[10792] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Runtime.InteropServices;
|
---|
| 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 29 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 30 | using HeuristicLabEigen;
|
---|
| 31 | using ILNumerics;
|
---|
| 32 |
|
---|
| 33 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 34 | /// <summary>
|
---|
| 35 | /// Represents a Gaussian process model.
|
---|
| 36 | /// </summary>
|
---|
| 37 | [StorableClass]
|
---|
| 38 | [Item("ToeplitzGaussianProcessModel", "Gaussian process model implemented using ILNumerics.")]
|
---|
| 39 | public sealed class ToeplitzGaussianProcessModel : NamedItem, IGaussianProcessModel {
|
---|
| 40 |
|
---|
| 41 | [DllImport("toeplitz.dll", CallingConvention = CallingConvention.Cdecl)]
|
---|
| 42 | public static extern void r4to_sl_(ref int n, float[] a, float[] x, float[] b, ref int job);
|
---|
| 43 |
|
---|
| 44 |
|
---|
| 45 |
|
---|
| 46 | [Storable]
|
---|
| 47 | private double negativeLogLikelihood;
|
---|
| 48 | public double NegativeLogLikelihood {
|
---|
| 49 | get { return negativeLogLikelihood; }
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 | [Storable]
|
---|
| 53 | private double[] hyperparameterGradients;
|
---|
| 54 | public double[] HyperparameterGradients {
|
---|
| 55 | get {
|
---|
| 56 | var copy = new double[hyperparameterGradients.Length];
|
---|
| 57 | Array.Copy(hyperparameterGradients, copy, copy.Length);
|
---|
| 58 | return copy;
|
---|
| 59 | }
|
---|
| 60 | }
|
---|
| 61 |
|
---|
| 62 | [Storable]
|
---|
| 63 | private ICovarianceFunction covarianceFunction;
|
---|
| 64 | public ICovarianceFunction CovarianceFunction {
|
---|
| 65 | get { return covarianceFunction; }
|
---|
| 66 | }
|
---|
| 67 | [Storable]
|
---|
| 68 | private IMeanFunction meanFunction;
|
---|
| 69 | public IMeanFunction MeanFunction {
|
---|
| 70 | get { return meanFunction; }
|
---|
| 71 | }
|
---|
| 72 | [Storable]
|
---|
| 73 | private string targetVariable;
|
---|
| 74 | public string TargetVariable {
|
---|
| 75 | get { return targetVariable; }
|
---|
| 76 | }
|
---|
| 77 | [Storable]
|
---|
| 78 | private string[] allowedInputVariables;
|
---|
| 79 | public string[] AllowedInputVariables {
|
---|
| 80 | get { return allowedInputVariables; }
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 |
|
---|
| 84 | [Storable]
|
---|
| 85 | private double sqrSigmaNoise;
|
---|
| 86 | public double SigmaNoise {
|
---|
| 87 | get { return Math.Sqrt(sqrSigmaNoise); }
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | [Storable]
|
---|
| 91 | private double[] meanParameter;
|
---|
| 92 | [Storable]
|
---|
| 93 | private double[] covarianceParameter;
|
---|
| 94 | [Storable]
|
---|
| 95 | private float[] alpha;
|
---|
| 96 |
|
---|
| 97 |
|
---|
| 98 | [Storable]
|
---|
| 99 | private double[,] x;
|
---|
| 100 | [Storable]
