[9519] | 1 | PROBLEM SymbRegKoza
|
---|
| 2 | CODE <<
|
---|
[9696] | 3 | double[,] x;
|
---|
| 4 | double[] y;
|
---|
[10086] | 5 | int[] rows;
|
---|
[10395] | 6 | int[] variables;
|
---|
[10086] | 7 | double[] randomConsts;
|
---|
[9519] | 8 |
|
---|
| 9 | double RSquared(IEnumerable<double> xs, IEnumerable<double> ys) {
|
---|
[10086] | 10 | // calculate Pearson's correlation in one pass over xs and ys
|
---|
| 11 | double sumx = 0.0;
|
---|
| 12 | double sumy = 0.0;
|
---|
| 13 | double sumxSq = 0.0;
|
---|
| 14 | double sumySq = 0.0;
|
---|
| 15 | double sumxy = 0.0;
|
---|
| 16 | int n = 0;
|
---|
| 17 | var xEnum = xs.GetEnumerator();
|
---|
| 18 | var yEnum = ys.GetEnumerator();
|
---|
| 19 | while(xEnum.MoveNext() & yEnum.MoveNext()) {
|
---|
| 20 | sumx += xEnum.Current;
|
---|
| 21 | sumy += yEnum.Current;
|
---|
| 22 | sumxSq += xEnum.Current * xEnum.Current;
|
---|
| 23 | sumySq += yEnum.Current * yEnum.Current;
|
---|
| 24 | sumxy += xEnum.Current * yEnum.Current;
|
---|
| 25 | n++;
|
---|
| 26 | }
|
---|
| 27 | System.Diagnostics.Debug.Assert(!(xEnum.MoveNext() | yEnum.MoveNext()));
|
---|
| 28 |
|
---|
| 29 | double num;
|
---|
| 30 | double den;
|
---|
| 31 | double r = 0.0;
|
---|
| 32 | num = sumxy - ( ( sumx * sumy ) / n );
|
---|
| 33 | den = Math.Sqrt( ( sumxSq - ( sumx*sumx ) / n ) *
|
---|
| 34 | ( sumySq - ( sumy*sumy ) / n ) );
|
---|
| 35 | if(den > 0){
|
---|
| 36 | r = num / den;
|
---|
| 37 | }
|
---|
| 38 | return r*r;
|
---|
| 39 | }
|
---|
[9696] | 40 | >>
|
---|
[9519] | 41 |
|
---|
[9696] | 42 | INIT <<
|
---|
[10099] | 43 | // generate 500 cases of poly-10 benchmark function
|
---|
[9696] | 44 | int n = 500;
|
---|
[10395] | 45 | variables = new int[] {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
|
---|
[10394] | 46 | var rand = new System.Random(31415);
|
---|
[9696] | 47 | x = new double[n, 10];
|
---|
| 48 | y = new double[n];
|
---|
[10086] | 49 | for(int row = 0; row < n; row++) {
|
---|
[9696] | 50 | for(int col = 0; col < 10; col++) {
|
---|
| 51 | x[row, col] = rand.NextDouble() * 2.0 - 1.0;
|
---|
[9519] | 52 | }
|
---|
[9696] | 53 | y[row] = x[row, 0] * x[row, 1] +
|
---|
| 54 | x[row, 2] * x[row, 3] +
|
---|
| 55 | x[row, 4] * x[row, 5] +
|
---|
| 56 | x[row, 0] * x[row, 6] + x[row, 8] +
|
---|
| 57 | x[row, 2] * x[row, 5] + x[row, 9];
|
---|
[9519] | 58 | }
|
---|
[10086] | 59 |
|
---|
| 60 | rows = System.Linq.Enumerable.Range(0, n).ToArray();
|
---|
| 61 |
|
---|
[10099] | 62 | // generate 100 random constants in [-10.0 .. 10.0[
|
---|
| 63 | randomConsts = Enumerable.Range(0, 100).Select(i => rand.NextDouble()*20.0 - 10.0).ToArray();
|
---|
[9519] | 64 | >>
|
---|
| 65 |
|
---|
| 66 | NONTERMINALS
|
---|
| 67 | Model<<int row, out double val>>.
|
---|
| 68 | RPB<<int row, out double val>>.
|
---|
| 69 | Addition<<int row, out double val>>.
|
---|
| 70 | Subtraction<<int row, out double val>>.
|
---|
| 71 | Multiplication<<int row, out double val>>.
|
---|
| 72 | Division<<int row, out double val>>.
|
---|
| 73 |
|
---|
| 74 | TERMINALS
|
---|
| 75 | ERC<<out double val>>
|
---|
| 76 | CONSTRAINTS
|
---|
[10086] | 77 | val IN SET << randomConsts >>
|
---|
[9519] | 78 | .
|
---|
| 79 |
|
---|
[10395] | 80 | Var<<out int variable>>
|
---|
[9519] | 81 | CONSTRAINTS
|
---|
[10395] | 82 | variable IN SET << variables >>
|
---|
[9519] | 83 | .
|
---|
| 84 |
|
---|
| 85 | RULES
|
---|
| 86 | Model<<int row, out double val>> =
|
---|
| 87 | RPB<<row, out val>> .
|
---|
| 88 |
|
---|
[10395] | 89 | RPB<<int row, out double val>> = LOCAL << int variable; >>
|
---|
[9519] | 90 | Addition<<row, out val>>
|
---|
| 91 | | Subtraction<<row, out val>>
|
---|
| 92 | | Division<<row, out val>>
|
---|
| 93 | | Multiplication<<row, out val>>
|
---|
[10395] | 94 | | Var<<out variable>> SEM << val = x[row, variable]; >>
|
---|
[10409] | 95 | | ERC<<out val>>
|
---|
[9519] | 96 | .
|
---|
| 97 |
|
---|
| 98 | Addition<<int row, out double val>> = LOCAL << double x1, x2; >>
|
---|
| 99 | RPB<<row, out x1>> RPB<<row, out x2>> SEM<< val = x1 + x2; >>
|
---|
| 100 | .
|
---|
| 101 | Subtraction<<int row, out double val>> = LOCAL << double x1, x2; >>
|
---|
| 102 | RPB<<row, out x1>> RPB<<row, out x2>> SEM<< val = x1 - x2; >>
|
---|
| 103 | .
|
---|
| 104 | Division<<int row, out double val>> = LOCAL << double x1, x2; >>
|
---|
| 105 | RPB<<row, out x1>> RPB<<row, out x2>> SEM<< val = x1 / x2; >>
|
---|
| 106 | .
|
---|
| 107 | Multiplication<<int row, out double val>> = LOCAL << double x1, x2; >>
|
---|
| 108 | RPB<<row, out x1>> RPB<<row, out x2>> SEM<< val = x1 * x2; >>
|
---|
| 109 | .
|
---|
| 110 |
|
---|
[10086] | 111 | MAXIMIZE
|
---|
[9519] | 112 | <<
|
---|
| 113 | var predicted = rows.Select(r => {
|
---|
| 114 | double result;
|
---|
| 115 | Model(r, out result); /* we can call the root symbol directly */
|
---|
| 116 | return result;
|
---|
| 117 | });
|
---|
[9696] | 118 | return RSquared(predicted, y);
|
---|
[9519] | 119 | >>
|
---|
| 120 | END SymbRegKoza.
|
---|