1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.ComponentModel;
|
---|
4 | using System.Data;
|
---|
5 | using System.Drawing;
|
---|
6 | using System.Globalization;
|
---|
7 | using System.Linq;
|
---|
8 | using System.Text;
|
---|
9 | using System.Threading.Tasks;
|
---|
10 | using System.Windows.Forms;
|
---|
11 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
12 | using HeuristicLab.Core;
|
---|
13 | using HeuristicLab.Data;
|
---|
14 | using HeuristicLab.Problems.DataAnalysis;
|
---|
15 | using HeuristicLab.Problems.Instances.DataAnalysis;
|
---|
16 | using HeuristicLab.Random;
|
---|
17 |
|
---|
18 | namespace GaussianProcessDemo {
|
---|
19 | public partial class Form1 : Form {
|
---|
20 | private IRandom random;
|
---|
21 | private ICovarianceFunction covFunction;
|
---|
22 | private List<List<double>> data;
|
---|
23 | private double[] alpha;
|
---|
24 |
|
---|
25 |
|
---|
26 | public Form1() {
|
---|
27 | InitializeComponent();
|
---|
28 | this.random = new MersenneTwister();
|
---|
29 |
|
---|
30 | var sum = new CovarianceSum();
|
---|
31 | var t = new CovarianceSquaredExponentialIso();
|
---|
32 | sum.Terms.Add(t);
|
---|
33 | //sum.Terms.Add(new CovarianceNoise());
|
---|
34 | this.covFunction = sum;
|
---|
35 | UpdateSliders();
|
---|
36 |
|
---|
37 | InitData();
|
---|
38 | UpdateChart();
|
---|
39 | }
|
---|
40 |
|
---|
41 | private void UpdateSliders() {
|
---|
42 | flowLayoutPanel1.Controls.Clear();
|
---|
43 | flowLayoutPanel1.Controls.Add(dataButton);
|
---|
44 | for (int i = 0; i < covFunction.GetNumberOfParameters(1); i++) {
|
---|
45 | var sliderControl = new TrackBar();
|
---|
46 | sliderControl.Minimum = -50;
|
---|
47 | sliderControl.Maximum = 50;
|
---|
48 | sliderControl.Value = 0;
|
---|
49 | sliderControl.ValueChanged += (sender, args) => UpdateChart();
|
---|
50 | flowLayoutPanel1.Controls.Add(sliderControl);
|
---|
51 | }
|
---|
52 | }
|
---|
53 |
|
---|
54 | private void InitData() {
|
---|
55 | int n = 5000;
|
---|
56 | data = new List<List<double>>();
|
---|
57 | data.Add(Enumerable.Range(0, n).Select(e => e / 200.0).ToList());
|
---|
58 |
|
---|
59 | // sample from GP
|
---|
60 | var normalRand = new NormalDistributedRandom(random, 0, 1);
|
---|
61 | alpha = (from i in Enumerable.Range(0, n)
|
---|
62 | select normalRand.NextDouble()).ToArray();
|
---|
63 | }
|
---|
64 |
|
---|
65 | private void UpdateChart() {
|
---|
66 | var hyp = GetSliderValues();
|
---|
67 | var cov = covFunction.GetParameterizedCovarianceFunction(hyp, Enumerable.Range(0, data.Count));
|
---|
68 | var y = Util.SampleGaussianProcess(random, cov, data, alpha);
|
---|
69 |
|
---|
70 | chart1.Series[0].Points.Clear();
|
---|
71 | foreach (var p in y.Zip(data[0], (t, x) => new { t, x })) {
|
---|
72 | chart1.Series[0].Points.AddXY(p.x, p.t);
|
---|
73 | }
|
---|
74 |
|
---|
75 | //var trainingData = new List<List<double>>();
|
---|
76 | //var trainingIndices = RandomEnumerable.SampleRandomWithoutRepetition(Enumerable.Range(0, y.Count), random, 10);
|
---|
77 | //var trainingY = trainingIndices.Select(i => y[i]).ToList();
|
---|
78 | //var trainingX = trainingIndices.Select(i => data[0][i]).ToList();
|
---|
79 | //trainingData.Add(trainingY);
|
---|
80 | //trainingData.Add(trainingX);
|
---|
81 | //
|
---|
82 | ////chart1.Series[2].Points.Clear();
|
---|
83 | ////foreach (var p in trainingY.Zip(trainingX, (t, x) => new { t, x })) {
|
---|
84 | //// chart1.Series[2].Points.AddXY(p.x, p.t);
|
---|
85 | ////}
|
---|
86 | //
|
---|
87 | //var allData = new List<List<double>>();
|
---|
88 | //allData.Add(y);
|
---|
89 | //allData.Add(data[0]);
|
---|
90 | //var variableNames = new string[] { "y", "x" };
|
---|
91 | //var fullDataSet = new Dataset(variableNames, allData);
|
---|
92 | //var trainingDataSet = new Dataset(variableNames, trainingData);
|
---|
93 | //var trainingRows = Enumerable.Range(0, trainingIndices.Count());
|
---|
94 | //var fullRows = Enumerable.Range(0, data[0].Count);
|
---|
95 | //var correctModel = new GaussianProcessModel(fullDataSet, variableNames.First(), variableNames.Skip(1), fullRows, hyp, new MeanZero(),
|
---|
96 | // (ICovarianceFunction)covFunction.Clone());
|
---|
97 | //var yPred = correctModel.GetEstimatedValues(fullDataSet, fullRows);
|
---|
98 | //chart1.Series[1].Points.Clear();
|
---|
99 | //foreach (var p in yPred.Zip(data[0], (t, x) => new { t, x })) {
|
---|
100 | // chart1.Series[1].Points.AddXY(p.x, p.t);
|
---|
101 | //}
|
---|
102 | }
|
---|
103 |
|
---|
104 | private double[] GetSliderValues() {
|
---|
105 | var hyp = new List<double>();
|
---|
106 | foreach (var slider in flowLayoutPanel1.Controls.OfType<TrackBar>()) {
|
---|
107 | Console.Write(slider.Value / 10.0 + " ");
|
---|
108 | hyp.Add(slider.Value / 10.0);
|
---|
109 | }
|
---|
110 | Console.WriteLine();
|
---|
111 |
|
---|
112 | return hyp.ToArray();
|
---|
113 | }
|
---|
114 |
|
---|
115 | private void dataButton_Click(object sender, EventArgs e) {
|
---|
116 | var dataForm = new Form();
|
---|
117 | var dataTextField = new TextBox();
|
---|
118 | dataTextField.Multiline = true;
|
---|
119 | dataTextField.Text = DataToText();
|
---|
120 | dataTextField.Dock = DockStyle.Fill;
|
---|
121 | dataForm.Controls.Add(dataTextField);
|
---|
122 | dataForm.ShowDialog();
|
---|
123 | }
|
---|
124 |
|
---|
125 | private string DataToText() {
|
---|
126 | var str = new StringBuilder();
|
---|
127 | foreach (var p in chart1.Series[0].Points) {
|
---|
128 | str.AppendLine(p.XValue.ToString(CultureInfo.InvariantCulture) + "\t" + p.YValues.First().ToString(CultureInfo.InvariantCulture));
|
---|
129 | }
|
---|
130 | return str.ToString();
|
---|
131 | }
|
---|
132 | }
|
---|
133 | }
|
---|