1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Linq;
|
---|
4 | using HeuristicLab.Core;
|
---|
5 | using HeuristicLab.Data;
|
---|
6 | using HeuristicLab.Optimization;
|
---|
7 |
|
---|
8 | namespace HeuristicLab.Problems.MetaOptimization {
|
---|
9 | public static class MetaOptimizationUtil {
|
---|
10 | /// <summary>
|
---|
11 | /// Removes those results from the run which are not declared in resultsToKeep
|
---|
12 | /// </summary>
|
---|
13 | public static void ClearResults(IRun run, IEnumerable<string> resultsToKeep) {
|
---|
14 | var resultsToRemove = new List<string>();
|
---|
15 | foreach (var result in run.Results) {
|
---|
16 | if (!resultsToKeep.Contains(result.Key))
|
---|
17 | resultsToRemove.Add(result.Key);
|
---|
18 | }
|
---|
19 | foreach (var result in resultsToRemove)
|
---|
20 | run.Results.Remove(result);
|
---|
21 | }
|
---|
22 |
|
---|
23 | /// <summary>
|
---|
24 | /// Removes those parameters from the run which are not declared in parametersToKeep
|
---|
25 | /// </summary>
|
---|
26 | public static void ClearParameters(IRun run, IEnumerable<string> parametersToKeep) {
|
---|
27 | var parametersToRemove = new List<string>();
|
---|
28 | foreach (var parameter in run.Parameters) {
|
---|
29 | if (!parametersToKeep.Contains(parameter.Key))
|
---|
30 | parametersToRemove.Add(parameter.Key);
|
---|
31 | }
|
---|
32 | foreach (var parameter in parametersToRemove)
|
---|
33 | run.Parameters.Remove(parameter);
|
---|
34 | }
|
---|
35 |
|
---|
36 | public static double Normalize(
|
---|
37 | ParameterConfigurationTree parameterConfigurationTree,
|
---|
38 | double[] referenceQualityAverages,
|
---|
39 | double[] referenceQualityDeviations,
|
---|
40 | double[] referenceEvaluatedSolutionAverages,
|
---|
41 | double qualityAveragesWeight,
|
---|
42 | double qualityDeviationsWeight,
|
---|
43 | double evaluatedSolutionsWeight,
|
---|
44 | bool maximization) {
|
---|
45 |
|
---|
46 | double[] qualityAveragesNormalized = new double[referenceQualityAverages.Length];
|
---|
47 | double[] qualityDeviationsNormalized = new double[referenceQualityDeviations.Length];
|
---|
48 | double[] evaluatedSolutionAveragesNormalized = new double[referenceEvaluatedSolutionAverages.Length];
|
---|
49 |
|
---|
50 | for (int i = 0; i < referenceQualityAverages.Length; i++) {
|
---|
51 | qualityAveragesNormalized[i] = parameterConfigurationTree.AverageQualities[i] / referenceQualityAverages[i];
|
---|
52 | qualityDeviationsNormalized[i] = parameterConfigurationTree.QualityStandardDeviations[i] / referenceQualityDeviations[i];
|
---|
53 | evaluatedSolutionAveragesNormalized[i] = parameterConfigurationTree.AverageEvaluatedSolutions[i] / referenceEvaluatedSolutionAverages[i];
|
---|
54 | }
|
---|
55 | parameterConfigurationTree.NormalizedQualityAverages = new DoubleArray(qualityAveragesNormalized);
|
---|
56 | parameterConfigurationTree.NormalizedQualityDeviations = new DoubleArray(qualityDeviationsNormalized);
|
---|
57 | parameterConfigurationTree.NormalizedEvaluatedSolutions = new DoubleArray(evaluatedSolutionAveragesNormalized);
|
---|
58 |
|
---|
59 | double qualityAveragesNormalizedValue = qualityAveragesNormalized.Average();
|
---|
60 | double qualityDeviationsNormalizedValue = qualityDeviationsNormalized.Average();
|
---|
61 | double evaluatedSolutionAveragesNormalizedValue = evaluatedSolutionAveragesNormalized.Average();
|
---|
62 |
|
---|
63 | // deviation and evaluatedSolutions are always minimization problems. so if maximization=true, flip the values around 1.0 (e.g. 1.15 -> 0.85)
|
---|
64 | if (maximization) {
|
---|
65 | qualityDeviationsNormalizedValue -= (qualityDeviationsNormalizedValue - 1) * 2;
|
---|
66 | evaluatedSolutionAveragesNormalizedValue -= (evaluatedSolutionAveragesNormalizedValue - 1) * 2;
|
---|
67 | }
|
---|
68 |
|
---|
69 | // apply weights
|
---|
70 | qualityAveragesNormalizedValue *= qualityAveragesWeight;
|
---|
71 | qualityDeviationsNormalizedValue *= qualityDeviationsWeight;
|
---|
72 | evaluatedSolutionAveragesNormalizedValue *= evaluatedSolutionsWeight;
|
---|
73 |
|
---|
74 | double weightSum = qualityAveragesWeight + qualityDeviationsWeight + evaluatedSolutionsWeight;
|
---|
75 | parameterConfigurationTree.Quality = new DoubleValue((qualityAveragesNormalizedValue + qualityDeviationsNormalizedValue + evaluatedSolutionAveragesNormalizedValue) / weightSum);
|
---|
76 |
|
---|
77 | return parameterConfigurationTree.Quality.Value;
|
---|
78 | }
|
---|
79 |
|
---|
80 | /// <summary>
|
---|
81 | /// Creates a new instance of algorithmType, sets the given problem and parameterizes it with the given configuration
|
---|
82 | /// </summary>
|
---|
83 | public static IAlgorithm CreateParameterizedAlgorithmInstance(ParameterConfigurationTree parameterConfigurationTree, Type algorithmType, IProblem problem, bool randomize = false, IRandom random = null) {
|
---|
84 | var algorithm = (IAlgorithm)Activator.CreateInstance(algorithmType);
|
---|
85 | algorithm.Problem = problem;
|
---|
86 | if (algorithm is EngineAlgorithm) {
|
---|
87 | ((EngineAlgorithm)algorithm).Engine = new SequentialEngine.SequentialEngine();
|
---|
88 | }
|
---|
89 | if (randomize) parameterConfigurationTree.Randomize(random);
|
---|
90 | parameterConfigurationTree.Parameterize(algorithm);
|
---|
91 | return algorithm;
|
---|
92 | }
|
---|
93 | }
|
---|
94 | }
|
---|