1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
5 | // Copyright (C) 2009 Keir Mierle <mierle@gmail.com> |
---|
6 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
---|
7 | // Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com > |
---|
8 | // |
---|
9 | // This Source Code Form is subject to the terms of the Mozilla |
---|
10 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
11 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
12 | |
---|
13 | #ifndef EIGEN_LDLT_H |
---|
14 | #define EIGEN_LDLT_H |
---|
15 | |
---|
16 | namespace Eigen { |
---|
17 | |
---|
18 | namespace internal { |
---|
19 | template<typename MatrixType, int UpLo> struct LDLT_Traits; |
---|
20 | } |
---|
21 | |
---|
22 | /** \ingroup Cholesky_Module |
---|
23 | * |
---|
24 | * \class LDLT |
---|
25 | * |
---|
26 | * \brief Robust Cholesky decomposition of a matrix with pivoting |
---|
27 | * |
---|
28 | * \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition |
---|
29 | * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. |
---|
30 | * The other triangular part won't be read. |
---|
31 | * |
---|
32 | * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite |
---|
33 | * matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L |
---|
34 | * is lower triangular with a unit diagonal and D is a diagonal matrix. |
---|
35 | * |
---|
36 | * The decomposition uses pivoting to ensure stability, so that L will have |
---|
37 | * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root |
---|
38 | * on D also stabilizes the computation. |
---|
39 | * |
---|
40 | * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky |
---|
41 | * decomposition to determine whether a system of equations has a solution. |
---|
42 | * |
---|
43 | * \sa MatrixBase::ldlt(), class LLT |
---|
44 | */ |
---|
45 | template<typename _MatrixType, int _UpLo> class LDLT |
---|
46 | { |
---|
47 | public: |
---|
48 | typedef _MatrixType MatrixType; |
---|
49 | enum { |
---|
50 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
---|
51 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
---|
52 | Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here! |
---|
53 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
---|
54 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
---|
55 | UpLo = _UpLo |
---|
56 | }; |
---|
57 | typedef typename MatrixType::Scalar Scalar; |
---|
58 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
---|
59 | typedef typename MatrixType::Index Index; |
---|
60 | typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType; |
---|
61 | |
---|
62 | typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; |
---|
63 | typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; |
---|
64 | |
---|
65 | typedef internal::LDLT_Traits<MatrixType,UpLo> Traits; |
---|
66 | |
---|
67 | /** \brief Default Constructor. |
---|
68 | * |
---|
69 | * The default constructor is useful in cases in which the user intends to |
---|
70 | * perform decompositions via LDLT::compute(const MatrixType&). |
---|
71 | */ |
---|
72 | LDLT() : m_matrix(), m_transpositions(), m_isInitialized(false) {} |
---|
73 | |
---|
74 | /** \brief Default Constructor with memory preallocation |
---|
75 | * |
---|
76 | * Like the default constructor but with preallocation of the internal data |
---|
77 | * according to the specified problem \a size. |
---|
78 | * \sa LDLT() |
---|
79 | */ |
---|
80 | LDLT(Index size) |
---|
81 | : m_matrix(size, size), |
---|
82 | m_transpositions(size), |
---|
83 | m_temporary(size), |
---|
84 | m_isInitialized(false) |
---|
85 | {} |
---|
86 | |
---|
87 | /** \brief Constructor with decomposition |
---|
88 | * |
---|
89 | * This calculates the decomposition for the input \a matrix. |
---|
90 | * \sa LDLT(Index size) |
---|
91 | */ |
---|
92 | LDLT(const MatrixType& matrix) |
---|
93 | : m_matrix(matrix.rows(), matrix.cols()), |
---|
94 | m_transpositions(matrix.rows()), |
---|
95 | m_temporary(matrix.rows()), |
---|
96 | m_isInitialized(false) |
---|
97 | { |
---|
