1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
29 | internal static class Util {
|
---|
30 | public static double ScalarProd(IEnumerable<double> v, IEnumerable<double> u) {
|
---|
31 | return v.Zip(u, (vi, ui) => vi * ui).Sum();
|
---|
32 | }
|
---|
33 |
|
---|
34 | public static double SqrDist(IEnumerable<double> x, IEnumerable<double> y) {
|
---|
35 | return x.Zip(y, (a, b) => (a - b) * (a - b)).Sum();
|
---|
36 | }
|
---|
37 |
|
---|
38 | public static double SqrDist(double x, double y) {
|
---|
39 | double d = x - y;
|
---|
40 | return d * d;
|
---|
41 | }
|
---|
42 |
|
---|
43 | public static double SqrDist(double[,] x, int i, int j, double scale = 1.0, IEnumerable<int> columnIndices = null) {
|
---|
44 | return SqrDist(x, i, x, j, scale, columnIndices);
|
---|
45 | }
|
---|
46 |
|
---|
47 | public static double SqrDist(double[,] x, int i, double[,] xt, int j, double scale = 1.0, IEnumerable<int> columnIndices = null) {
|
---|
48 | double ss = 0.0;
|
---|
49 | if (columnIndices == null) columnIndices = Enumerable.Range(0, x.GetLength(1));
|
---|
50 | foreach (int columnIndex in columnIndices) {
|
---|
51 | double d = x[i, columnIndex] - xt[j, columnIndex];
|
---|
52 | ss += d * d;
|
---|
53 | }
|
---|
54 | return scale * scale * ss;
|
---|
55 | }
|
---|
56 |
|
---|
57 | public static double SqrDist(double[,] x, int i, int j, double[] scale, IEnumerable<int> columnIndices = null) {
|
---|
58 | return SqrDist(x, i, x, j, scale, columnIndices);
|
---|
59 | }
|
---|
60 |
|
---|
61 | public static double SqrDist(double[,] x, int i, double[,] xt, int j, double[] scale, IEnumerable<int> columnIndices = null) {
|
---|
62 | double ss = 0.0;
|
---|
63 | if (columnIndices == null) columnIndices = Enumerable.Range(0, x.GetLength(1));
|
---|
64 | int scaleIndex = 0;
|
---|
65 | foreach (int columnIndex in columnIndices) {
|
---|
66 | double d = x[i, columnIndex] - xt[j, columnIndex];
|
---|
67 | ss += d * d * scale[scaleIndex] * scale[scaleIndex];
|
---|
68 | scaleIndex++;
|
---|
69 | }
|
---|
70 | // must be at the end of scale after iterating over columnIndices
|
---|
71 | if (scaleIndex != scale.Length)
|
---|
72 | throw new ArgumentException("Lengths of scales and covariance functions does not match.");
|
---|
73 | return ss;
|
---|
74 | }
|
---|
75 | public static double ScalarProd(double[,] x, int i, int j, double scale = 1.0, IEnumerable<int> columnIndices = null) {
|
---|
76 | return ScalarProd(x, i, x, j, scale, columnIndices);
|
---|
77 | }
|
---|
78 |
|
---|
79 | public static double ScalarProd(double[,] x, int i, double[,] xt, int j, double scale = 1.0, IEnumerable<int> columnIndices = null) {
|
---|
80 | double sum = 0.0;
|
---|
81 | if (columnIndices == null) columnIndices = Enumerable.Range(0, x.GetLength(1));
|
---|
82 | foreach (int columnIndex in columnIndices) {
|
---|
83 | sum += x[i, columnIndex] * xt[j, columnIndex];
|
---|
84 | }
|
---|
85 | return scale * scale * sum;
|
---|
86 | }
|
---|
87 | public static double ScalarProd(double[,] x, int i, int j, double[] scale, IEnumerable<int> columnIndices = null) {
|
---|
88 | return ScalarProd(x, i, x, j, scale, columnIndices);
|
---|
89 | }
|
---|
90 |
|
---|
91 | public static double ScalarProd(double[,] x, int i, double[,] xt, int j, double[] scale, IEnumerable<int> columnIndices = null) {
|
---|
92 | double sum = 0.0;
|
---|
93 | if (columnIndices == null) columnIndices = Enumerable.Range(0, x.GetLength(1));
|
---|
94 | int scaleIndex = 0;
|
---|
95 | foreach (int columnIndex in columnIndices) {
|
---|
96 | sum += x[i, columnIndex] * scale[scaleIndex] * xt[j, columnIndex] * scale[scaleIndex];
|
---|
97 | scaleIndex++;
|
---|
98 | }
|
---|
99 | // must be at the end of scale after iterating over columnIndices
|
---|
100 | if (scaleIndex != scale.Length)
|
---|
101 | throw new ArgumentException("Lengths of scales and covariance functions does not match.");
|
---|
102 |
|
---|
103 | return sum;
|
---|
104 | }
|
---|
105 |
|
---|
106 | public static IEnumerable<double> GetRow(double[,] x, int r) {
|
---|
107 | int cols = x.GetLength(1);
|
---|
108 | return GetRow(x, r, Enumerable.Range(0, cols));
|
---|
109 | }
|
---|
110 | public static IEnumerable<double> GetRow(double[,] x, int r, IEnumerable<int> columnIndices) {
|
---|
111 | return columnIndices.Select(c => x[r, c]);
|
---|
112 | }
|
---|
113 | public static IEnumerable<double> GetCol(double[,] x, int c) {
|
---|
114 | int rows = x.GetLength(0);
|
---|
115 | return Enumerable.Range(0, rows).Select(r => x[r, c]);
|
---|
116 | }
|
---|
117 | }
|
---|
118 | }
|
---|