | |
---|
190 | Derived& derived() { return *static_cast<Derived*>(this); } |
---|
191 | const Derived& derived() const { return *static_cast<const Derived*>(this); } |
---|
192 | |
---|
193 | /** \brief Reports whether previous computation was successful. |
---|
194 | * |
---|
195 | * \returns \c Success if computation was succesful, |
---|
196 | * \c NumericalIssue if the matrix.appears to be negative. |
---|
197 | */ |
---|
198 | ComputationInfo info() const |
---|
199 | { |
---|
200 | eigen_assert(m_isInitialized && "Decomposition is not initialized."); |
---|
201 | return m_info; |
---|
202 | } |
---|
203 | |
---|
204 | /** Computes the sparse Cholesky decomposition of \a matrix */ |
---|
205 | Derived& compute(const MatrixType& matrix) |
---|
206 | { |
---|
207 | analyzePattern(matrix); |
---|
208 | factorize(matrix); |
---|
209 | return derived(); |
---|
210 | } |
---|
211 | |
---|
212 | /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. |
---|
213 | * |
---|
214 | * \sa compute() |
---|
215 | */ |
---|
216 | template<typename Rhs> |
---|
217 | inline const internal::solve_retval<CholmodBase, Rhs> |
---|
218 | solve(const MatrixBase<Rhs>& b) const |
---|
219 | { |
---|
220 | eigen_assert(m_isInitialized && "LLT is not initialized."); |
---|
221 | eigen_assert(rows()==b.rows() |
---|
222 | && "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b"); |
---|
223 | return internal::solve_retval<CholmodBase, Rhs>(*this, b.derived()); |
---|
224 | } |
---|
225 | |
---|
226 | /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. |
---|
227 | * |
---|
228 | * \sa compute() |
---|
229 | */ |
---|
230 | template<typename Rhs> |
---|
231 | inline const internal::sparse_solve_retval<CholmodBase, Rhs> |
---|
232 | solve(const SparseMatrixBase<Rhs>& b) const |
---|
233 | { |
---|
234 | eigen_assert(m_isInitialized && "LLT is not initialized."); |
---|
235 | eigen_assert(rows()==b.rows() |
---|
236 | && "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b"); |
---|
237 | return internal::sparse_solve_retval<CholmodBase, Rhs>(*this, b.derived()); |
---|
238 | } |
---|
239 | |
---|
240 | /** Performs a symbolic decomposition on the sparcity of \a matrix. |
---|
241 | * |
---|
242 | * This function is particularly useful when solving for several problems having the same structure. |
---|
243 | * |
---|
244 | * \sa factorize() |
---|
245 | */ |
---|
246 | void analyzePattern(const MatrixType& matrix) |
---|
247 | { |
---|
248 | if(m_cholmodFactor) |
---|
249 | { |
---|
250 | cholmod_free_factor(&m_cholmodFactor, &m_cholmod); |
---|
251 | m_cholmodFactor = 0; |
---|
252 | } |
---|
253 | cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>()); |
---|
254 | m_cholmodFactor = cholmod_analyze(&A, &m_cholmod); |
---|
255 | |
---|
256 | this->m_isInitialized = true; |
---|
257 | this->m_info = Success; |
---|
258 | m_analysisIsOk = true; |
---|
259 | m_factorizationIsOk = false; |
---|
260 | } |
---|
261 | |
---|
262 | /** Performs a numeric decomposition of \a matrix |
---|
263 | * |
---|
264 | * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. |
---|
265 | * |
---|
266 | * \sa analyzePattern() |
---|
267 | */ |
---|
268 | void factorize(const MatrixType& matrix) |
---|
269 | { |
---|
270 | eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); |
---|
271 | cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>()); |
---|
272 | cholmod_factorize(&A, m_cholmodFactor, &m_cholmod); |
---|
273 | |
---|
274 | this->m_info = Success; |
---|
275 | m_factorizationIsOk = true; |
---|
276 | } |
---|
277 | |
---|
278 | /** Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations. |
---|
279 | * See the Cholmod user guide for details. */ |
---|
280 | cholmod_common& cholmod() { return m_cholmod; } |
---|
281 | |
---|
282 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
---|
283 | /** \internal */ |
---|
284 | template<typename Rhs,typename Dest> |
---|
285 | void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const |
---|
286 | { |
---|
287 | eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); |