98 | compute(matrix); |
---|
99 | } |
---|
100 | |
---|
101 | /** Clear any existing decomposition |
---|
102 | * \sa rankUpdate(w,sigma) |
---|
103 | */ |
---|
104 | void setZero() |
---|
105 | { |
---|
106 | m_isInitialized = false; |
---|
107 | } |
---|
108 | |
---|
109 | /** \returns a view of the upper triangular matrix U */ |
---|
110 | inline typename Traits::MatrixU matrixU() const |
---|
111 | { |
---|
112 | eigen_assert(m_isInitialized && "LDLT is not initialized."); |
---|
113 | return Traits::getU(m_matrix); |
---|
114 | } |
---|
115 | |
---|
116 | /** \returns a view of the lower triangular matrix L */ |
---|
117 | inline typename Traits::MatrixL matrixL() const |
---|
118 | { |
---|
119 | eigen_assert(m_isInitialized && "LDLT is not initialized."); |
---|
120 | return Traits::getL(m_matrix); |
---|
121 | } |
---|
122 | |
---|
123 | /** \returns the permutation matrix P as a transposition sequence. |
---|
124 | */ |
---|
125 | inline const TranspositionType& transpositionsP() const |
---|
126 | { |
---|
127 | eigen_assert(m_isInitialized && "LDLT is not initialized."); |
---|
128 | return m_transpositions; |
---|
129 | } |
---|
130 | |
---|
131 | /** \returns the coefficients of the diagonal matrix D */ |
---|
132 | inline Diagonal<const MatrixType> vectorD() const |
---|
133 | { |
---|
134 | eigen_assert(m_isInitialized && "LDLT is not initialized."); |
---|
135 | return m_matrix.diagonal(); |
---|
136 | } |
---|
137 | |
---|
138 | /** \returns true if the matrix is positive (semidefinite) */ |
---|
139 | inline bool isPositive() const |
---|
140 | { |
---|
141 | eigen_assert(m_isInitialized && "LDLT is not initialized."); |
---|
142 | return m_sign == 1; |
---|
143 | } |
---|
144 | |
---|
145 | #ifdef EIGEN2_SUPPORT |
---|
146 | inline bool isPositiveDefinite() const |
---|
147 | { |
---|
148 | return isPositive(); |
---|
149 | } |
---|
150 | #endif |
---|
151 | |
---|
152 | /** \returns true if the matrix is negative (semidefinite) */ |
---|
153 | inline bool isNegative(void) const |
---|
154 | { |
---|
155 | eigen_assert(m_isInitialized && "LDLT is not initialized."); |
---|
156 | return m_sign == -1; |
---|
157 | } |
---|
158 | |
---|
159 | /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A. |
---|
160 | * |
---|
161 | * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> . |
---|
162 | * |
---|
163 | * \note_about_checking_solutions |
---|
164 | * |
---|
165 | * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$ |
---|
166 | * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$, |
---|
167 | * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then |
---|
168 | * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the |
---|
169 | * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function |
---|
170 | * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular. |
---|
171 | * |
---|
172 | * \sa MatrixBase::ldlt() |
---|
173 | */ |
---|
174 | template<typename Rhs> |
---|
175 | inline const internal::solve_retval<LDLT, Rhs> |
---|
176 | solve(const MatrixBase<Rhs>& b) const |
---|
177 | { |
---|
178 | eigen_assert(m_isInitialized && "LDLT is not initialized."); |
---|
179 | eigen_assert(m_matrix.rows()==b.rows() |
---|
180 | && "LDLT::solve(): invalid number of rows of the right hand side matrix b"); |
---|
181 | return internal::solve_retval<LDLT, Rhs>(*this, b.derived()); |
---|
182 | } |
---|
183 | |
---|
184 | #ifdef EIGEN2_SUPPORT |
---|
185 | template<typename OtherDerived, typename ResultType> |
---|
186 | bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const |
---|
187 | { |
---|
188 | *result = this->solve(b); |
---|
189 | return true; |
---|
190 | } |
---|
191 | #endif |
---|
192 | |
---|
193 | template<typename Derived> |
---|
194 | bool solveInPlace(MatrixBase<Derived> &bAndX) const; |
---|
195 | |
---|
196 | LDLT& compute(const MatrixType& matrix); |
---|
197 | |
---|
198 | template <typename Derived> |
---|
199 | LDLT& rankUpdate(const MatrixBase<Derived>& w,RealScalar alpha=1); |
---|
200 | |
---|
