Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Eigen/Eigen/src/CholmodSupport/CholmodSupport.h @ 9779

Last change on this file since 9779 was 9562, checked in by gkronber, 12 years ago

#1967 worked on Gaussian process evolution.

File size: 18.9 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_CHOLMODSUPPORT_H
11#define EIGEN_CHOLMODSUPPORT_H
12
13namespace Eigen {
14
15namespace internal {
16
17template<typename Scalar, typename CholmodType>
18void cholmod_configure_matrix(CholmodType& mat)
19{
20  if (internal::is_same<Scalar,float>::value)
21  {
22    mat.xtype = CHOLMOD_REAL;
23    mat.dtype = CHOLMOD_SINGLE;
24  }
25  else if (internal::is_same<Scalar,double>::value)
26  {
27    mat.xtype = CHOLMOD_REAL;
28    mat.dtype = CHOLMOD_DOUBLE;
29  }
30  else if (internal::is_same<Scalar,std::complex<float> >::value)
31  {
32    mat.xtype = CHOLMOD_COMPLEX;
33    mat.dtype = CHOLMOD_SINGLE;
34  }
35  else if (internal::is_same<Scalar,std::complex<double> >::value)
36  {
37    mat.xtype = CHOLMOD_COMPLEX;
38    mat.dtype = CHOLMOD_DOUBLE;
39  }
40  else
41  {
42    eigen_assert(false && "Scalar type not supported by CHOLMOD");
43  }
44}
45
46} // namespace internal
47
48/** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object.
49  * Note that the data are shared.
50  */
51template<typename _Scalar, int _Options, typename _Index>
52cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_Index>& mat)
53{
54  typedef SparseMatrix<_Scalar,_Options,_Index> MatrixType;
55  cholmod_sparse res;
56  res.nzmax   = mat.nonZeros();
57  res.nrow    = mat.rows();;
58  res.ncol    = mat.cols();
59  res.p       = mat.outerIndexPtr();
60  res.i       = mat.innerIndexPtr();
61  res.x       = mat.valuePtr();
62  res.sorted  = 1;
63  if(mat.isCompressed())
64  {
65    res.packed  = 1;
66  }
67  else
68  {
69    res.packed  = 0;
70    res.nz = mat.innerNonZeroPtr();
71  }
72
73  res.dtype   = 0;
74  res.stype   = -1;
75 
76  if (internal::is_same<_Index,int>::value)
77  {
78    res.itype = CHOLMOD_INT;
79  }
80  else
81  {
82    eigen_assert(false && "Index type different than int is not supported yet");
83  }
84
85  // setup res.xtype
86  internal::cholmod_configure_matrix<_Scalar>(res);
87 
88  res.stype = 0;
89 
90  return res;
91}
92
93template<typename _Scalar, int _Options, typename _Index>
94const cholmod_sparse viewAsCholmod(const SparseMatrix<_Scalar,_Options,_Index>& mat)
95{
96  cholmod_sparse res = viewAsCholmod(mat.const_cast_derived());
97  return res;
98}
99
100/** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix.
101  * The data are not copied but shared. */
102template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo>
103cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<SparseMatrix<_Scalar,_Options,_Index>, UpLo>& mat)
104{
105  cholmod_sparse res = viewAsCholmod(mat.matrix().const_cast_derived());
106 
107  if(UpLo==Upper) res.stype =  1;
108  if(UpLo==Lower) res.stype = -1;
109
110  return res;
111}
112
113/** Returns a view of the Eigen \b dense matrix \a mat as Cholmod dense matrix.
114  * The data are not copied but shared. */
115template<typename Derived>
116cholmod_dense viewAsCholmod(MatrixBase<Derived>& mat)
117{
118  EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
119  typedef typename Derived::Scalar Scalar;
120
121  cholmod_dense res;
122  res.nrow   = mat.rows();
123  res.ncol   = mat.cols();
124  res.nzmax  = res.nrow * res.ncol;
125  res.d      = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride();
126  res.x      = mat.derived().data();
127  res.z      = 0;
128
129  internal::cholmod_configure_matrix<Scalar>(res);
130
131  return res;
132}
133
134/** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix.
