1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
29 | using ILNumerics;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
32 | /// <summary>
|
---|
33 | /// Represents a Gaussian process model.
|
---|
34 | /// </summary>
|
---|
35 | [StorableClass]
|
---|
36 | [Item("TunedGaussianProcessModel", "Gaussian process model implemented using ILNumerics.")]
|
---|
37 | public sealed class TunedGaussianProcessModel : NamedItem, IGaussianProcessModel {
|
---|
38 | [Storable]
|
---|
39 | private double negativeLogLikelihood;
|
---|
40 | public double NegativeLogLikelihood {
|
---|
41 | get { return negativeLogLikelihood; }
|
---|
42 | }
|
---|
43 |
|
---|
44 | [Storable]
|
---|
45 | private double[] hyperparameterGradients;
|
---|
46 | public double[] HyperparameterGradients {
|
---|
47 | get {
|
---|
48 | var copy = new double[hyperparameterGradients.Length];
|
---|
49 | Array.Copy(hyperparameterGradients, copy, copy.Length);
|
---|
50 | return copy;
|
---|
51 | }
|
---|
52 | }
|
---|
53 |
|
---|
54 | [Storable]
|
---|
55 | private ICovarianceFunction covarianceFunction;
|
---|
56 | public ICovarianceFunction CovarianceFunction {
|
---|
57 | get { return covarianceFunction; }
|
---|
58 | }
|
---|
59 | [Storable]
|
---|
60 | private IMeanFunction meanFunction;
|
---|
61 | public IMeanFunction MeanFunction {
|
---|
62 | get { return meanFunction; }
|
---|
63 | }
|
---|
64 | [Storable]
|
---|
65 | private string targetVariable;
|
---|
66 | public string TargetVariable {
|
---|
67 | get { return targetVariable; }
|
---|
68 | }
|
---|
69 | [Storable]
|
---|
70 | private string[] allowedInputVariables;
|
---|
71 | public string[] AllowedInputVariables {
|
---|
72 | get { return allowedInputVariables; }
|
---|
73 | }
|
---|
74 |
|
---|
75 | [Storable]
|
---|
76 | private double[] alpha;
|
---|
77 |
|
---|
78 |
|
---|
79 | [Storable]
|
---|
80 | private double sqrSigmaNoise;
|
---|
81 | public double SigmaNoise {
|
---|
82 | get { return Math.Sqrt(sqrSigmaNoise); }
|
---|
83 | }
|
---|
84 |
|
---|
85 | [Storable]
|
---|
86 | private double[] meanParameter;
|
---|
87 | [Storable]
|
---|
88 | private double[] covarianceParameter;
|
---|
89 |
|
---|
90 | [Storable]
|
---|
91 | private double[] l;
|
---|
92 |
|
---|
93 | [Storable]
|
---|
94 | private double[,] x;
|
---|
95 | [Storable]
|
---|
96 | private Scaling inputScaling;
|
---|
97 |
|
---|
98 |
|
---|
99 | [StorableConstructor]
|
---|
100 | private TunedGaussianProcessModel(bool deserializing) : base(deserializing) { }
|
---|
101 | private TunedGaussianProcessModel(TunedGaussianProcessModel original, Cloner cloner)
|
---|
102 | : base(original, cloner) {
|
---|
103 | this.meanFunction = cloner.Clone(original.meanFunction);
|
---|
104 | this.covarianceFunction = cloner.Clone(original.covarianceFunction);
|
---|
105 | this.inputScaling = cloner.Clone(original.inputScaling);
|
---|
106 | this.negativeLogLikelihood = original.negativeLogLikelihood;
|
---|
107 | this.targetVariable = original.targetVariable;
|
---|
108 | this.sqrSigmaNoise = original.sqrSigmaNoise;
|
---|
109 | if (original.meanParameter != null) {
|
---|
110 | this.meanParameter = (double[])original.meanParameter.Clone();
|
---|
111 | }
|
---|
112 | if (original.covarianceParameter != null) {
|
---|
113 | this.covarianceParameter = (double[])original.covarianceParameter.Clone();
|
---|
114 | }
|
---|
115 |
|
---|
116 | // shallow copies of arrays because they cannot be modified
|
---|
117 | this.allowedInputVariables = original.allowedInputVariables;
|
---|
118 | this.alpha = original.alpha;
|
---|
119 | this.l = original.l;
|
---|
120 | this.x = original.x;