201 | /** \returns the internal LDLT decomposition matrix |
---|
202 | * |
---|
203 | * TODO: document the storage layout |
---|
204 | */ |
---|
205 | inline const MatrixType& matrixLDLT() const |
---|
206 | { |
---|
207 | eigen_assert(m_isInitialized && "LDLT is not initialized."); |
---|
208 | return m_matrix; |
---|
209 | } |
---|
210 | |
---|
211 | MatrixType reconstructedMatrix() const; |
---|
212 | |
---|
213 | inline Index rows() const { return m_matrix.rows(); } |
---|
214 | inline Index cols() const { return m_matrix.cols(); } |
---|
215 | |
---|
216 | /** \brief Reports whether previous computation was successful. |
---|
217 | * |
---|
218 | * \returns \c Success if computation was succesful, |
---|
219 | * \c NumericalIssue if the matrix.appears to be negative. |
---|
220 | */ |
---|
221 | ComputationInfo info() const |
---|
222 | { |
---|
223 | eigen_assert(m_isInitialized && "LDLT is not initialized."); |
---|
224 | return Success; |
---|
225 | } |
---|
226 | |
---|
227 | protected: |
---|
228 | |
---|
229 | /** \internal |
---|
230 | * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U. |
---|
231 | * The strict upper part is used during the decomposition, the strict lower |
---|
232 | * part correspond to the coefficients of L (its diagonal is equal to 1 and |
---|
233 | * is not stored), and the diagonal entries correspond to D. |
---|
234 | */ |
---|
235 | MatrixType m_matrix; |
---|
236 | TranspositionType m_transpositions; |
---|
237 | TmpMatrixType m_temporary; |
---|
238 | int m_sign; |
---|
239 | bool m_isInitialized; |
---|
240 | }; |
---|
241 | |
---|
242 | namespace internal { |
---|
243 | |
---|
244 | template<int UpLo> struct ldlt_inplace; |
---|
245 | |
---|
246 | template<> struct ldlt_inplace<Lower> |
---|
247 | { |
---|
248 | template<typename MatrixType, typename TranspositionType, typename Workspace> |
---|
249 | static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, int* sign=0) |
---|
250 | { |
---|
251 | typedef typename MatrixType::Scalar Scalar; |
---|
252 | typedef typename MatrixType::RealScalar RealScalar; |
---|
253 | typedef typename MatrixType::Index Index; |
---|
254 | eigen_assert(mat.rows()==mat.cols()); |
---|
255 | const Index size = mat.rows(); |
---|
256 | |
---|
257 | if (size <= 1) |
---|
258 | { |
---|
259 | transpositions.setIdentity(); |
---|
260 | if(sign) |
---|
261 | *sign = real(mat.coeff(0,0))>0 ? 1:-1; |
---|
262 | return true; |
---|
263 | } |
---|
264 | |
---|
265 | RealScalar cutoff(0), biggest_in_corner; |
---|
266 | |
---|
267 | for (Index k = 0; k < size; ++k) |
---|
268 | { |
---|
269 | // Find largest diagonal element |
---|
270 | Index index_of_biggest_in_corner; |
---|
271 | biggest_in_corner = mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); |
---|
272 | index_of_biggest_in_corner += k; |
---|
273 | |
---|
274 | if(k == 0) |
---|
275 | { |
---|
276 | // The biggest overall is the point of reference to which further diagonals |
---|
277 | // are compared; if any diagonal is negligible compared |
---|
278 | // to the largest overall, the algorithm bails. |
---|
279 | cutoff = abs(NumTraits<Scalar>::epsilon() * biggest_in_corner); |
---|
280 | |
---|
281 | if(sign) |
---|
282 | *sign = real(mat.diagonal().coeff(index_of_biggest_in_corner)) > 0 ? 1 : -1; |
---|
283 | } |
---|
284 | |
---|
285 | // Finish early if the matrix is not full rank. |
---|
286 | if(biggest_in_corner < cutoff) |
---|
287 | { |
---|
288 | for(Index i = k; i < size; i++) transpositions.coeffRef(i) = i; |
---|
289 | break; |
---|
290 | } |
---|
291 | |
---|
292 | transpositions.coeffRef(k) = index_of_biggest_in_corner; |
---|
293 | if(k != index_of_biggest_in_corner) |
---|
294 | { |
---|
295 | // apply the transposition while taking care to consider only |
---|
296 | // the lower triangular part |
---|
297 | Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element |
---|
298 | mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k)); |
---|
299 | mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s)); |
---|
