Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GPDL/examples/symbreg Koza.txt @ 9573

Last change on this file since 9573 was 9430, checked in by gkronber, 12 years ago

initial import of GPDL parser plugin

File size: 3.8 KB
Line 
1PROBLEM SymbRegKoza
2CODE <<
3  double[,] inputValues;
4  double[] targetValues;
5  string[] variableNames;
6  Dictionary<string,int> nameToCol;
7 
8  double GetValue(double[,] data, string varName, int row) {
9    if(nameToCol == null) {
10      /* init mapping */
11      nameToCol = new Dictionary<string, int>();
12      for(int i=0; i<variableNames.Length; i++) {
13        nameToCol[variableNames[i]] = i;
14      }
15    }
16    return data[row, nameToCol[varName]];
17  }
18
19  double RSquared(IEnumerable<double> xs, IEnumerable<double> ys) {
20     HeuristicLab.Problems.DataAnalysis.OnlineCalculatorError error;
21     var r2 = HeuristicLab.Problems.DataAnalysis.OnlinePearsonsRSquaredCalculator.Calculate(xs, ys, out error);
22     if(error == HeuristicLab.Problems.DataAnalysis.OnlineCalculatorError.None) return r2;
23     else return 0.0;
24  }
25 
26
27  void LoadData(string fileName, out double[,] inputValues, out string[] variableNames, out double[] target) {
28    var prov = new HeuristicLab.Problems.Instances.DataAnalysis.RegressionRealWorldInstanceProvider();
29    var dd = prov.GetDataDescriptors().OfType<HeuristicLab.Problems.Instances.DataAnalysis.Housing>().Single();
30    var problemData = prov.LoadData(dd);   
31   
32    inputValues = new double[problemData.TrainingIndices.Count(), problemData.AllowedInputVariables.Count()];
33    foreach(var r in problemData.TrainingIndices) {
34       int i=0;
35       foreach(var v in problemData.AllowedInputVariables) {
36          inputValues[r, i++] = problemData.Dataset.GetDoubleValue(v, r);
37       }
38    }
39    variableNames = problemData.AllowedInputVariables.ToArray();
40    target = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).ToArray();
41  }
42>>
43
44INIT <<
45  LoadData("filename.csv", out inputValues, out variableNames, out targetValues);
46>>
47
48NONTERMINALS
49  Model<<int row, out double val>>.
50  RPB<<int row, out double val>>.
51  Addition<<int row, out double val>>.
52  Subtraction<<int row, out double val>>.
53  Multiplication<<int row, out double val>>.
54  Division<<int row, out double val>>.
55
56TERMINALS
57  ERC<<out double val>>
58    CONSTRAINTS
59    val IN RANGE <<-100>> .. <<100>>
60  .
61
62  Var<<out string varName>>
63    CONSTRAINTS
64    varName IN SET <<variableNames>>
65  .
66
67RULES
68  Model<<int row, out double val>> =
69    RPB<<row, out val>> .
70
71  RPB<<int row, out double val>> =                         LOCAL << string varName; >>
72    Addition<<row, out val>>
73    | Subtraction<<row, out val>>
74    | Division<<row, out val>>
75    | Multiplication<<row, out val>>
76    | Var<<out varName>>                                   SEM << val = GetValue(inputValues, varName, row); >>
77    | ERC<<out val>>
78  .
79
80  Addition<<int row, out double val>> =                    LOCAL << double x1, x2; >>
81      RPB<<row, out x1>> RPB<<row, out x2>>                SEM<< val = x1 + x2; >>
82  .
83  Subtraction<<int row, out double val>> =                 LOCAL << double x1, x2; >>
84      RPB<<row, out x1>> RPB<<row, out x2>>                SEM<< val = x1 - x2; >>
85  .
86  Division<<int row, out double val>> =                    LOCAL << double x1, x2; >>
87      RPB<<row, out x1>> RPB<<row, out x2>>                SEM<< val = x1 / x2; >>
88  .
89  Multiplication<<int row, out double val>> =              LOCAL << double x1, x2; >>
90      RPB<<row, out x1>> RPB<<row, out x2>>                SEM<< val = x1 * x2; >>
91  .
92
93MAXIMIZE                                                   /* could also use the keyword MINIMIZE here */
94  <<
95    var rows = System.Linq.Enumerable.Range(0, inputValues.GetLength(0));
96    var predicted = rows.Select(r => {
97      double result;
98      Model(r, out result);                                /* we can call the root symbol directly */
99      return result;
100    });
101    return RSquared(predicted, targetValues);
102  >>
103END SymbRegKoza.
Note: See TracBrowser for help on using the repository browser.