---|
288 | const Index size = m_cholmodFactor->n; |
---|
289 | eigen_assert(size==b.rows()); |
---|
290 | |
---|
291 | // note: cd stands for Cholmod Dense |
---|
292 | cholmod_dense b_cd = viewAsCholmod(b.const_cast_derived()); |
---|
293 | cholmod_dense* x_cd = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &b_cd, &m_cholmod); |
---|
294 | if(!x_cd) |
---|
295 | { |
---|
296 | this->m_info = NumericalIssue; |
---|
297 | } |
---|
298 | // TODO optimize this copy by swapping when possible (be carreful with alignment, etc.) |
---|
299 | dest = Matrix<Scalar,Dest::RowsAtCompileTime,Dest::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows(),b.cols()); |
---|
300 | cholmod_free_dense(&x_cd, &m_cholmod); |
---|
301 | } |
---|
302 | |
---|
303 | /** \internal */ |
---|
304 | template<typename RhsScalar, int RhsOptions, typename RhsIndex, typename DestScalar, int DestOptions, typename DestIndex> |
---|
305 | void _solve(const SparseMatrix<RhsScalar,RhsOptions,RhsIndex> &b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const |
---|
306 | { |
---|
307 | eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); |
---|
308 | const Index size = m_cholmodFactor->n; |
---|
309 | eigen_assert(size==b.rows()); |
---|
310 | |
---|
311 | // note: cs stands for Cholmod Sparse |
---|
312 | cholmod_sparse b_cs = viewAsCholmod(b); |
---|
313 | cholmod_sparse* x_cs = cholmod_spsolve(CHOLMOD_A, m_cholmodFactor, &b_cs, &m_cholmod); |
---|
314 | if(!x_cs) |
---|
315 | { |
---|
316 | this->m_info = NumericalIssue; |
---|
317 | } |
---|
318 | // TODO optimize this copy by swapping when possible (be carreful with alignment, etc.) |
---|
319 | dest = viewAsEigen<DestScalar,DestOptions,DestIndex>(*x_cs); |
---|
320 | cholmod_free_sparse(&x_cs, &m_cholmod); |
---|
321 | } |
---|
322 | #endif // EIGEN_PARSED_BY_DOXYGEN |
---|
323 | |
---|
324 | template<typename Stream> |
---|
325 | void dumpMemory(Stream& s) |
---|
326 | {} |
---|
327 | |
---|
328 | protected: |
---|
329 | mutable cholmod_common m_cholmod; |
---|
330 | cholmod_factor* m_cholmodFactor; |
---|
331 | mutable ComputationInfo m_info; |
---|
332 | bool m_isInitialized; |
---|
333 | int m_factorizationIsOk; |
---|
334 | int m_analysisIsOk; |
---|
335 | }; |
---|
336 | |
---|
337 | /** \ingroup CholmodSupport_Module |
---|
338 | * \class CholmodSimplicialLLT |
---|
339 | * \brief A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod |
---|
340 | * |
---|
341 | * This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization |
---|
342 | * using the Cholmod library. |
---|
343 | * This simplicial variant is equivalent to Eigen's built-in SimplicialLLT class. Thefore, it has little practical interest. |
---|
344 | * The sparse matrix A must be selfajoint and positive definite. The vectors or matrices |
---|
345 | * X and B can be either dense or sparse. |
---|
346 | * |
---|
347 | * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> |
---|
348 | * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower |
---|
349 | * or Upper. Default is Lower. |
---|
350 | * |
---|
351 | * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. |
---|
352 | * |
---|
353 | * \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLLT |
---|
354 | */ |
---|
355 | template<typename _MatrixType, int _UpLo = Lower> |
---|
356 | class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT<_MatrixType, _UpLo> > |
---|
357 | { |
---|
358 | typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT> Base; |
---|
359 | using Base::m_cholmod; |
---|
360 | |
---|
361 | public: |
---|
362 | |
---|
363 | typedef _MatrixType MatrixType; |
---|
364 | |
---|
365 | CholmodSimplicialLLT() : Base() { init(); } |
---|
366 | |
---|
367 | CholmodSimplicialLLT(const MatrixType& matrix) : Base() |
---|
368 | { |
---|
369 | init(); |
---|
370 | compute(matrix); |
---|
371 | } |
---|
372 | |
---|
373 | ~CholmodSimplicialLLT() {} |
---|
374 | protected: |
---|
375 | void init() |
---|
376 | { |
---|
377 | m_cholmod.final_asis = 0; |
---|
378 | m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; |