|
---|
| 101 | private Scaling inputScaling;
|
---|
| 102 |
|
---|
| 103 | [StorableConstructor]
|
---|
| 104 | private ToeplitzGaussianProcessModel(bool deserializing) : base(deserializing) { }
|
---|
| 105 | private ToeplitzGaussianProcessModel(ToeplitzGaussianProcessModel original, Cloner cloner)
|
---|
| 106 | : base(original, cloner) {
|
---|
| 107 | this.meanFunction = cloner.Clone(original.meanFunction);
|
---|
| 108 | this.covarianceFunction = cloner.Clone(original.covarianceFunction);
|
---|
| 109 | this.inputScaling = cloner.Clone(original.inputScaling);
|
---|
| 110 | this.negativeLogLikelihood = original.negativeLogLikelihood;
|
---|
| 111 | this.targetVariable = original.targetVariable;
|
---|
| 112 | this.sqrSigmaNoise = original.sqrSigmaNoise;
|
---|
| 113 | if (original.meanParameter != null) {
|
---|
| 114 | this.meanParameter = (double[])original.meanParameter.Clone();
|
---|
| 115 | }
|
---|
| 116 | if (original.covarianceParameter != null) {
|
---|
| 117 | this.covarianceParameter = (double[])original.covarianceParameter.Clone();
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | // shallow copies of arrays because they cannot be modified
|
---|
| 121 | this.allowedInputVariables = original.allowedInputVariables;
|
---|
| 122 | this.alpha = original.alpha;
|
---|
| 123 | this.x = original.x;
|
---|
| 124 | }
|
---|
| 125 | public ToeplitzGaussianProcessModel(Dataset ds, string targetVariable, IEnumerable<string> allowedInputVariables, IEnumerable<int> rows,
|
---|
| 126 | IEnumerable<double> hyp, IMeanFunction meanFunction, ICovarianceFunction covarianceFunction)
|
---|
| 127 | : base() {
|
---|
| 128 | this.name = ItemName;
|
---|
| 129 | this.description = ItemDescription;
|
---|
| 130 | this.meanFunction = (IMeanFunction)meanFunction.Clone();
|
---|
| 131 | this.covarianceFunction = (ICovarianceFunction)covarianceFunction.Clone();
|
---|
| 132 | this.targetVariable = targetVariable;
|
---|
| 133 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
| 134 |
|
---|
| 135 |
|
---|
| 136 | int nVariables = this.allowedInputVariables.Length;
|
---|
| 137 | meanParameter = hyp
|
---|
| 138 | .Take(this.meanFunction.GetNumberOfParameters(nVariables))
|
---|
| 139 | .ToArray();
|
---|
| 140 |
|
---|
| 141 | covarianceParameter = hyp.Skip(this.meanFunction.GetNumberOfParameters(nVariables))
|
---|
| 142 | .Take(this.covarianceFunction.GetNumberOfParameters(nVariables))
|
---|
| 143 | .ToArray();
|
---|
| 144 | sqrSigmaNoise = Math.Exp(2.0 * hyp.Last());
|
---|
| 145 |
|
---|
| 146 | CalculateModel(ds, rows);
|
---|
| 147 | }
|
---|
| 148 |
|
---|
| 149 | private void CalculateModel(Dataset ds, IEnumerable<int> rows) {
|
---|
| 150 | inputScaling = new Scaling(ds, allowedInputVariables, rows);
|
---|
| 151 | x = AlglibUtil.PrepareAndScaleInputMatrix(ds, allowedInputVariables, rows, inputScaling);
|
---|
