1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
29 | using HeuristicLabEigen;
|
---|
30 | using ILNumerics;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
33 | /// <summary>
|
---|
34 | /// Represents a Gaussian process model.
|
---|
35 | /// </summary>
|
---|
36 | [StorableClass]
|
---|
37 | [Item("EigenGaussianProcessModel", "Gaussian process model implemented using ILNumerics.")]
|
---|
38 | public sealed class EigenGaussianProcessModel : NamedItem, IGaussianProcessModel {
|
---|
39 | [Storable]
|
---|
40 | private double negativeLogLikelihood;
|
---|
41 | public double NegativeLogLikelihood {
|
---|
42 | get { return negativeLogLikelihood; }
|
---|
43 | }
|
---|
44 |
|
---|
45 | [Storable]
|
---|
46 | private double[] hyperparameterGradients;
|
---|
47 | public double[] HyperparameterGradients {
|
---|
48 | get {
|
---|
49 | var copy = new double[hyperparameterGradients.Length];
|
---|
50 | Array.Copy(hyperparameterGradients, copy, copy.Length);
|
---|
51 | return copy;
|
---|
52 | }
|
---|
53 | }
|
---|
54 |
|
---|
55 | [Storable]
|
---|
56 | private ICovarianceFunction covarianceFunction;
|
---|
57 | public ICovarianceFunction CovarianceFunction {
|
---|
58 | get { return covarianceFunction; }
|
---|
59 | }
|
---|
60 | [Storable]
|
---|
61 | private IMeanFunction meanFunction;
|
---|
62 | public IMeanFunction MeanFunction {
|
---|
63 | get { return meanFunction; }
|
---|
64 | }
|
---|
65 | [Storable]
|
---|
66 | private string targetVariable;
|
---|
67 | public string TargetVariable {
|
---|
68 | get { return targetVariable; }
|
---|
69 | }
|
---|
70 | [Storable]
|
---|
71 | private string[] allowedInputVariables;
|
---|
72 | public string[] AllowedInputVariables {
|
---|
73 | get { return allowedInputVariables; }
|
---|
74 | }
|
---|
75 |
|
---|
76 |
|
---|
77 | [Storable]
|
---|
78 | private double sqrSigmaNoise;
|
---|
79 | public double SigmaNoise {
|
---|
80 | get { return Math.Sqrt(sqrSigmaNoise); }
|
---|
81 | }
|
---|
82 |
|
---|
83 | [Storable]
|
---|
84 | private double[] meanParameter;
|
---|
85 | [Storable]
|
---|
86 | private double[] covarianceParameter;
|
---|
87 |
|
---|
88 |
|
---|
89 | [StorableConstructor]
|
---|
90 | private EigenGaussianProcessModel(bool deserializing) : base(deserializing) { }
|
---|
91 | private EigenGaussianProcessModel(EigenGaussianProcessModel original, Cloner cloner)
|
---|
92 | : base(original, cloner) {
|
---|
93 | this.meanFunction = cloner.Clone(original.meanFunction);
|
---|
94 | this.covarianceFunction = cloner.Clone(original.covarianceFunction);
|
---|
95 | this.negativeLogLikelihood = original.negativeLogLikelihood;
|
---|
96 | this.targetVariable = original.targetVariable;
|
---|
97 | this.sqrSigmaNoise = original.sqrSigmaNoise;
|
---|
98 | if (original.meanParameter != null) {
|
---|
99 | this.meanParameter = (double[])original.meanParameter.Clone();
|
---|
100 | }
|
---|
101 | if (original.covarianceParameter != null) {
|
---|
102 | this.covarianceParameter = (double[])original.covarianceParameter.Clone();
|
---|
103 | }
|
---|
104 |
|
---|
105 | // shallow copies of arrays because they cannot be modified
|
---|
