1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Runtime.InteropServices;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis;
|
---|
30 | using HeuristicLabEigen;
|
---|
31 | using ILNumerics;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
34 | /// <summary>
|
---|
35 | /// Represents a Gaussian process model.
|
---|
36 | /// </summary>
|
---|
37 | [StorableClass]
|
---|
38 | [Item("ToeplitzGaussianProcessModel", "Gaussian process model implemented using ILNumerics.")]
|
---|
39 | public sealed class ToeplitzGaussianProcessModel : NamedItem, IGaussianProcessModel {
|
---|
40 |
|
---|
41 | [DllImport("toeplitz.dll", CallingConvention = CallingConvention.Cdecl)]
|
---|
42 | public static extern void r4to_sl_(ref int n, float[] a, float[] x, float[] b, ref int job);
|
---|
43 |
|
---|
44 |
|
---|
45 |
|
---|
46 | [Storable]
|
---|
47 | private double negativeLogLikelihood;
|
---|
48 | public double NegativeLogLikelihood {
|
---|
49 | get { return negativeLogLikelihood; }
|
---|
50 | }
|
---|
51 |
|
---|
52 | [Storable]
|
---|
53 | private double[] hyperparameterGradients;
|
---|
54 | public double[] HyperparameterGradients {
|
---|
55 | get {
|
---|
56 | var copy = new double[hyperparameterGradients.Length];
|
---|
57 | Array.Copy(hyperparameterGradients, copy, copy.Length);
|
---|
58 | return copy;
|
---|
59 | }
|
---|
60 | }
|
---|
61 |
|
---|
62 | [Storable]
|
---|
63 | private ICovarianceFunction covarianceFunction;
|
---|
64 | public ICovarianceFunction CovarianceFunction {
|
---|
65 | get { return covarianceFunction; }
|
---|
66 | }
|
---|
67 | [Storable]
|
---|
68 | private IMeanFunction meanFunction;
|
---|
69 | public IMeanFunction MeanFunction {
|
---|
70 | get { return meanFunction; }
|
---|
71 | }
|
---|
72 | [Storable]
|
---|
73 | private string targetVariable;
|
---|
74 | public string TargetVariable {
|
---|
75 | get { return targetVariable; }
|
---|
76 | }
|
---|
77 | [Storable]
|
---|
78 | private string[] allowedInputVariables;
|
---|
79 | public string[] AllowedInputVariables {
|
---|
80 | get { return allowedInputVariables; }
|
---|
81 | }
|
---|
82 |
|
---|
83 |
|
---|
84 | [Storable]
|
---|
85 | private double sqrSigmaNoise;
|
---|
86 | public double SigmaNoise {
|
---|
87 | get { return Math.Sqrt(sqrSigmaNoise); }
|
---|
88 | }
|
---|
89 |
|
---|
90 | [Storable]
|
---|
91 | private double[] meanParameter;
|
---|
92 | [Storable]
|
---|
93 | private double[] covarianceParameter;
|
---|
94 | [Storable]
|
---|
95 | private float[] alpha;
|
---|
96 |
|
---|
97 |
|
---|
98 | [Storable]
|
---|
99 | private double[,] x;
|
---|
100 | [Storable]
|
---|
101 | private Scaling inputScaling;
|
---|
102 |
|
---|
103 | [StorableConstructor]
|
---|
104 | private ToeplitzGaussianProcessModel(bool deserializing) : base(deserializing) { }
|
---|
105 | private ToeplitzGaussianProcessModel(ToeplitzGaussianProcessModel original, Cloner cloner)
|
---|
106 | : base(original, cloner) {
|
---|
107 | this.meanFunction = cloner.Clone(original.meanFunction);
|
---|
108 | this.covarianceFunction = cloner.Clone(original.covarianceFunction);
|
---|
109 | this.inputScaling = cloner.Clone(original.inputScaling);
|
---|
110 | this.negativeLogLikelihood = original.negativeLogLikelihood;
|
---|
111 | this.targetVariable = original.targetVariable;
|
---|
112 | this.sqrSigmaNoise = original.sqrSigmaNoise;
|
---|
113 | if (original.meanParameter != null) {