| 152 | var y = ds.GetDoubleValues(targetVariable, rows);
|
---|
| 153 |
|
---|
| 154 | int n = x.GetLength(0);
|
---|
| 155 | var l = new float[2 * n - 1];
|
---|
| 156 |
|
---|
| 157 | // calculate means and covariances
|
---|
| 158 | var mean = meanFunction.GetParameterizedMeanFunction(meanParameter, Enumerable.Range(0, x.GetLength(1)));
|
---|
| 159 | var cov = covarianceFunction.GetParameterizedCovarianceFunction(covarianceParameter, Enumerable.Range(0, x.GetLength(1)));
|
---|
| 160 | var l0 = (float)(cov.Covariance(x, 0, 0) / sqrSigmaNoise + 1.0);
|
---|
| 161 | l[0] = 1.0f;
|
---|
| 162 | for (int i = 1; i < n; i++) {
|
---|
| 163 | l[i] = (float)((cov.Covariance(x, 0, i) / sqrSigmaNoise)/ l0);
|
---|
| 164 | }
|
---|
| 165 | for (int i = n; i < 2 * n - 1; i++) {
|
---|
| 166 | l[i] = (float)((cov.Covariance(x, i - n + 1, 0) / sqrSigmaNoise) / l0);
|
---|
| 167 | }
|
---|
| 168 |
|
---|
| 169 |
|
---|
| 170 | int info = 0;
|
---|
| 171 | alpha = new float[n];
|
---|
| 172 |
|
---|
| 173 | // solve for alpha
|
---|
| 174 | float[] ym = y.Zip(Enumerable.Range(0, x.GetLength(0)).Select(r => mean.Mean(x, r)), (a, b) => a - b)
|
---|
| 175 | .Select(e => (float)e)
|
---|
| 176 | .ToArray();
|
---|
| 177 | double nll;
|
---|
| 178 |
|
---|
| 179 | //unsafe {
|
---|
| 180 | // fixed (double* ap = &alpha[0])
|
---|
| 181 | // fixed (double* ymp = &ym[0])
|
---|
| 182 | // fixed (double* invlP = &invL[0])
|
---|
| 183 | // fixed (double* lp = &l[0]) {
|
---|
| 184 | // myEigen.Solve(lp, ymp, ap, invlP, sqrSigmaNoise, n, &nll, &info);
|
---|
| 185 | // }
|
---|
| 186 | //}
|
---|
| 187 | int job = 0;
|
---|
| 188 | r4to_sl_(ref n, l, ym, alpha, ref job);
|
---|
| 189 | alpha = alpha.Select(a => (float)(a / sqrSigmaNoise / l0)).ToArray();
|
---|
| 190 |
|
---|
| 191 |
|
---|
| 192 | var yDotAlpha = ym.Zip(alpha, (f, f1) => f * f1).Sum();
|
---|
| 193 |
|
---|
| 194 | var lambda = toeplitz_cholesky_diag(n, l);
|
---|
| 195 | var logDetK = 2 * lambda.Sum(f => Math.Log(f * Math.Sqrt(l0)));
|
---|
| 196 |
|
---|
| 197 |
|
---|
| 198 | this.negativeLogLikelihood = 0.5 * yDotAlpha + 0.5 * logDetK + n / 2.0 * Math.Log(2.0 * Math.PI * sqrSigmaNoise);
|
---|
| 199 |
|
---|
| 200 | //double noiseGradient = sqrSigmaNoise * Enumerable.Range(0, n).Select(i => invL[i + i * n]).Sum();
|
---|
| 201 |
|
---|
| 202 | // derivatives
|
---|
| 203 | int nAllowedVariables = x.GetLength(1);
|
---|
| 204 | //
|
---|
| 205 | //double[] meanGradients = new double[meanFunction.GetNumberOfParameters(nAllowedVariables)];
|
---|
| 206 | //for (int k = 0; k < meanGradients.Length; k++) {
|
---|
| 207 | // var meanGrad = Enumerable.Range(0, alpha.Length)
|
---|
| 208 | // .Select(r => mean.Gradient(x, r, k));
|
---|
| 209 | // meanGradients[k] = -meanGrad.Zip(alpha, (d1, f) => d1 * f).Sum();
|
---|
| 210 | //}
|
---|
| 211 | //
|
---|
