[9562] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 29 | using HeuristicLabEigen;
|
---|
| 30 | using ILNumerics;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 33 | /// <summary>
|
---|
| 34 | /// Represents a Gaussian process model.
|
---|
| 35 | /// </summary>
|
---|
| 36 | [StorableClass]
|
---|
| 37 | [Item("EigenGaussianProcessModel", "Gaussian process model implemented using ILNumerics.")]
|
---|
| 38 | public sealed class EigenGaussianProcessModel : NamedItem, IGaussianProcessModel {
|
---|
| 39 | [Storable]
|
---|
| 40 | private double negativeLogLikelihood;
|
---|
| 41 | public double NegativeLogLikelihood {
|
---|
| 42 | get { return negativeLogLikelihood; }
|
---|
| 43 | }
|
---|
| 44 |
|
---|
| 45 | [Storable]
|
---|
| 46 | private double[] hyperparameterGradients;
|
---|
| 47 | public double[] HyperparameterGradients {
|
---|
| 48 | get {
|
---|
| 49 | var copy = new double[hyperparameterGradients.Length];
|
---|
| 50 | Array.Copy(hyperparameterGradients, copy, copy.Length);
|
---|
| 51 | return copy;
|
---|
| 52 | }
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | [Storable]
|
---|
| 56 | private ICovarianceFunction covarianceFunction;
|
---|
| 57 | public ICovarianceFunction CovarianceFunction {
|
---|
| 58 | get { return covarianceFunction; }
|
---|
| 59 | }
|
---|
| 60 | [Storable]
|
---|
| 61 | private IMeanFunction meanFunction;
|
---|
| 62 | public IMeanFunction MeanFunction {
|
---|
| 63 | get { return meanFunction; }
|
---|
| 64 | }
|
---|
| 65 | [Storable]
|
---|
| 66 | private string targetVariable;
|
---|
| 67 | public string TargetVariable {
|
---|
| 68 | get { return targetVariable; }
|
---|
| 69 | }
|
---|
| 70 | [Storable]
|
---|
| 71 | private string[] allowedInputVariables;
|
---|
| 72 | public string[] AllowedInputVariables {
|
---|
| 73 | get { return allowedInputVariables; }
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 |
|
---|
| 77 | [Storable]
|
---|
| 78 | private double sqrSigmaNoise;
|
---|
| 79 | public double SigmaNoise {
|
---|
| 80 | get { return Math.Sqrt(sqrSigmaNoise); }
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 | [Storable]
|
---|
| 84 | private double[] meanParameter;
|
---|
| 85 | [Storable]
|
---|
| 86 | private double[] covarianceParameter;
|
---|
| 87 |
|
---|
| 88 |
|
---|
| 89 | [StorableConstructor]
|
---|
| 90 | private EigenGaussianProcessModel(bool deserializing) : base(deserializing) { }
|
---|
| 91 | private EigenGaussianProcessModel(EigenGaussianProcessModel original, Cloner cloner)
|
---|
| 92 | : base(original, cloner) {
|
---|
| 93 | this.meanFunction = cloner.Clone(original.meanFunction);
|
---|
| 94 | this.covarianceFunction = cloner.Clone(original.covarianceFunction);
|
---|
| 95 | this.negativeLogLikelihood = original.negativeLogLikelihood;
|
---|
| 96 | this.targetVariable = original.targetVariable;
|
---|
| 97 | this.sqrSigmaNoise = original.sqrSigmaNoise;
|
---|
| 98 | if (original.meanParameter != null) {
|
---|
| 99 | this.meanParameter = (double[])original.meanParameter.Clone();
|
---|
| 100 | }
|
---|
| 101 | if (original.covarianceParameter != null) {
|
---|
| 102 | this.covarianceParameter = (double[])original.covarianceParameter.Clone();
|
---|
| 103 | }
|
---|
| 104 |
|
---|
| 105 | // shallow copies of arrays because they cannot be modified