300 | std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner)); |
---|
301 | for(int i=k+1;i<index_of_biggest_in_corner;++i) |
---|
302 | { |
---|
303 | Scalar tmp = mat.coeffRef(i,k); |
---|
304 | mat.coeffRef(i,k) = conj(mat.coeffRef(index_of_biggest_in_corner,i)); |
---|
305 | mat.coeffRef(index_of_biggest_in_corner,i) = conj(tmp); |
---|
306 | } |
---|
307 | if(NumTraits<Scalar>::IsComplex) |
---|
308 | mat.coeffRef(index_of_biggest_in_corner,k) = conj(mat.coeff(index_of_biggest_in_corner,k)); |
---|
309 | } |
---|
310 | |
---|
311 | // partition the matrix: |
---|
312 | // A00 | - | - |
---|
313 | // lu = A10 | A11 | - |
---|
314 | // A20 | A21 | A22 |
---|
315 | Index rs = size - k - 1; |
---|
316 | Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); |
---|
317 | Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); |
---|
318 | Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); |
---|
319 | |
---|
320 | if(k>0) |
---|
321 | { |
---|
322 | temp.head(k) = mat.diagonal().head(k).asDiagonal() * A10.adjoint(); |
---|
323 | mat.coeffRef(k,k) -= (A10 * temp.head(k)).value(); |
---|
324 | if(rs>0) |
---|
325 | A21.noalias() -= A20 * temp.head(k); |
---|
326 | } |
---|
327 | if((rs>0) && (abs(mat.coeffRef(k,k)) > cutoff)) |
---|
328 | A21 /= mat.coeffRef(k,k); |
---|
329 | } |
---|
330 | |
---|
331 | return true; |
---|
332 | } |
---|
333 | |
---|
334 | // Reference for the algorithm: Davis and Hager, "Multiple Rank |
---|
335 | // Modifications of a Sparse Cholesky Factorization" (Algorithm 1) |
---|
336 | // Trivial rearrangements of their computations (Timothy E. Holy) |
---|
337 | // allow their algorithm to work for rank-1 updates even if the |
---|
338 | // original matrix is not of full rank. |
---|
339 | // Here only rank-1 updates are implemented, to reduce the |
---|
340 | // requirement for intermediate storage and improve accuracy |
---|
341 | template<typename MatrixType, typename WDerived> |
---|
342 | static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, typename MatrixType::RealScalar sigma=1) |
---|
343 | { |
---|
344 | using internal::isfinite; |
---|
345 | typedef typename MatrixType::Scalar Scalar; |
---|
346 | typedef typename MatrixType::RealScalar RealScalar; |
---|
347 | typedef typename MatrixType::Index Index; |
---|
348 | |
---|
349 | const Index size = mat.rows(); |
---|
350 | eigen_assert(mat.cols() == size && w.size()==size); |
---|
351 | |
---|
352 | RealScalar alpha = 1; |
---|
353 | |
---|
354 | // Apply the update |
---|
355 | for (Index j = 0; j < size; j++) |
---|
356 | { |
---|
357 | // Check for termination due to an original decomposition of low-rank |
---|
358 | if (!(isfinite)(alpha)) |
---|
359 | break; |
---|
360 | |
---|
361 | // Update the diagonal terms |
---|
362 | RealScalar dj = real(mat.coeff(j,j)); |
---|
363 | Scalar wj = w.coeff(j); |
---|
364 | RealScalar swj2 = sigma*abs2(wj); |
---|
365 | RealScalar gamma = dj*alpha + swj2; |
---|
366 | |
---|
367 | mat.coeffRef(j,j) += swj2/alpha; |
---|
368 | alpha += swj2/dj; |
---|
369 | |
---|
370 | |
---|
371 | // Update the terms of L |
---|
372 | Index rs = size-j-1; |
---|
373 | w.tail(rs) -= wj * mat.col(j).tail(rs); |
---|
374 | if(gamma != 0) |
---|
375 | mat.col(j).tail(rs) += (sigma*conj(wj)/gamma)*w.tail(rs); |
---|
376 | } |
---|
377 | return true; |
---|
378 | } |
---|
379 | |
---|
380 | template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> |
---|
381 | static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, typename MatrixType::RealScalar sigma=1) |
---|
382 | { |
---|
383 | // Apply the permutation to the input w |
---|
384 | tmp = transpositions * w; |
---|
385 | |
---|
386 | return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma); |
---|
387 | } |
---|
388 | }; |
---|
389 | |
---|
390 | template<> struct ldlt_inplace<Upper> |
---|
391 | { |
---|
392 | template<typename MatrixType, typename TranspositionType, typename Workspace> |
---|
393 | static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, int* sign=0) |