135  * The data are not copied but shared. */
136template<typename Scalar, int Flags, typename Index>
137MappedSparseMatrix<Scalar,Flags,Index> viewAsEigen(cholmod_sparse& cm)
138{
139  return MappedSparseMatrix<Scalar,Flags,Index>
140         (cm.nrow, cm.ncol, reinterpret_cast<Index*>(cm.p)[cm.ncol],
141          reinterpret_cast<Index*>(cm.p), reinterpret_cast<Index*>(cm.i),reinterpret_cast<Scalar*>(cm.x) );
142}
143
144enum CholmodMode {
145  CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt
146};
147
148
149/** \ingroup CholmodSupport_Module
150  * \class CholmodBase
151  * \brief The base class for the direct Cholesky factorization of Cholmod
152  * \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT
153  */
154template<typename _MatrixType, int _UpLo, typename Derived>
155class CholmodBase : internal::noncopyable
156{
157  public:
158    typedef _MatrixType MatrixType;
159    enum { UpLo = _UpLo };
160    typedef typename MatrixType::Scalar Scalar;
161    typedef typename MatrixType::RealScalar RealScalar;
162    typedef MatrixType CholMatrixType;
163    typedef typename MatrixType::Index Index;
164
165  public:
166
167    CholmodBase()
168      : m_cholmodFactor(0), m_info(Success), m_isInitialized(false)
169    {
170      cholmod_start(&m_cholmod);
171    }
172
173    CholmodBase(const MatrixType& matrix)
174      : m_cholmodFactor(0), m_info(Success), m_isInitialized(false)
175    {
176      cholmod_start(&m_cholmod);
177      compute(matrix);
178    }
179
180    ~CholmodBase()
181    {
182      if(m_cholmodFactor)
183        cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
184      cholmod_finish(&m_cholmod);
185    }
186   
187    inline Index cols() const { return m_cholmodFactor->n; }
188    inline Index rows() const { return m_cholmodFactor->n; }
189   
190    Derived& derived() { return *static_cast<Derived*>(this); }
191    const Derived& derived() const { return *static_cast<const Derived*>(this); }
192   
193    /** \brief Reports whether previous computation was successful.
194      *
195      * \returns \c Success if computation was succesful,
196      *          \c NumericalIssue if the matrix.appears to be negative.
197      */
198    ComputationInfo info() const
199    {
200      eigen_assert(m_isInitialized && "Decomposition is not initialized.");
201      return m_info;
202    }
203
204    /** Computes the sparse Cholesky decomposition of \a matrix */
205    Derived& compute(const MatrixType& matrix)
206    {
207      analyzePattern(matrix);
208      factorize(matrix);
209      return derived();
210    }
211   
212    /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
213      *
214      * \sa compute()
215      */
216    template<typename Rhs>
217    inline const internal::solve_retval<CholmodBase, Rhs>
218    solve(const MatrixBase<Rhs>& b) const
219    {
220      eigen_assert(m_isInitialized && "LLT is not initialized.");
221      eigen_assert(rows()==b.rows()
222                && "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b");
223      return internal::solve_retval<CholmodBase, Rhs>(*this, b.derived());
224    }
225   
226    /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
227      *
228      * \sa compute()
229      */
230    template<typename Rhs>
231    inline const internal::sparse_solve_retval<CholmodBase, Rhs>
232    solve(const SparseMatrixBase<Rhs>& b) const
233    {
234      eigen_assert(m_isInitialized && "LLT is not initialized.");
235      eigen_assert(rows()==b.rows()
236                && "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b");
237      return internal::sparse_solve_retval<CholmodBase, Rhs>(*this, b.derived());
238    }
239   
240    /** Performs a symbolic decomposition on the sparcity of \a matrix.
241      *
242      * This function is particularly useful when solving for several problems having the same structure.
243      *
244      * \sa factorize()
245      */
246    void analyzePattern(const MatrixType& matrix)
247    {
248      if(m_cholmodFactor)
249      {
250        cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
251        m_cholmodFactor = 0;
252      }
253      cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
254      m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
255     
256      this->m_isInitialized = true;
257      this->m_info = Success;
258      m_analysisIsOk = true;
259      m_factorizationIsOk = false;
260    }
261   
262    /** Performs a numeric decomposition of \a matrix
263      *
264      * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
265      *
266      * \sa analyzePattern()
267      */
268    void factorize(const MatrixType& matrix)
269    {
270      eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
271      cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
272      cholmod_factorize(&A, m_cholmodFactor, &m_cholmod);
273     
274      this->m_info = Success;
275      m_factorizationIsOk = true;
276    }
277   
278    /** Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations.