|
---|
| 106 | this.allowedInputVariables = original.allowedInputVariables;
|
---|
| 107 | }
|
---|
| 108 | public EigenGaussianProcessModel(Dataset ds, string targetVariable, IEnumerable<string> allowedInputVariables, IEnumerable<int> rows,
|
---|
| 109 | IEnumerable<double> hyp, IMeanFunction meanFunction, ICovarianceFunction covarianceFunction)
|
---|
| 110 | : base() {
|
---|
| 111 | this.name = ItemName;
|
---|
| 112 | this.description = ItemDescription;
|
---|
| 113 | this.meanFunction = (IMeanFunction)meanFunction.Clone();
|
---|
| 114 | this.covarianceFunction = (ICovarianceFunction)covarianceFunction.Clone();
|
---|
| 115 | this.targetVariable = targetVariable;
|
---|
| 116 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
| 117 |
|
---|
| 118 |
|
---|
| 119 | int nVariables = this.allowedInputVariables.Length;
|
---|
| 120 | meanParameter = hyp
|
---|
| 121 | .Take(this.meanFunction.GetNumberOfParameters(nVariables))
|
---|
| 122 | .ToArray();
|
---|
| 123 |
|
---|
| 124 | covarianceParameter = hyp.Skip(this.meanFunction.GetNumberOfParameters(nVariables))
|
---|
| 125 | .Take(this.covarianceFunction.GetNumberOfParameters(nVariables))
|
---|
| 126 | .ToArray();
|
---|
| 127 | sqrSigmaNoise = Math.Exp(2.0 * hyp.Last());
|
---|
| 128 |
|
---|
| 129 | CalculateModel(ds, rows);
|
---|
| 130 | }
|
---|
| 131 |
|
---|
| 132 | private void CalculateModel(Dataset ds, IEnumerable<int> rows) {
|
---|
| 133 | var inputScaling = new Scaling(ds, allowedInputVariables, rows);
|
---|
| 134 | var x = AlglibUtil.PrepareAndScaleInputMatrix(ds, allowedInputVariables, rows, inputScaling);
|
---|
| 135 | var y = ds.GetDoubleValues(targetVariable, rows);
|
---|
| 136 |
|
---|
| 137 | int n = x.GetLength(0);
|
---|
| 138 | var l = new double[n * n];
|
---|
| 139 |
|
---|
| 140 | // calculate means and covariances
|
---|
| 141 | var mean = meanFunction.GetParameterizedMeanFunction(meanParameter, Enumerable.Range(0, x.GetLength(1)));
|
---|
| 142 | var cov = covarianceFunction.GetParameterizedCovarianceFunction(covarianceParameter, Enumerable.Range(0, x.GetLength(1)));
|
---|
| 143 | for (int i = 0; i < n; i++) {
|
---|
| 144 | for (int j = i; j < n; j++) {
|
---|
| 145 | l[j + i * n] = cov.Covariance(x, i, j) / sqrSigmaNoise;
|
---|
| 146 | if (j == i) l[j + i * n] += 1.0;
|
---|
| 147 | }
|
---|
| 148 | }
|
---|
| 149 |
|
---|
| 150 |
|
---|
| 151 | var myEigen = new MyEigen();
|
---|
| 152 | int info = 0;
|
---|
| 153 | var alpha = new double[n];
|
---|
| 154 |
|
---|
| 155 | // solve for alpha
|
---|
| 156 | double[] ym = y.Zip(Enumerable.Range(0, x.GetLength(0)).Select(r => mean.Mean(x, r)), (a, b) => a - b).ToArray();
|
---|
| 157 | double[] invL = new double[n * n];
|
---|
| 158 | double nll;
|
---|
| 159 |
|
---|
| 160 | unsafe {
|
---|
| 161 | fixed (double* ap = &alpha[0])
|
---|
| 162 | fixed (double* ymp = &ym[0])
|
---|
| 163 | fixed (double* invlP = &invL[0])
|
---|
| 164 | fixed (double* lp = &l[0]) {
|
---|
| 165 | myEigen.Solve(lp, ymp, ap, invlP, sqrSigmaNoise, n, &nll, &info);
|
---|
| 166 | }
|
---|
| 167 | }
|
---|
| 168 | if (info != 0) throw new ArgumentException("Matrix is not positive semidefinite");
|
---|
| 169 |
|
---|
| 170 | this.negativeLogLikelihood = nll;
|
---|
| 171 |
|
---|
| 172 | double noiseGradient = sqrSigmaNoise * Enumerable.Range(0, n).Select(i => invL[i + i * n]).Sum();