---|
394 | { |
---|
395 | Transpose<MatrixType> matt(mat); |
---|
396 | return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign); |
---|
397 | } |
---|
398 | |
---|
399 | template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> |
---|
400 | static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, typename MatrixType::RealScalar sigma=1) |
---|
401 | { |
---|
402 | Transpose<MatrixType> matt(mat); |
---|
403 | return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma); |
---|
404 | } |
---|
405 | }; |
---|
406 | |
---|
407 | template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower> |
---|
408 | { |
---|
409 | typedef const TriangularView<const MatrixType, UnitLower> MatrixL; |
---|
410 | typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU; |
---|
411 | static inline MatrixL getL(const MatrixType& m) { return m; } |
---|
412 | static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); } |
---|
413 | }; |
---|
414 | |
---|
415 | template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper> |
---|
416 | { |
---|
417 | typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL; |
---|
418 | typedef const TriangularView<const MatrixType, UnitUpper> MatrixU; |
---|
419 | static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); } |
---|
420 | static inline MatrixU getU(const MatrixType& m) { return m; } |
---|
421 | }; |
---|
422 | |
---|
423 | } // end namespace internal |
---|
424 | |
---|
425 | /** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix |
---|
426 | */ |
---|
427 | template<typename MatrixType, int _UpLo> |
---|
428 | LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a) |
---|
429 | { |
---|
430 | eigen_assert(a.rows()==a.cols()); |
---|
431 | const Index size = a.rows(); |
---|
432 | |
---|
433 | m_matrix = a; |
---|
434 | |
---|
435 | m_transpositions.resize(size); |
---|
436 | m_isInitialized = false; |
---|
437 | m_temporary.resize(size); |
---|
438 | |
---|
439 | internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, &m_sign); |
---|
440 | |
---|
441 | m_isInitialized = true; |
---|
442 | return *this; |
---|
443 | } |
---|
444 | |
---|
445 | /** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T. |
---|
446 | * \param w a vector to be incorporated into the decomposition. |
---|
447 | * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1. |
---|
448 | * \sa setZero() |
---|
449 | */ |
---|
450 | template<typename MatrixType, int _UpLo> |
---|
451 | template<typename Derived> |
---|
452 | LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w,typename NumTraits<typename MatrixType::Scalar>::Real sigma) |
---|
453 | { |
---|
454 | const Index size = w.rows(); |
---|
455 | if (m_isInitialized) |
---|
456 | { |
---|
457 | eigen_assert(m_matrix.rows()==size); |
---|
458 | } |
---|
459 | else |
---|
460 | { |
---|
461 | m_matrix.resize(size,size); |
---|
462 | m_matrix.setZero(); |
---|
463 | m_transpositions.resize(size); |
---|
464 | for (Index i = 0; i < size; i++) |
---|
465 | m_transpositions.coeffRef(i) = i; |
---|
466 | m_temporary.resize(size); |
---|
467 | m_sign = sigma>=0 ? 1 : -1; |
---|
468 | m_isInitialized = true; |
---|
469 | } |
---|
470 | |
---|
471 | internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma); |
---|
472 | |
---|
473 | return *this; |
---|
474 | } |
---|
475 | |
---|
476 | namespace internal { |
---|
477 | template<typename _MatrixType, int _UpLo, typename Rhs> |
---|
478 | struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs> |
---|
479 | : solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs> |
---|
480 | { |
---|
481 | typedef LDLT<_MatrixType,_UpLo> LDLTType; |
---|
482 | EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs) |
---|
483 | |
---|
484 | template<typename Dest> void evalTo(Dest& dst) const |
---|
485 | { |
---|
486 | eigen_assert(rhs().rows() == dec().matrixLDLT().rows()); |
---|
487 | // dst = P b |
---|
488 | dst = dec().transpositionsP() * rhs(); |
---|
489 | |
---|
490 | // dst = L^-1 (P b) |
---|