|
---|
114 | this.meanParameter = (double[])original.meanParameter.Clone();
|
---|
115 | }
|
---|
116 | if (original.covarianceParameter != null) {
|
---|
117 | this.covarianceParameter = (double[])original.covarianceParameter.Clone();
|
---|
118 | }
|
---|
119 |
|
---|
120 | // shallow copies of arrays because they cannot be modified
|
---|
121 | this.allowedInputVariables = original.allowedInputVariables;
|
---|
122 | this.alpha = original.alpha;
|
---|
123 | this.x = original.x;
|
---|
124 | }
|
---|
125 | public ToeplitzGaussianProcessModel(Dataset ds, string targetVariable, IEnumerable<string> allowedInputVariables, IEnumerable<int> rows,
|
---|
126 | IEnumerable<double> hyp, IMeanFunction meanFunction, ICovarianceFunction covarianceFunction)
|
---|
127 | : base() {
|
---|
128 | this.name = ItemName;
|
---|
129 | this.description = ItemDescription;
|
---|
130 | this.meanFunction = (IMeanFunction)meanFunction.Clone();
|
---|
131 | this.covarianceFunction = (ICovarianceFunction)covarianceFunction.Clone();
|
---|
132 | this.targetVariable = targetVariable;
|
---|
133 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
134 |
|
---|
135 |
|
---|
136 | int nVariables = this.allowedInputVariables.Length;
|
---|
137 | meanParameter = hyp
|
---|
138 | .Take(this.meanFunction.GetNumberOfParameters(nVariables))
|
---|
139 | .ToArray();
|
---|
140 |
|
---|
141 | covarianceParameter = hyp.Skip(this.meanFunction.GetNumberOfParameters(nVariables))
|
---|
142 | .Take(this.covarianceFunction.GetNumberOfParameters(nVariables))
|
---|
143 | .ToArray();
|
---|
144 | sqrSigmaNoise = Math.Exp(2.0 * hyp.Last());
|
---|
145 |
|
---|
146 | CalculateModel(ds, rows);
|
---|
147 | }
|
---|
148 |
|
---|
149 | private void CalculateModel(Dataset ds, IEnumerable<int> rows) {
|
---|
150 | inputScaling = new Scaling(ds, allowedInputVariables, rows);
|
---|
151 | x = AlglibUtil.PrepareAndScaleInputMatrix(ds, allowedInputVariables, rows, inputScaling);
|
---|
152 | var y = ds.GetDoubleValues(targetVariable, rows);
|
---|
153 |
|
---|
154 | int n = x.GetLength(0);
|
---|
155 | var l = new float[2 * n - 1];
|
---|
156 |
|
---|
157 | // calculate means and covariances
|
---|
158 | var mean = meanFunction.GetParameterizedMeanFunction(meanParameter, Enumerable.Range(0, x.GetLength(1)));
|
---|
159 | var cov = covarianceFunction.GetParameterizedCovarianceFunction(covarianceParameter, Enumerable.Range(0, x.GetLength(1)));
|
---|
160 | var l0 = (float)(cov.Covariance(x, 0, 0) / sqrSigmaNoise + 1.0);
|
---|
161 | l[0] = 1.0f;
|
---|
162 | for (int i = 1; i < n; i++) {
|
---|
163 | l[i] = (float)((cov.Covariance(x, 0, i) / sqrSigmaNoise)/ l0);
|
---|
164 | }
|
---|
165 | for (int i = n; i < 2 * n - 1; i++) {
|
---|
166 | l[i] = (float)((cov.Covariance(x, i - n + 1, 0) / sqrSigmaNoise) / l0);
|
---|
167 | }
|
---|
168 |
|
---|
169 |
|
---|
170 | int info = 0;
|
---|
171 | alpha = new float[n];
|
---|
172 |
|
---|
173 | // solve for alpha
|
---|
174 | float[] ym = y.Zip(Enumerable.Range(0, x.GetLength(0)).Select(r => mean.Mean(x, r)), (a, b) => a - b)
|
---|
175 | .Select(e => (float)e)
|
---|
176 | .ToArray();
|
---|
177 | double nll;
|
---|
178 |
|
---|
179 | //unsafe {
|
---|
180 | // fixed (double* ap = &alpha[0])
|
---|
181 | // fixed (double* ymp = &ym[0])
|
---|
182 | // fixed (double* invlP = &invL[0])
|
---|
183 | // fixed (double* lp = &l[0]) {
|
---|