| 212 | //double[] covGradients = new double[covarianceFunction.GetNumberOfParameters(nAllowedVariables)];
|
---|
| 213 | //if (covGradients.Length > 0) {
|
---|
| 214 | // for (int i = 0; i < n; i++) {
|
---|
| 215 | // for (int j = 0; j < i; j++) {
|
---|
| 216 | // var g = cov.CovarianceGradient(x, i, j).ToArray();
|
---|
| 217 | // for (int k = 0; k < covGradients.Length; k++) {
|
---|
| 218 | // covGradients[k] += invL[j + i * n] * g[k];
|
---|
| 219 | // }
|
---|
| 220 | // }
|
---|
| 221 | //
|
---|
| 222 | // var gDiag = cov.CovarianceGradient(x, i, i).ToArray();
|
---|
| 223 | // for (int k = 0; k < covGradients.Length; k++) {
|
---|
| 224 | // // diag
|
---|
| 225 | // covGradients[k] += 0.5 * invL[i + i * n] * gDiag[k];
|
---|
| 226 | // }
|
---|
| 227 | // }
|
---|
| 228 | //}
|
---|
| 229 | //
|
---|
| 230 | hyperparameterGradients =
|
---|
| 231 | Enumerable.Repeat(0.0,
|
---|
| 232 | meanFunction.GetNumberOfParameters(nAllowedVariables) +
|
---|
| 233 | covarianceFunction.GetNumberOfParameters(nAllowedVariables) + 1).ToArray();
|
---|
| 234 | //hyperparameterGradients =
|
---|
| 235 | // meanGradients
|
---|
| 236 | // .Concat(covGradients)
|
---|
| 237 | // .Concat(new double[] { noiseGradient }).ToArray();
|
---|
| 238 |
|
---|
| 239 | }
|
---|
| 240 |
|
---|
| 241 | public static double[] toeplitz_cholesky_diag(int n, float[] a) {
|
---|
| 242 | double div;
|
---|
| 243 | double[] g;
|
---|
| 244 | double g1j;
|
---|
| 245 | double g2j;
|
---|
| 246 | int i;
|
---|
| 247 | int j;
|
---|
| 248 | double[] l;
|
---|
| 249 | double rho;
|
---|
| 250 |
|
---|
| 251 | l = new double[n];
|
---|
| 252 |
|
---|
| 253 |
|
---|
| 254 | g = new double[2 * n];
|
---|
| 255 |
|
---|
| 256 | for (j = 0; j < n; j++) {
|
---|
| 257 | g[0 + j * 2] = a[j];
|
---|
| 258 | }
|
---|
| 259 | g[1 + 0 * 2] = 0.0;
|
---|
| 260 | for (j = 1; j < n; j++) {
|
---|
| 261 | g[1 + j * 2] = a[j + n - 1];
|
---|
| 262 | }
|
---|
| 263 |
|
---|
| 264 | l[0] = g[0];
|
---|
| 265 | //for (i = 0; i < n; i++) {
|
---|
| 266 | // l[i, 0] = g[0 + i * 2];
|
---|
| 267 | //}
|
---|
| 268 | for (j = n - 1; 1 <= j; j--) {
|
---|
| 269 | g[0 + j * 2] = g[0 + (j - 1) * 2];
|
---|
| 270 | }
|
---|
| 271 | g[0 + 0 * 2] = 0.0;
|
---|
| 272 |
|
---|
| 273 | for (i = 1; i < n; i++) {
|
---|
| 274 | rho = -g[1 + i * 2] / g[0 + i * 2];
|
---|
| 275 | div = Math.Sqrt((1.0 - rho) * (1.0 + rho));
|
---|
| 276 |
|
---|
| 277 | for (j = i; j < n; j++) {
|
---|
| 278 | g1j = g[0 + j * 2];
|
---|
| 279 | g2j = g[1 + j * 2];
|
---|
| 280 | g[0 + j * 2] = (g1j + rho * g2j) / div;
|
---|
| 281 | g[1 + j * 2] = (rho * g1j + g2j) / div;
|
---|
| 282 | }
|
---|
| 283 |
|
---|
| 284 | l[i] = g[i * 2];
|
---|
| 285 | //for (j = i; j < n; j++) {
|
---|
| 286 | // l[j, i] = g[0 + j * 2];
|
---|
| 287 | //}
|
---|
| 288 | for (j = n - 1; i < j; j--) {
|
---|
| 289 | g[0 + j * 2] = g[0 + (j - 1) * 2];