---|
379 | m_cholmod.final_ll = 1; |
---|
380 | } |
---|
381 | }; |
---|
382 | |
---|
383 | |
---|
384 | /** \ingroup CholmodSupport_Module |
---|
385 | * \class CholmodSimplicialLDLT |
---|
386 | * \brief A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod |
---|
387 | * |
---|
388 | * This class allows to solve for A.X = B sparse linear problems via a simplicial LDL^T Cholesky factorization |
---|
389 | * using the Cholmod library. |
---|
390 | * This simplicial variant is equivalent to Eigen's built-in SimplicialLDLT class. Thefore, it has little practical interest. |
---|
391 | * The sparse matrix A must be selfajoint and positive definite. The vectors or matrices |
---|
392 | * X and B can be either dense or sparse. |
---|
393 | * |
---|
394 | * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> |
---|
395 | * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower |
---|
396 | * or Upper. Default is Lower. |
---|
397 | * |
---|
398 | * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. |
---|
399 | * |
---|
400 | * \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLDLT |
---|
401 | */ |
---|
402 | template<typename _MatrixType, int _UpLo = Lower> |
---|
403 | class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT<_MatrixType, _UpLo> > |
---|
404 | { |
---|
405 | typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT> Base; |
---|
406 | using Base::m_cholmod; |
---|
407 | |
---|
408 | public: |
---|
409 | |
---|
410 | typedef _MatrixType MatrixType; |
---|
411 | |
---|
412 | CholmodSimplicialLDLT() : Base() { init(); } |
---|
413 | |
---|
414 | CholmodSimplicialLDLT(const MatrixType& matrix) : Base() |
---|
415 | { |
---|
416 | init(); |
---|
417 | compute(matrix); |
---|
418 | } |
---|
419 | |
---|
420 | ~CholmodSimplicialLDLT() {} |
---|
421 | protected: |
---|
422 | void init() |
---|
423 | { |
---|
424 | m_cholmod.final_asis = 1; |
---|
425 | m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; |
---|
426 | } |
---|
427 | }; |
---|
428 | |
---|
429 | /** \ingroup CholmodSupport_Module |
---|
430 | * \class CholmodSupernodalLLT |
---|
431 | * \brief A supernodal Cholesky (LLT) factorization and solver based on Cholmod |
---|
432 | * |
---|
433 | * This class allows to solve for A.X = B sparse linear problems via a supernodal LL^T Cholesky factorization |
---|
434 | * using the Cholmod library. |
---|
435 | * This supernodal variant performs best on dense enough problems, e.g., 3D FEM, or very high order 2D FEM. |
---|
436 | * The sparse matrix A must be selfajoint and positive definite. The vectors or matrices |
---|
437 | * X and B can be either dense or sparse. |
---|
438 | * |
---|
439 | * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> |
---|
440 | * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower |
---|
441 | * or Upper. Default is Lower. |
---|
442 | * |
---|
443 | * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. |
---|
444 | * |
---|
445 | * \sa \ref TutorialSparseDirectSolvers |
---|
446 | */ |
---|
447 | template<typename _MatrixType, int _UpLo = Lower> |
---|
448 | class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT<_MatrixType, _UpLo> > |
---|
449 | { |
---|
450 | typedef CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT> Base; |
---|
451 | using Base::m_cholmod; |
---|
452 | |
---|
453 | public: |
---|
454 | |
---|
455 | typedef _MatrixType MatrixType; |
---|
456 | |
---|
457 | CholmodSupernodalLLT() : Base() { init(); } |
---|
458 | |
---|
459 | CholmodSupernodalLLT(const MatrixType& matrix) : Base() |
---|
460 | { |
---|
461 | init(); |
---|
462 | compute(matrix); |
---|
463 | } |
---|
464 | |
---|
465 | ~CholmodSupernodalLLT() {} |
---|
466 | protected: |
---|
467 | void init() |
---|
468 | { |
---|
469 | m_cholmod.final_asis = 1; |
---|
470 | m_cholmod.supernodal = CHOLMOD_SUPERNODAL; |
---|
471 | } |
---|
472 | }; |
---|
473 | |
---|
474 | /** \ingroup CholmodSupport_Module |
---|
475 | * \class CholmodDecomposition |
---|
476 | * \brief A general Cholesky factorization and solver based on Cholmod |
---|
477 | * |