184 | // myEigen.Solve(lp, ymp, ap, invlP, sqrSigmaNoise, n, &nll, &info);
|
---|
185 | // }
|
---|
186 | //}
|
---|
187 | int job = 0;
|
---|
188 | r4to_sl_(ref n, l, ym, alpha, ref job);
|
---|
189 | alpha = alpha.Select(a => (float)(a / sqrSigmaNoise / l0)).ToArray();
|
---|
190 |
|
---|
191 |
|
---|
192 | var yDotAlpha = ym.Zip(alpha, (f, f1) => f * f1).Sum();
|
---|
193 |
|
---|
194 | var lambda = toeplitz_cholesky_diag(n, l);
|
---|
195 | var logDetK = 2 * lambda.Sum(f => Math.Log(f * Math.Sqrt(l0)));
|
---|
196 |
|
---|
197 |
|
---|
198 | this.negativeLogLikelihood = 0.5 * yDotAlpha + 0.5 * logDetK + n / 2.0 * Math.Log(2.0 * Math.PI * sqrSigmaNoise);
|
---|
199 |
|
---|
200 | //double noiseGradient = sqrSigmaNoise * Enumerable.Range(0, n).Select(i => invL[i + i * n]).Sum();
|
---|
201 |
|
---|
202 | // derivatives
|
---|
203 | int nAllowedVariables = x.GetLength(1);
|
---|
204 | //
|
---|
205 | //double[] meanGradients = new double[meanFunction.GetNumberOfParameters(nAllowedVariables)];
|
---|
206 | //for (int k = 0; k < meanGradients.Length; k++) {
|
---|
207 | // var meanGrad = Enumerable.Range(0, alpha.Length)
|
---|
208 | // .Select(r => mean.Gradient(x, r, k));
|
---|
209 | // meanGradients[k] = -meanGrad.Zip(alpha, (d1, f) => d1 * f).Sum();
|
---|
210 | //}
|
---|
211 | //
|
---|
212 | //double[] covGradients = new double[covarianceFunction.GetNumberOfParameters(nAllowedVariables)];
|
---|
213 | //if (covGradients.Length > 0) {
|
---|
214 | // for (int i = 0; i < n; i++) {
|
---|
215 | // for (int j = 0; j < i; j++) {
|
---|
216 | // var g = cov.CovarianceGradient(x, i, j).ToArray();
|
---|
217 | // for (int k = 0; k < covGradients.Length; k++) {
|
---|
218 | // covGradients[k] += invL[j + i * n] * g[k];
|
---|
219 | // }
|
---|
220 | // }
|
---|
221 | //
|
---|
222 | // var gDiag = cov.CovarianceGradient(x, i, i).ToArray();
|
---|
223 | // for (int k = 0; k < covGradients.Length; k++) {
|
---|
224 | // // diag
|
---|
225 | // covGradients[k] += 0.5 * invL[i + i * n] * gDiag[k];
|
---|
226 | // }
|
---|
227 | // }
|
---|
228 | //}
|
---|
229 | //
|
---|
230 | hyperparameterGradients =
|
---|
231 | Enumerable.Repeat(0.0,
|
---|
232 | meanFunction.GetNumberOfParameters(nAllowedVariables) +
|
---|
233 | covarianceFunction.GetNumberOfParameters(nAllowedVariables) + 1).ToArray();
|
---|
234 | //hyperparameterGradients =
|
---|
235 | // meanGradients
|
---|
236 | // .Concat(covGradients)
|
---|
237 | // .Concat(new double[] { noiseGradient }).ToArray();
|
---|
238 |
|
---|
239 | }
|
---|
240 |
|
---|
241 | public static double[] toeplitz_cholesky_diag(int n, float[] a) {
|
---|
242 | double div;
|
---|
243 | double[] g;
|
---|
244 | double g1j;
|
---|
245 | double g2j;
|
---|
246 | int i;
|
---|
247 | int j;
|
---|
248 | double[] l;
|
---|
249 | double rho;
|
---|
250 |
|
---|
251 | l = new double[n];
|
---|
252 |
|
---|
253 |
|
---|
254 | g = new double[2 * n];
|
---|
255 |
|
---|
256 | for (j = 0; j < n; j++) {
|
---|
257 | g[0 + j * 2] = a[j];
|
---|
258 | }
|
---|
259 | g[1 + 0 * 2] = 0.0;
|
---|
260 | for (j = 1; j < n; j++) {
|
---|
261 | g[1 + j * 2] = a[j + n - 1];
|
---|
262 | }
|
---|
263 |
|
---|
264 | l[0] = g[0];
|
---|
265 | //for (i = 0; i < n; i++) {
|
---|
266 | // l[i, 0] = g[0 + i * 2];
|
---|
267 | //}
|
---|
268 | for (j = n - 1; 1 <= j; j--) {
|
---|
269 | g[0 + j * 2] = g[0 + (j - 1) * 2];
|
---|
270 | }
|
---|