279     *  See the Cholmod user guide for details. */
280    cholmod_common& cholmod() { return m_cholmod; }
281   
282    #ifndef EIGEN_PARSED_BY_DOXYGEN
283    /** \internal */
284    template<typename Rhs,typename Dest>
285    void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
286    {
287      eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
288      const Index size = m_cholmodFactor->n;
289      eigen_assert(size==b.rows());
290
291      // note: cd stands for Cholmod Dense
292      cholmod_dense b_cd = viewAsCholmod(b.const_cast_derived());
293      cholmod_dense* x_cd = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &b_cd, &m_cholmod);
294      if(!x_cd)
295      {
296        this->m_info = NumericalIssue;
297      }
298      // TODO optimize this copy by swapping when possible (be carreful with alignment, etc.)
299      dest = Matrix<Scalar,Dest::RowsAtCompileTime,Dest::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows(),b.cols());
300      cholmod_free_dense(&x_cd, &m_cholmod);
301    }
302   
303    /** \internal */
304    template<typename RhsScalar, int RhsOptions, typename RhsIndex, typename DestScalar, int DestOptions, typename DestIndex>
305    void _solve(const SparseMatrix<RhsScalar,RhsOptions,RhsIndex> &b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
306    {
307      eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
308      const Index size = m_cholmodFactor->n;
309      eigen_assert(size==b.rows());
310
311      // note: cs stands for Cholmod Sparse
312      cholmod_sparse b_cs = viewAsCholmod(b);
313      cholmod_sparse* x_cs = cholmod_spsolve(CHOLMOD_A, m_cholmodFactor, &b_cs, &m_cholmod);
314      if(!x_cs)
315      {
316        this->m_info = NumericalIssue;
317      }
318      // TODO optimize this copy by swapping when possible (be carreful with alignment, etc.)
319      dest = viewAsEigen<DestScalar,DestOptions,DestIndex>(*x_cs);
320      cholmod_free_sparse(&x_cs, &m_cholmod);
321    }
322    #endif // EIGEN_PARSED_BY_DOXYGEN
323   
324    template<typename Stream>
325    void dumpMemory(Stream& s)
326    {}
327   
328  protected:
329    mutable cholmod_common m_cholmod;
330    cholmod_factor* m_cholmodFactor;
331    mutable ComputationInfo m_info;
332    bool m_isInitialized;
333    int m_factorizationIsOk;
334    int m_analysisIsOk;
335};
336
337/** \ingroup CholmodSupport_Module
338  * \class CholmodSimplicialLLT
339  * \brief A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod
340  *
341  * This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization
342  * using the Cholmod library.
343  * This simplicial variant is equivalent to Eigen's built-in SimplicialLLT class. Thefore, it has little practical interest.
344  * The sparse matrix A must be selfajoint and positive definite. The vectors or matrices
345  * X and B can be either dense or sparse.
346  *
347  * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
348  * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
349  *               or Upper. Default is Lower.
350  *
351  * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
352  *
353  * \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLLT
354  */
355template<typename _MatrixType, int _UpLo = Lower>
356class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT<_MatrixType, _UpLo> >
357{
358    typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT> Base;
359    using Base::m_cholmod;
360   
361  public:
362   
363    typedef _MatrixType MatrixType;
364   
365    CholmodSimplicialLLT() : Base() { init(); }
366
367    CholmodSimplicialLLT(const MatrixType& matrix) : Base()
368    {
369      init();
370      compute(matrix);
371    }
372
373    ~CholmodSimplicialLLT() {}
374  protected:
375    void init()
376    {
377      m_cholmod.final_asis = 0;
378      m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
379      m_cholmod.final_ll = 1;
380    }
381};
382
383
384/** \ingroup CholmodSupport_Module
385  * \class CholmodSimplicialLDLT
386  * \brief A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod
387  *
388  * This class allows to solve for A.X = B sparse linear problems via a simplicial LDL^T Cholesky factorization
389  * using the Cholmod library.
390  * This simplicial variant is equivalent to Eigen's built-in SimplicialLDLT class. Thefore, it has little practical interest.
391  * The sparse matrix A must be selfajoint and positive definite. The vectors or matrices
392  * X and B can be either dense or sparse.
393  *
394  * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
395  * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
396  *               or Upper. Default is Lower.
397  *
398  * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
399  *
400  * \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLDLT
401  */
402template<typename _MatrixType, int _UpLo = Lower>
403class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT<_MatrixType, _UpLo> >
404{
405    typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT> Base;
406    using Base::m_cholmod;
407   
408  public:
409   
410    typedef _MatrixType MatrixType;
411   
412    CholmodSimplicialLDLT() : Base() { init(); }
413
414    CholmodSimplicialLDLT(const MatrixType& matrix) : Base()
415    {
416      init();
417      compute(matrix);
418    }
419
420    ~CholmodSimplicialLDLT() {}
421  protected:
422    void init()
423    {
424      m_cholmod.final_asis = 1;
425      m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
426    }
427};
428
429/** \ingroup CholmodSupport_Module
430  * \class CholmodSupernodalLLT
431  * \brief A supernodal Cholesky (LLT) factorization and solver based on Cholmod
432  *
433  * This class allows to solve for A.X = B sparse linear problems via a supernodal LL^T Cholesky factorization
434  * using the Cholmod library.