106 | this.allowedInputVariables = original.allowedInputVariables;
|
---|
107 | }
|
---|
108 | public EigenGaussianProcessModel(Dataset ds, string targetVariable, IEnumerable<string> allowedInputVariables, IEnumerable<int> rows,
|
---|
109 | IEnumerable<double> hyp, IMeanFunction meanFunction, ICovarianceFunction covarianceFunction)
|
---|
110 | : base() {
|
---|
111 | this.name = ItemName;
|
---|
112 | this.description = ItemDescription;
|
---|
113 | this.meanFunction = (IMeanFunction)meanFunction.Clone();
|
---|
114 | this.covarianceFunction = (ICovarianceFunction)covarianceFunction.Clone();
|
---|
115 | this.targetVariable = targetVariable;
|
---|
116 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
117 |
|
---|
118 |
|
---|
119 | int nVariables = this.allowedInputVariables.Length;
|
---|
120 | meanParameter = hyp
|
---|
121 | .Take(this.meanFunction.GetNumberOfParameters(nVariables))
|
---|
122 | .ToArray();
|
---|
123 |
|
---|
124 | covarianceParameter = hyp.Skip(this.meanFunction.GetNumberOfParameters(nVariables))
|
---|
125 | .Take(this.covarianceFunction.GetNumberOfParameters(nVariables))
|
---|
126 | .ToArray();
|
---|
127 | sqrSigmaNoise = Math.Exp(2.0 * hyp.Last());
|
---|
128 |
|
---|
129 | CalculateModel(ds, rows);
|
---|
130 | }
|
---|
131 |
|
---|
132 | private void CalculateModel(Dataset ds, IEnumerable<int> rows) {
|
---|
133 | var inputScaling = new Scaling(ds, allowedInputVariables, rows);
|
---|
134 | var x = AlglibUtil.PrepareAndScaleInputMatrix(ds, allowedInputVariables, rows, inputScaling);
|
---|
135 | var y = ds.GetDoubleValues(targetVariable, rows);
|
---|
136 |
|
---|
137 | int n = x.GetLength(0);
|
---|
138 | var l = new double[n * n];
|
---|
139 |
|
---|
140 | // calculate means and covariances
|
---|
141 | var mean = meanFunction.GetParameterizedMeanFunction(meanParameter, Enumerable.Range(0, x.GetLength(1)));
|
---|
142 | var cov = covarianceFunction.GetParameterizedCovarianceFunction(covarianceParameter, Enumerable.Range(0, x.GetLength(1)));
|
---|
143 | for (int i = 0; i < n; i++) {
|
---|
144 | for (int j = i; j < n; j++) {
|
---|
145 | l[j + i * n] = cov.Covariance(x, i, j) / sqrSigmaNoise;
|
---|
146 | if (j == i) l[j + i * n] += 1.0;
|
---|
147 | }
|
---|
148 | }
|
---|
149 |
|
---|
150 |
|
---|
151 | var myEigen = new MyEigen();
|
---|
152 | int info = 0;
|
---|
153 | var alpha = new double[n];
|
---|
154 |
|
---|
155 | // solve for alpha
|
---|
156 | double[] ym = y.Zip(Enumerable.Range(0, x.GetLength(0)).Select(r => mean.Mean(x, r)), (a, b) => a - b).ToArray();
|
---|
157 | double[] invL = new double[n * n];
|
---|
158 | double nll;
|
---|
159 |
|
---|
160 | unsafe {
|
---|
161 | fixed (double* ap = &alpha[0])
|
---|
162 | fixed (double* ymp = &ym[0])
|
---|
163 | fixed (double* invlP = &invL[0])
|
---|
164 | fixed (double* lp = &l[0]) {
|
---|
165 | myEigen.Solve(lp, ymp, ap, invlP, sqrSigmaNoise, n, &nll, &info);
|
---|
166 | }
|
---|
167 | }
|
---|
168 | if (info != 0) throw new ArgumentException("Matrix is not positive semidefinite");
|
---|
169 |
|
---|
170 | this.negativeLogLikelihood = nll;
|
---|
171 |
|
---|
172 | double noiseGradient = sqrSigmaNoise * Enumerable.Range(0, n).Select(i => invL[i + i * n]).Sum();