|
---|
121 | }
|
---|
122 | public TunedGaussianProcessModel(Dataset ds, string targetVariable, IEnumerable<string> allowedInputVariables, IEnumerable<int> rows,
|
---|
123 | IEnumerable<double> hyp, IMeanFunction meanFunction, ICovarianceFunction covarianceFunction)
|
---|
124 | : base() {
|
---|
125 | this.name = ItemName;
|
---|
126 | this.description = ItemDescription;
|
---|
127 | this.meanFunction = (IMeanFunction)meanFunction.Clone();
|
---|
128 | this.covarianceFunction = (ICovarianceFunction)covarianceFunction.Clone();
|
---|
129 | this.targetVariable = targetVariable;
|
---|
130 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
131 |
|
---|
132 |
|
---|
133 | int nVariables = this.allowedInputVariables.Length;
|
---|
134 | meanParameter = hyp
|
---|
135 | .Take(this.meanFunction.GetNumberOfParameters(nVariables))
|
---|
136 | .ToArray();
|
---|
137 |
|
---|
138 | covarianceParameter = hyp.Skip(this.meanFunction.GetNumberOfParameters(nVariables))
|
---|
139 | .Take(this.covarianceFunction.GetNumberOfParameters(nVariables))
|
---|
140 | .ToArray();
|
---|
141 | sqrSigmaNoise = Math.Exp(2.0 * hyp.Last());
|
---|
142 |
|
---|
143 | CalculateModel(ds, rows);
|
---|
144 |
|
---|
145 | //var cmpModel = new GaussianProcessModel(ds, targetVariable, allowedInputVariables, rows, hyp,
|
---|
146 | // (IMeanFunction)meanFunction.Clone(),
|
---|
147 | // (ICovarianceFunction)covarianceFunction.Clone());
|
---|
148 | //if (!cmpModel.NegativeLogLikelihood.IsAlmost(NegativeLogLikelihood) ||
|
---|
149 | // !cmpModel.HyperparameterGradients.Sum().IsAlmost(HyperparameterGradients.Sum())
|
---|
150 | // )
|
---|
151 | // throw new ArgumentException();
|
---|
152 | }
|
---|
153 |
|
---|
154 | private void CalculateModel(Dataset ds, IEnumerable<int> rows) {
|
---|
155 | inputScaling = new Scaling(ds, allowedInputVariables, rows);
|
---|
156 | x = AlglibUtil.PrepareAndScaleInputMatrix(ds, allowedInputVariables, rows, inputScaling);
|
---|
157 | var y = ds.GetDoubleValues(targetVariable, rows);
|
---|
158 | ILNumerics.Settings.MaxNumberThreads = Environment.ProcessorCount;
|
---|
159 | using (ILScope.Enter()) {
|
---|
160 | int n = x.GetLength(0);
|
---|
161 |
|
---|
162 | // calculate means and covariances
|
---|
163 | var mean = meanFunction.GetParameterizedMeanFunction(meanParameter, Enumerable.Range(0, x.GetLength(1)));
|
---|
164 | double[] m = Enumerable.Range(0, x.GetLength(0))
|
---|
165 | .Select(r => mean.Mean(x, r))
|
---|
166 | .ToArray();
|
---|
167 |
|
---|
168 | var cov = covarianceFunction.GetParameterizedCovarianceFunction(covarianceParameter, Enumerable.Range(0, x.GetLength(1)));
|
---|
169 | ILArray<double> myL = ILMath.zeros<double>(n, n);
|
---|
170 |
|
---|
171 | for (int i = 0; i < n; i++) {
|
---|
172 | for (int j = i; j < n; j++) {
|
---|
173 | double c = cov.Covariance(x, i, j) / sqrSigmaNoise;
|
---|
174 | if (i == j) {
|
---|
175 | myL.SetValue(c + 1, i, j);
|
---|
176 | } else {
|
---|
177 | myL.SetValue(c, j, i);
|
---|
178 | myL.SetValue(c, i, j);
|
---|
179 | }
|
---|
180 | }
|
---|
181 | }
|
---|
182 |
|
---|
183 | // cholesky decomposition
|
---|
184 | ILArray<double> chol;
|
---|
185 | try {
|
---|
186 | chol = ILNumerics.ILMath.chol(myL, false);
|
---|
187 | }
|
---|
188 | catch (Exception e) {
|
---|
189 | throw new ArgumentException("covariance matrix not positive definite", e);
|
---|
190 | }
|
---|
191 | if (chol == null || chol.IsEmpty || !chol.Size.Equals(myL.Size))
|
---|
192 | throw new ArgumentException("covariance matrix not positive definite");
|
---|
193 | this.l = new double[n * n];
|
---|
194 | chol.ExportValues(ref l);