---|
478 | * This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization |
---|
479 | * using the Cholmod library. The sparse matrix A must be selfajoint and positive definite. The vectors or matrices |
---|
480 | * X and B can be either dense or sparse. |
---|
481 | * |
---|
482 | * This variant permits to change the underlying Cholesky method at runtime. |
---|
483 | * On the other hand, it does not provide access to the result of the factorization. |
---|
484 | * The default is to let Cholmod automatically choose between a simplicial and supernodal factorization. |
---|
485 | * |
---|
486 | * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> |
---|
487 | * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower |
---|
488 | * or Upper. Default is Lower. |
---|
489 | * |
---|
490 | * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. |
---|
491 | * |
---|
492 | * \sa \ref TutorialSparseDirectSolvers |
---|
493 | */ |
---|
494 | template<typename _MatrixType, int _UpLo = Lower> |
---|
495 | class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecomposition<_MatrixType, _UpLo> > |
---|
496 | { |
---|
497 | typedef CholmodBase<_MatrixType, _UpLo, CholmodDecomposition> Base; |
---|
498 | using Base::m_cholmod; |
---|
499 | |
---|
500 | public: |
---|
501 | |
---|
502 | typedef _MatrixType MatrixType; |
---|
503 | |
---|
504 | CholmodDecomposition() : Base() { init(); } |
---|
505 | |
---|
506 | CholmodDecomposition(const MatrixType& matrix) : Base() |
---|
507 | { |
---|
508 | init(); |
---|
509 | compute(matrix); |
---|
510 | } |
---|
511 | |
---|
512 | ~CholmodDecomposition() {} |
---|
513 | |
---|
514 | void setMode(CholmodMode mode) |
---|
515 | { |
---|
516 | switch(mode) |
---|
517 | { |
---|
518 | case CholmodAuto: |
---|
519 | m_cholmod.final_asis = 1; |
---|
520 | m_cholmod.supernodal = CHOLMOD_AUTO; |
---|
521 | break; |
---|
522 | case CholmodSimplicialLLt: |
---|
523 | m_cholmod.final_asis = 0; |
---|
524 | m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; |
---|
525 | m_cholmod.final_ll = 1; |
---|
526 | break; |
---|
527 | case CholmodSupernodalLLt: |
---|
528 | m_cholmod.final_asis = 1; |
---|
529 | m_cholmod.supernodal = CHOLMOD_SUPERNODAL; |
---|
530 | break; |
---|
531 | case CholmodLDLt: |
---|
532 | m_cholmod.final_asis = 1; |
---|
533 | m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; |
---|
534 | break; |
---|
535 | default: |
---|
536 | break; |
---|
537 | } |
---|
538 | } |
---|
539 | protected: |
---|
540 | void init() |
---|
541 | { |
---|
542 | m_cholmod.final_asis = 1; |
---|
543 | m_cholmod.supernodal = CHOLMOD_AUTO; |
---|
544 | } |
---|
545 | }; |
---|
546 | |
---|
547 | namespace internal { |
---|
548 | |
---|
549 | template<typename _MatrixType, int _UpLo, typename Derived, typename Rhs> |
---|
550 | struct solve_retval<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs> |
---|
551 | : solve_retval_base<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs> |
---|
552 | { |
---|
553 | typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec; |
---|
554 | EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) |
---|
555 | |
---|
556 | template<typename Dest> void evalTo(Dest& dst) const |
---|
557 | { |
---|
558 | dec()._solve(rhs(),dst); |
---|
559 | } |
---|
560 | }; |
---|
561 | |
---|
562 | template<typename _MatrixType, int _UpLo, typename Derived, typename Rhs> |
---|
563 | struct sparse_solve_retval<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs> |
---|
564 | : sparse_solve_retval_base<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs> |
---|
565 | { |
---|
566 | typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec; |
---|
567 | EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs) |
---|
568 | |
---|
569 | template<typename Dest> void evalTo(Dest& dst) const |
---|
570 | { |
---|
571 | dec()._solve(rhs(),dst); |
---|
572 | } |
---|
573 | }; |
---|
574 | |
---|
575 | } // end namespace internal |
---|
576 | |
---|
577 | } // end namespace Eigen |
---|
578 | |
---|
579 | #endif // EIGEN_CHOLMODSUPPORT_H |
---|