|
---|
| 173 |
|
---|
| 174 | // derivatives
|
---|
| 175 | int nAllowedVariables = x.GetLength(1);
|
---|
| 176 |
|
---|
| 177 | double[] meanGradients = new double[meanFunction.GetNumberOfParameters(nAllowedVariables)];
|
---|
| 178 | for (int k = 0; k < meanGradients.Length; k++) {
|
---|
| 179 | var meanGrad = Enumerable.Range(0, alpha.Length)
|
---|
| 180 | .Select(r => mean.Gradient(x, r, k));
|
---|
| 181 | meanGradients[k] = -Util.ScalarProd(meanGrad, alpha);
|
---|
| 182 | }
|
---|
| 183 |
|
---|
| 184 | double[] covGradients = new double[covarianceFunction.GetNumberOfParameters(nAllowedVariables)];
|
---|
| 185 | if (covGradients.Length > 0) {
|
---|
| 186 | for (int i = 0; i < n; i++) {
|
---|
| 187 | for (int j = 0; j < i; j++) {
|
---|
| 188 | var g = cov.CovarianceGradient(x, i, j).ToArray();
|
---|
| 189 | for (int k = 0; k < covGradients.Length; k++) {
|
---|
| 190 | covGradients[k] += invL[j + i * n] * g[k];
|
---|
| 191 | }
|
---|
| 192 | }
|
---|
| 193 |
|
---|
| 194 | var gDiag = cov.CovarianceGradient(x, i, i).ToArray();
|
---|
| 195 | for (int k = 0; k < covGradients.Length; k++) {
|
---|
| 196 | // diag
|
---|
| 197 | covGradients[k] += 0.5 * invL[i + i * n] * gDiag[k];
|
---|
| 198 | }
|
---|
| 199 | }
|
---|
| 200 | }
|
---|
| 201 |
|
---|
| 202 | hyperparameterGradients =
|
---|
| 203 | meanGradients
|
---|
| 204 | .Concat(covGradients)
|
---|
| 205 | .Concat(new double[] { noiseGradient }).ToArray();
|
---|
| 206 |
|
---|
| 207 | }
|
---|
| 208 |
|
---|
| 209 |
|
---|
| 210 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 211 | return new EigenGaussianProcessModel(this, cloner);
|
---|
| 212 | }
|
---|
| 213 |
|
---|
| 214 | // is called by the solution creator to set all parameter values of the covariance and mean function
|
---|
| 215 | // to the optimized values (necessary to make the values visible in the GUI)
|
---|
| 216 | public void FixParameters() {
|
---|
| 217 | covarianceFunction.SetParameter(covarianceParameter);
|
---|
| 218 | meanFunction.SetParameter(meanParameter);
|
---|
| 219 | covarianceParameter = new double[0];
|
---|
| 220 | meanParameter = new double[0];
|
---|
| 221 | }
|
---|
| 222 |
|
---|
| 223 | #region IRegressionModel Members
|
---|
| 224 | public IEnumerable<double> GetEstimatedValues(Dataset dataset, IEnumerable<int> rows) {
|
---|
| 225 | return GetEstimatedValuesHelper(dataset, rows);
|
---|
| 226 | }
|
---|
| 227 | public GaussianProcessRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
| 228 | return new GaussianProcessRegressionSolution(this, new RegressionProblemData(problemData));
|
---|
| 229 | }
|
---|
| 230 | IRegressionSolution IRegressionModel.CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
| 231 | return CreateRegressionSolution(problemData);
|
---|
| 232 | }
|
---|
| 233 | #endregion
|
---|
| 234 |
|
---|
| 235 |
|
---|
| 236 | private IEnumerable<double> GetEstimatedValuesHelper(Dataset dataset, IEnumerable<int> rows) {
|
---|
| 237 |
|
---|
| 238 | return rows.Select(r => 0.0);
|
---|
| 239 | }
|
---|
| 240 |
|
---|
| 241 | public IEnumerable<double> GetEstimatedVariance(Dataset dataset, IEnumerable<int> rows) {
|
---|
| 242 | return rows.Select(r => sqrSigmaNoise);
|
---|
| 243 | }
|
---|
| 244 | }
|
---|
| 245 | }
|
---|