|
---|
173 |
|
---|
174 | // derivatives
|
---|
175 | int nAllowedVariables = x.GetLength(1);
|
---|
176 |
|
---|
177 | double[] meanGradients = new double[meanFunction.GetNumberOfParameters(nAllowedVariables)];
|
---|
178 | for (int k = 0; k < meanGradients.Length; k++) {
|
---|
179 | var meanGrad = Enumerable.Range(0, alpha.Length)
|
---|
180 | .Select(r => mean.Gradient(x, r, k));
|
---|
181 | meanGradients[k] = -Util.ScalarProd(meanGrad, alpha);
|
---|
182 | }
|
---|
183 |
|
---|
184 | double[] covGradients = new double[covarianceFunction.GetNumberOfParameters(nAllowedVariables)];
|
---|
185 | if (covGradients.Length > 0) {
|
---|
186 | for (int i = 0; i < n; i++) {
|
---|
187 | for (int j = 0; j < i; j++) {
|
---|
188 | var g = cov.CovarianceGradient(x, i, j).ToArray();
|
---|
189 | for (int k = 0; k < covGradients.Length; k++) {
|
---|
190 | covGradients[k] += invL[j + i * n] * g[k];
|
---|
191 | }
|
---|
192 | }
|
---|
193 |
|
---|
194 | var gDiag = cov.CovarianceGradient(x, i, i).ToArray();
|
---|
195 | for (int k = 0; k < covGradients.Length; k++) {
|
---|
196 | // diag
|
---|
197 | covGradients[k] += 0.5 * invL[i + i * n] * gDiag[k];
|
---|
198 | }
|
---|
199 | }
|
---|
200 | }
|
---|
201 |
|
---|
202 | hyperparameterGradients =
|
---|
203 | meanGradients
|
---|
204 | .Concat(covGradients)
|
---|
205 | .Concat(new double[] { noiseGradient }).ToArray();
|
---|
206 |
|
---|
207 | }
|
---|
208 |
|
---|
209 |
|
---|
210 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
211 | return new EigenGaussianProcessModel(this, cloner);
|
---|
212 | }
|
---|
213 |
|
---|
214 | // is called by the solution creator to set all parameter values of the covariance and mean function
|
---|
215 | // to the optimized values (necessary to make the values visible in the GUI)
|
---|
216 | public void FixParameters() {
|
---|
217 | covarianceFunction.SetParameter(covarianceParameter);
|
---|
218 | meanFunction.SetParameter(meanParameter);
|
---|
219 | covarianceParameter = new double[0];
|
---|
220 | meanParameter = new double[0];
|
---|
221 | }
|
---|
222 |
|
---|
223 | #region IRegressionModel Members
|
---|
224 | public IEnumerable<double> GetEstimatedValues(Dataset dataset, IEnumerable<int> rows) {
|
---|
225 | return GetEstimatedValuesHelper(dataset, rows);
|
---|
226 | }
|
---|
227 | public GaussianProcessRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
228 | return new GaussianProcessRegressionSolution(this, new RegressionProblemData(problemData));
|
---|
229 | }
|
---|
230 | IRegressionSolution IRegressionModel.CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
231 | return CreateRegressionSolution(problemData);
|
---|
232 | }
|
---|
233 | #endregion
|
---|
234 |
|
---|
235 |
|
---|
236 | private IEnumerable<double> GetEstimatedValuesHelper(Dataset dataset, IEnumerable<int> rows) {
|
---|
237 |
|
---|
238 | return rows.Select(r => 0.0);
|
---|
239 | }
|
---|
240 |
|
---|
241 | public IEnumerable<double> GetEstimatedVariance(Dataset dataset, IEnumerable<int> rows) {
|
---|
242 | return rows.Select(r => sqrSigmaNoise);
|
---|
243 | }
|
---|
244 | }
|
---|
245 | }
|
---|