|
---|
| 290 | }
|
---|
| 291 | g[0 + i * 2] = 0.0;
|
---|
| 292 | }
|
---|
| 293 |
|
---|
| 294 |
|
---|
| 295 | return l;
|
---|
| 296 | }
|
---|
| 297 |
|
---|
| 298 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 299 | return new ToeplitzGaussianProcessModel(this, cloner);
|
---|
| 300 | }
|
---|
| 301 |
|
---|
| 302 | // is called by the solution creator to set all parameter values of the covariance and mean function
|
---|
| 303 | // to the optimized values (necessary to make the values visible in the GUI)
|
---|
| 304 | public void FixParameters() {
|
---|
| 305 | covarianceFunction.SetParameter(covarianceParameter);
|
---|
| 306 | meanFunction.SetParameter(meanParameter);
|
---|
| 307 | covarianceParameter = new double[0];
|
---|
| 308 | meanParameter = new double[0];
|
---|
| 309 | }
|
---|
| 310 |
|
---|
| 311 | #region IRegressionModel Members
|
---|
| 312 | public IEnumerable<double> GetEstimatedValues(Dataset dataset, IEnumerable<int> rows) {
|
---|
| 313 | return GetEstimatedValuesHelper(dataset, rows);
|
---|
| 314 | }
|
---|
| 315 | public GaussianProcessRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
| 316 | return new GaussianProcessRegressionSolution(this, new RegressionProblemData(problemData));
|
---|
| 317 | }
|
---|
| 318 | IRegressionSolution IRegressionModel.CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
| 319 | return CreateRegressionSolution(problemData);
|
---|
| 320 | }
|
---|
| 321 | #endregion
|
---|
| 322 |
|
---|
| 323 |
|
---|
| 324 | private IEnumerable<double> GetEstimatedValuesHelper(Dataset dataset, IEnumerable<int> rows) {
|
---|
| 325 |
|
---|
| 326 | var newX = AlglibUtil.PrepareAndScaleInputMatrix(dataset, allowedInputVariables, rows, inputScaling);
|
---|
| 327 | int newN = newX.GetLength(0);
|
---|
| 328 | int n = x.GetLength(0);
|
---|
| 329 | var Ks = new double[newN, n];
|
---|
| 330 | var mean = meanFunction.GetParameterizedMeanFunction(meanParameter, Enumerable.Range(0, newX.GetLength(1)));
|
---|
| 331 | var ms = Enumerable.Range(0, newX.GetLength(0))
|
---|
| 332 | .Select(r => mean.Mean(newX, r))
|
---|
| 333 | .ToArray();
|
---|
| 334 | var cov = covarianceFunction.GetParameterizedCovarianceFunction(covarianceParameter, Enumerable.Range(0, x.GetLength(1)));
|
---|
| 335 | for (int i = 0; i < newN; i++) {
|
---|
| 336 | for (int j = 0; j < n; j++) {
|
---|
| 337 | Ks[i, j] = cov.CrossCovariance(x, newX, j, i);
|
---|
| 338 | }
|
---|
| 339 | }
|
---|
| 340 |
|
---|
| 341 | return Enumerable.Range(0, newN)
|
---|
| 342 | .Select(i => ms[i] + Util.ScalarProd(Util.GetRow(Ks, i), alpha.Select(a=>(double)a)));
|
---|
| 343 | }
|
---|
| 344 |
|
---|
| 345 | public IEnumerable<double> GetEstimatedVariance(Dataset dataset, IEnumerable<int> rows) {
|
---|
| 346 | return rows.Select(r => sqrSigmaNoise);
|
---|
| 347 | }
|
---|
| 348 | }
|
---|
| 349 | }
|
---|