435  * This supernodal variant performs best on dense enough problems, e.g., 3D FEM, or very high order 2D FEM.
436  * The sparse matrix A must be selfajoint and positive definite. The vectors or matrices
437  * X and B can be either dense or sparse.
438  *
439  * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
440  * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
441  *               or Upper. Default is Lower.
442  *
443  * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
444  *
445  * \sa \ref TutorialSparseDirectSolvers
446  */
447template<typename _MatrixType, int _UpLo = Lower>
448class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT<_MatrixType, _UpLo> >
449{
450    typedef CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT> Base;
451    using Base::m_cholmod;
452   
453  public:
454   
455    typedef _MatrixType MatrixType;
456   
457    CholmodSupernodalLLT() : Base() { init(); }
458
459    CholmodSupernodalLLT(const MatrixType& matrix) : Base()
460    {
461      init();
462      compute(matrix);
463    }
464
465    ~CholmodSupernodalLLT() {}
466  protected:
467    void init()
468    {
469      m_cholmod.final_asis = 1;
470      m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
471    }
472};
473
474/** \ingroup CholmodSupport_Module
475  * \class CholmodDecomposition
476  * \brief A general Cholesky factorization and solver based on Cholmod
477  *
478  * This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization
479  * using the Cholmod library. The sparse matrix A must be selfajoint and positive definite. The vectors or matrices
480  * X and B can be either dense or sparse.
481  *
482  * This variant permits to change the underlying Cholesky method at runtime.
483  * On the other hand, it does not provide access to the result of the factorization.
484  * The default is to let Cholmod automatically choose between a simplicial and supernodal factorization.
485  *
486  * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
487  * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
488  *               or Upper. Default is Lower.
489  *
490  * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
491  *
492  * \sa \ref TutorialSparseDirectSolvers
493  */
494template<typename _MatrixType, int _UpLo = Lower>
495class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecomposition<_MatrixType, _UpLo> >
496{
497    typedef CholmodBase<_MatrixType, _UpLo, CholmodDecomposition> Base;
498    using Base::m_cholmod;
499   
500  public:
501   
502    typedef _MatrixType MatrixType;
503   
504    CholmodDecomposition() : Base() { init(); }
505
506    CholmodDecomposition(const MatrixType& matrix) : Base()
507    {
508      init();
509      compute(matrix);
510    }
511
512    ~CholmodDecomposition() {}
513   
514    void setMode(CholmodMode mode)
515    {
516      switch(mode)
517      {
518        case CholmodAuto:
519          m_cholmod.final_asis = 1;
520          m_cholmod.supernodal = CHOLMOD_AUTO;
521          break;
522        case CholmodSimplicialLLt:
523          m_cholmod.final_asis = 0;
524          m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
525          m_cholmod.final_ll = 1;
526          break;
527        case CholmodSupernodalLLt:
528          m_cholmod.final_asis = 1;
529          m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
530          break;
531        case CholmodLDLt:
532          m_cholmod.final_asis = 1;
533          m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
534          break;
535        default:
536          break;
537      }
538    }
539  protected:
540    void init()
541    {
542      m_cholmod.final_asis = 1;
543      m_cholmod.supernodal = CHOLMOD_AUTO;
544    }
545};
546
547namespace internal {
548 
549template<typename _MatrixType, int _UpLo, typename Derived, typename Rhs>
550struct solve_retval<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
551  : solve_retval_base<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
552{
553  typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec;
554  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
555
556  template<typename Dest> void evalTo(Dest& dst) const
557  {
558    dec()._solve(rhs(),dst);
559  }
560};
561
562template<typename _MatrixType, int _UpLo, typename Derived, typename Rhs>
563struct sparse_solve_retval<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
564  : sparse_solve_retval_base<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
565{
566  typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec;
567  EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
568
569  template<typename Dest> void evalTo(Dest& dst) const
570  {
571    dec()._solve(rhs(),dst);
572  }
573};
574
575} // end namespace internal
576
577} // end namespace Eigen
578
579#endif // EIGEN_CHOLMODSUPPORT_H
Note: See TracBrowser for help on using the repository browser.