271 | g[0 + 0 * 2] = 0.0;
|
---|
272 |
|
---|
273 | for (i = 1; i < n; i++) {
|
---|
274 | rho = -g[1 + i * 2] / g[0 + i * 2];
|
---|
275 | div = Math.Sqrt((1.0 - rho) * (1.0 + rho));
|
---|
276 |
|
---|
277 | for (j = i; j < n; j++) {
|
---|
278 | g1j = g[0 + j * 2];
|
---|
279 | g2j = g[1 + j * 2];
|
---|
280 | g[0 + j * 2] = (g1j + rho * g2j) / div;
|
---|
281 | g[1 + j * 2] = (rho * g1j + g2j) / div;
|
---|
282 | }
|
---|
283 |
|
---|
284 | l[i] = g[i * 2];
|
---|
285 | //for (j = i; j < n; j++) {
|
---|
286 | // l[j, i] = g[0 + j * 2];
|
---|
287 | //}
|
---|
288 | for (j = n - 1; i < j; j--) {
|
---|
289 | g[0 + j * 2] = g[0 + (j - 1) * 2];
|
---|
290 | }
|
---|
291 | g[0 + i * 2] = 0.0;
|
---|
292 | }
|
---|
293 |
|
---|
294 |
|
---|
295 | return l;
|
---|
296 | }
|
---|
297 |
|
---|
298 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
299 | return new ToeplitzGaussianProcessModel(this, cloner);
|
---|
300 | }
|
---|
301 |
|
---|
302 | // is called by the solution creator to set all parameter values of the covariance and mean function
|
---|
303 | // to the optimized values (necessary to make the values visible in the GUI)
|
---|
304 | public void FixParameters() {
|
---|
305 | covarianceFunction.SetParameter(covarianceParameter);
|
---|
306 | meanFunction.SetParameter(meanParameter);
|
---|
307 | covarianceParameter = new double[0];
|
---|
308 | meanParameter = new double[0];
|
---|
309 | }
|
---|
310 |
|
---|
311 | #region IRegressionModel Members
|
---|
312 | public IEnumerable<double> GetEstimatedValues(Dataset dataset, IEnumerable<int> rows) {
|
---|
313 | return GetEstimatedValuesHelper(dataset, rows);
|
---|
314 | }
|
---|
315 | public GaussianProcessRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
316 | return new GaussianProcessRegressionSolution(this, new RegressionProblemData(problemData));
|
---|
317 | }
|
---|
318 | IRegressionSolution IRegressionModel.CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
319 | return CreateRegressionSolution(problemData);
|
---|
320 | }
|
---|
321 | #endregion
|
---|
322 |
|
---|
323 |
|
---|
324 | private IEnumerable<double> GetEstimatedValuesHelper(Dataset dataset, IEnumerable<int> rows) {
|
---|
325 |
|
---|
326 | var newX = AlglibUtil.PrepareAndScaleInputMatrix(dataset, allowedInputVariables, rows, inputScaling);
|
---|
327 | int newN = newX.GetLength(0);
|
---|
328 | int n = x.GetLength(0);
|
---|
329 | var Ks = new double[newN, n];
|
---|
330 | var mean = meanFunction.GetParameterizedMeanFunction(meanParameter, Enumerable.Range(0, newX.GetLength(1)));
|
---|
331 | var ms = Enumerable.Range(0, newX.GetLength(0))
|
---|
332 | .Select(r => mean.Mean(newX, r))
|
---|
333 | .ToArray();
|
---|
334 | var cov = covarianceFunction.GetParameterizedCovarianceFunction(covarianceParameter, Enumerable.Range(0, x.GetLength(1)));
|
---|
335 | for (int i = 0; i < newN; i++) {
|
---|
336 | for (int j = 0; j < n; j++) {
|
---|
337 | Ks[i, j] = cov.CrossCovariance(x, newX, j, i);
|
---|
338 | }
|
---|
339 | }
|
---|
340 |
|
---|
341 | return Enumerable.Range(0, newN)
|
---|
342 | .Select(i => ms[i] + Util.ScalarProd(Util.GetRow(Ks, i), alpha.Select(a=>(double)a)));
|
---|
343 | }
|
---|
344 |
|
---|
345 | public IEnumerable<double> GetEstimatedVariance(Dataset dataset, IEnumerable<int> rows) {
|
---|
346 | return rows.Select(r => sqrSigmaNoise);
|
---|
347 | }
|
---|
348 | }
|
---|
349 | }
|
---|