491 | dec().matrixL().solveInPlace(dst); |
---|
492 | |
---|
493 | // dst = D^-1 (L^-1 P b) |
---|
494 | // more precisely, use pseudo-inverse of D (see bug 241) |
---|
495 | using std::abs; |
---|
496 | using std::max; |
---|
497 | typedef typename LDLTType::MatrixType MatrixType; |
---|
498 | typedef typename LDLTType::Scalar Scalar; |
---|
499 | typedef typename LDLTType::RealScalar RealScalar; |
---|
500 | const Diagonal<const MatrixType> vectorD = dec().vectorD(); |
---|
501 | RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() * NumTraits<Scalar>::epsilon(), |
---|
502 | RealScalar(1) / NumTraits<RealScalar>::highest()); // motivated by LAPACK's xGELSS |
---|
503 | for (Index i = 0; i < vectorD.size(); ++i) { |
---|
504 | if(abs(vectorD(i)) > tolerance) |
---|
505 | dst.row(i) /= vectorD(i); |
---|
506 | else |
---|
507 | dst.row(i).setZero(); |
---|
508 | } |
---|
509 | |
---|
510 | // dst = L^-T (D^-1 L^-1 P b) |
---|
511 | dec().matrixU().solveInPlace(dst); |
---|
512 | |
---|
513 | // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b |
---|
514 | dst = dec().transpositionsP().transpose() * dst; |
---|
515 | } |
---|
516 | }; |
---|
517 | } |
---|
518 | |
---|
519 | /** \internal use x = ldlt_object.solve(x); |
---|
520 | * |
---|
521 | * This is the \em in-place version of solve(). |
---|
522 | * |
---|
523 | * \param bAndX represents both the right-hand side matrix b and result x. |
---|
524 | * |
---|
525 | * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. |
---|
526 | * |
---|
527 | * This version avoids a copy when the right hand side matrix b is not |
---|
528 | * needed anymore. |
---|
529 | * |
---|
530 | * \sa LDLT::solve(), MatrixBase::ldlt() |
---|
531 | */ |
---|
532 | template<typename MatrixType,int _UpLo> |
---|
533 | template<typename Derived> |
---|
534 | bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const |
---|
535 | { |
---|
536 | eigen_assert(m_isInitialized && "LDLT is not initialized."); |
---|
537 | eigen_assert(m_matrix.rows() == bAndX.rows()); |
---|
538 | |
---|
539 | bAndX = this->solve(bAndX); |
---|
540 | |
---|
541 | return true; |
---|
542 | } |
---|
543 | |
---|
544 | /** \returns the matrix represented by the decomposition, |
---|
545 | * i.e., it returns the product: P^T L D L^* P. |
---|
546 | * This function is provided for debug purpose. */ |
---|
547 | template<typename MatrixType, int _UpLo> |
---|
548 | MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const |
---|
549 | { |
---|
550 | eigen_assert(m_isInitialized && "LDLT is not initialized."); |
---|
551 | const Index size = m_matrix.rows(); |
---|
552 | MatrixType res(size,size); |
---|
553 | |
---|
554 | // P |
---|
555 | res.setIdentity(); |
---|
556 | res = transpositionsP() * res; |
---|
557 | // L^* P |
---|
558 | res = matrixU() * res; |
---|
559 | // D(L^*P) |
---|
560 | res = vectorD().asDiagonal() * res; |
---|
561 | // L(DL^*P) |
---|
562 | res = matrixL() * res; |
---|
563 | // P^T (LDL^*P) |
---|
564 | res = transpositionsP().transpose() * res; |
---|
565 | |
---|
566 | return res; |
---|
567 | } |
---|
568 | |
---|
569 | /** \cholesky_module |
---|
570 | * \returns the Cholesky decomposition with full pivoting without square root of \c *this |
---|
571 | */ |
---|
572 | template<typename MatrixType, unsigned int UpLo> |
---|
573 | inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> |
---|
574 | SelfAdjointView<MatrixType, UpLo>::ldlt() const |
---|
575 | { |
---|
576 | return LDLT<PlainObject,UpLo>(m_matrix); |
---|
577 | } |
---|
578 | |
---|
579 | /** \cholesky_module |
---|
580 | * \returns the Cholesky decomposition with full pivoting without square root of \c *this |
---|
581 | */ |
---|
582 | template<typename Derived> |
---|
583 | inline const LDLT<typename MatrixBase<Derived>::PlainObject> |
---|
584 | MatrixBase<Derived>::ldlt() const |
---|
585 | { |
---|
586 | return LDLT<PlainObject>(derived()); |
---|
587 | } |
---|
588 | |
---|
589 | } // end namespace Eigen |
---|
590 | |
---|
591 | #endif // EIGEN_LDLT_H |
---|