|
---|
195 | // calculate sum of diagonal elements for likelihood
|
---|
196 |
|
---|
197 | double diagSum = ILMath.log(ILMath.diag(chol)).Sum();
|
---|
198 |
|
---|
199 | // solve for alpha
|
---|
200 | ILArray<double> ym = ILMath.array(y.Zip(m, (a, b) => a - b).ToArray());
|
---|
201 |
|
---|
202 | MatrixProperties lowerTriProps = MatrixProperties.LowerTriangular;
|
---|
203 | MatrixProperties upperTriProps = MatrixProperties.UpperTriangular;
|
---|
204 | ILArray<double> alpha;
|
---|
205 | try {
|
---|
206 | ILArray<double> t1 = ILMath.linsolve(chol.T, ym, ref lowerTriProps);
|
---|
207 | alpha = ILMath.linsolve(chol, t1, ref upperTriProps) / sqrSigmaNoise;
|
---|
208 | }
|
---|
209 | catch (Exception e) {
|
---|
210 | throw new ArgumentException("covariance matrix is not positive definite", e);
|
---|
211 | }
|
---|
212 | if (alpha == null || alpha.IsEmpty) throw new ArgumentException();
|
---|
213 | this.alpha = new double[alpha.Length];
|
---|
214 | alpha.ExportValues(ref this.alpha);
|
---|
215 |
|
---|
216 | negativeLogLikelihood = 0.5 * (double)ILMath.multiply(ym.T, alpha) + diagSum + (n / 2.0) * Math.Log(2.0 * Math.PI * sqrSigmaNoise);
|
---|
217 |
|
---|
218 | // derivatives
|
---|
219 | int nAllowedVariables = x.GetLength(1);
|
---|
220 |
|
---|
221 | ILArray<double> lCopy;
|
---|
222 | try {
|
---|
223 | ILArray<double> t2 = ILMath.linsolve(chol.T, ILMath.eye<double>(n, n), ref lowerTriProps);
|
---|
224 | lCopy = ILMath.linsolve(chol, t2, ref upperTriProps) / sqrSigmaNoise - ILMath.multiply(alpha, alpha.T);
|
---|
225 | }
|
---|
226 | catch (Exception e) {
|
---|
227 | throw new ArgumentException("covariance matrix is not positive definite", e);
|
---|
228 | }
|
---|
229 |
|
---|
230 | double noiseGradient = sqrSigmaNoise * ILMath.sumall(ILMath.diag(lCopy)).GetValue(0, 0);
|
---|
231 |
|
---|
232 | double[] meanGradients = new double[meanFunction.GetNumberOfParameters(nAllowedVariables)];
|
---|
233 | for (int k = 0; k < meanGradients.Length; k++) {
|
---|
234 | ILArray<double> meanGrad =
|
---|
235 | ILMath.array(
|
---|
236 | Enumerable.Range(0, alpha.Length)
|
---|
237 | .Select(r => mean.Gradient(x, r, k))
|
---|
238 | .ToArray());
|
---|
239 | meanGradients[k] = -(double)ILMath.multiply(meanGrad.T, alpha);
|
---|
240 | }
|
---|
241 |
|
---|
242 | double[] covGradients = new double[covarianceFunction.GetNumberOfParameters(nAllowedVariables)];
|
---|
243 | if (covGradients.Length > 0) {
|
---|
244 | for (int i = 0; i < n; i++) {
|
---|
245 | for (int j = 0; j < i; j++) {
|
---|
246 | var g = cov.CovarianceGradient(x, i, j).ToArray();
|
---|
247 | for (int k = 0; k < covGradients.Length; k++) {
|
---|
248 | covGradients[k] += lCopy.GetValue(i, j) * g[k];
|
---|
249 | }
|
---|
250 | }
|
---|
251 |
|
---|
252 | var gDiag = cov.CovarianceGradient(x, i, i).ToArray();
|
---|
253 | for (int k = 0; k < covGradients.Length; k++) {
|
---|
254 | // diag
|
---|
255 | covGradients[k] += 0.5 * lCopy.GetValue(i, i) * gDiag[k];
|
---|
256 | }
|
---|
257 | }
|
---|
258 | }
|
---|
259 |
|
---|
260 | hyperparameterGradients =
|
---|
261 | meanGradients
|
---|
262 | .Concat(covGradients)
|
---|
263 | .Concat(new double[] { noiseGradient }).ToArray();
|
---|
264 | }
|
---|
265 | }
|
---|
266 |
|
---|
267 |
|
---|
268 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
269 | return new TunedGaussianProcessModel(this, cloner);
|
---|
270 | }
|
---|
271 |
|
---|
272 | // is called by the solution creator to set all parameter values of the covariance and mean function
|
---|
273 | // to the optimized values (necessary to make the values visible in the GUI)
|
---|
274 | public void FixParameters() {
|
---|
275 | covarianceFunction.SetParameter(covarianceParameter);
|
---|
276 | meanFunction.SetParameter(meanParameter);
|
---|
277 | covarianceParameter = new double[0];
|
---|
278 | meanParameter = new double[0];
|
---|
279 | }
|
---|
280 |
|
---|
281 | #region IRegressionModel Members
|
---|
282 | public IEnumerable<double> GetEstimatedValues(Dataset dataset, IEnumerable<int> rows) {
|
---|
283 | return GetEstimatedValuesHelper(dataset, rows);
|
---|
284 | }
|
---|
285 | public GaussianProcessRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
286 | return new GaussianProcessRegressionSolution(this, new RegressionProblemData(problemData));
|
---|
287 | }
|
---|
288 | IRegressionSolution IRegressionModel.CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
289 | return CreateRegressionSolution(problemData);
|
---|
290 | }
|
---|
291 | #endregion
|
---|
292 |
|
---|
293 |
|
---|
294 | private IEnumerable<double> GetEstimatedValuesHelper(Dataset dataset, IEnumerable<int> rows) {
|
---|
295 | var newX = AlglibUtil.PrepareAndScaleInputMatrix(dataset, allowedInputVariables, rows, inputScaling);
|
---|
296 | int newN = newX.GetLength(0);
|
---|
297 | int n = x.GetLength(0);
|
---|
298 | var Ks = new double[newN, n];
|
---|
299 | var mean = meanFunction.GetParameterizedMeanFunction(meanParameter, Enumerable.Range(0, newX.GetLength(1)));
|
---|
300 | var ms = Enumerable.Range(0, newX.GetLength(0))
|
---|
301 | .Select(r => mean.Mean(newX, r))
|
---|
302 | .ToArray();
|
---|
303 | var cov = covarianceFunction.GetParameterizedCovarianceFunction(covarianceParameter, Enumerable.Range(0, x.GetLength(1)));
|
---|
304 | for (int i = 0; i < newN; i++) {
|
---|
305 | for (int j = 0; j < n; j++) {
|
---|
306 | Ks[i, j] = cov.CrossCovariance(x, newX, j, i);
|
---|
307 | }
|
---|
308 | }
|
---|
309 |
|
---|
310 | return Enumerable.Range(0, newN)
|
---|
311 | .Select(i => ms[i] + Util.ScalarProd(Util.GetRow(Ks, i), alpha));
|
---|
312 | }
|
---|
313 |
|
---|
314 | public IEnumerable<double> GetEstimatedVariance(Dataset dataset, IEnumerable<int> rows) {
|
---|
315 | var newX = AlglibUtil.PrepareAndScaleInputMatrix(dataset, allowedInputVariables, rows, inputScaling);
|
---|
316 | int newN = newX.GetLength(0);
|
---|
317 | int n = x.GetLength(0);
|
---|
318 | if (newN == 0) return Enumerable.Empty<double>();
|
---|
319 |
|
---|
320 | var kss = new double[newN];
|
---|
321 | ILArray<double> sWKs = ILMath.zeros(n, newN);
|
---|
322 | var cov = covarianceFunction.GetParameterizedCovarianceFunction(covarianceParameter, Enumerable.Range(0, x.GetLength(1)));
|
---|
323 |
|
---|
324 | // for stddev
|
---|
325 | for (int i = 0; i < newN; i++)
|
---|
326 | kss[i] = cov.Covariance(newX, i, i);
|
---|
327 |
|
---|
328 | for (int i = 0; i < newN; i++) {
|
---|
329 | for (int j = 0; j < n; j++) {
|
---|
330 | sWKs.SetValue(cov.CrossCovariance(x, newX, j, i) / Math.Sqrt(sqrSigmaNoise), j, i);
|
---|
331 | }
|
---|
332 | }
|
---|
333 |
|
---|
334 | // for stddev
|
---|
335 | var lowerTriangular = MatrixProperties.LowerTriangular;
|
---|
336 | ILArray<double> V = ILMath.linsolve(ILMath.array(l, n, n).T, sWKs, ref lowerTriangular);
|
---|
337 |
|
---|
338 | // alglib.ablas.rmatrixlefttrsm(n, newN, l, 0, 0, false, false, 0, ref sWKs, 0, 0);
|
---|
339 |
|
---|
340 | for (int i = 0; i < newN; i++) {
|
---|
341 | double sumV = (double)ILMath.multiply(V[ILMath.full, i].T, V[ILMath.full, i]);
|
---|
342 | kss[i] -= sumV;
|
---|
343 | if (kss[i] < 0) kss[i] = 0;
|
---|
344 | }
|
---|
345 | return kss;
|
---|
346 | }
|
---|
347 | }
|
---|
348 | }
|
---|