Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.MetaOptimization/HeuristicLab.MetaOptimization.Test/Program.cs @ 5242

Last change on this file since 5242 was 5231, checked in by cneumuel, 14 years ago

#1215

  • fixed issues with wrongly configured operators by cloning the corresponding ValidValue object rather than instantiating a new operator
File size: 33.2 KB
Line 
1using System;
2using System.Collections;
3using System.Collections.Generic;
4using System.IO;
5using System.Linq;
6using System.Text;
7using System.Threading;
8using HeuristicLab.Algorithms.EvolutionStrategy;
9using HeuristicLab.Algorithms.GeneticAlgorithm;
10using HeuristicLab.Common;
11using HeuristicLab.Core;
12using HeuristicLab.Data;
13using HeuristicLab.Optimization;
14using HeuristicLab.PluginInfrastructure;
15using HeuristicLab.Problems.MetaOptimization;
16using HeuristicLab.Problems.TestFunctions;
17using HeuristicLab.Random;
18using HeuristicLab.Selection;
19using HeuristicLab.Parameters;
20using HeuristicLab.Operators;
21using System.Diagnostics;
22using HeuristicLab.Encodings.RealVectorEncoding;
23using HeuristicLab.Hive.ExperimentManager;
24using System.Threading.Tasks;
25
26namespace HeuristicLab.MetaOptimization.Test {
27  class Program {
28    //private static int metaAlgorithmPopulationSize = 50;
29    //private static int metaAlgorithmMaxGenerations = 30;
30    //private static int metaProblemRepetitions = 5;
31    //private static int baseAlgorithmMaxGenerations = 1000;
32
33    private static int metaAlgorithmPopulationSize = 10;
34    private static int metaAlgorithmMaxGenerations = 20;
35    private static int metaProblemRepetitions = 3;
36    private static int baseAlgorithmMaxGenerations = 10;
37
38    static void Main(string[] args) {
39      //TestTableBuilder();
40      //TestShorten();
41
42      //TestIntSampling();
43      //TestDoubleSampling(); return;
44      //TestTypeDiscovery();
45      //TestOperators();
46      //TestCombinations();
47      //TestCombinations2();
48      //TestCombinations3();
49      //TestEnumeratorCollectionEnumerator();
50      //TestCombinations4();
51      //TestAlgorithmPerformanceIssue();
52      TestWaitAny();
53
54      GeneticAlgorithm baseLevelAlgorithm = new GeneticAlgorithm();
55
56      MetaOptimizationProblem metaOptimizationProblem = new MetaOptimizationProblem();
57      metaOptimizationProblem.Repetitions = new IntValue(metaProblemRepetitions);
58      GeneticAlgorithm metaLevelAlgorithm = GetMetaGA(metaOptimizationProblem);
59      //GeneticAlgorithm metaLevelAlgorithm = GetParallelMetaGA(metaOptimizationProblem);
60      //GeneticAlgorithm metaLevelAlgorithm = GetHiveParallelMetaGA(metaOptimizationProblem);
61
62      //EvolutionStrategy metaLevelAlgorithm = GetMetaES(metaOptimizationProblem);
63
64      IValueConfiguration algorithmVc = SetupGAAlgorithm(baseLevelAlgorithm, metaOptimizationProblem);
65
66      //TestToString(algorithmVc);
67
68
69      //Console.WriteLine("Press enter to start");
70      //Console.ReadLine();
71      //TestConfiguration(algorithmVc, baseLevelAlgorithm);
72
73      //Console.WriteLine("Press enter to start");
74      //Console.ReadLine();
75      TestOptimization(metaLevelAlgorithm);
76
77      //TestMemoryLeak(metaLevelAlgorithm);
78
79      Console.ReadLine();
80    }
81
82    private static void TestWaitAny() {
83      System.Random rand = new System.Random();
84      var tasks = new List<Task<int>>();
85      for (int i = 0; i < 10; i++) {
86        tasks.Add(Task.Factory.StartNew<int>((x) => {
87          int sleep = ((int)x - 10) * -1000;
88          Console.WriteLine("sleeping: {0} ms", sleep);
89          Thread.Sleep(0); // make context switch
90          Thread.Sleep(sleep);
91          return (int)x * (int)x;
92        }, i));
93      }
94
95      // --> WaitAll processes tasks lazy but in order.
96      Task.WaitAll();
97      foreach (var task in tasks) {
98        Console.WriteLine(task.Result);
99      }
100
101      // -> WaitAny processes any finished task first. but the finished task needs to be removed from list in order to process all tasks
102      //for (int i = 0; i < 10; i++) {
103      //  var tasksArray = tasks.ToArray();
104      //  var task = tasksArray[Task.WaitAny(tasksArray)];
105      //  Console.WriteLine(task.Result);
106      //  tasks.Remove(task);
107      //}
108
109      Console.WriteLine("Finished TestWaitAny");
110    }
111
112    private static void TestAlgorithmPerformanceIssue() {
113      ContentManager.Initialize(new PersistenceContentManager());
114      Queue<TimeSpan> latestExecutionTimes = new Queue<TimeSpan>();
115      int size = 10;
116
117      GeneticAlgorithm ga = new GeneticAlgorithm();
118      ga.PopulationSize.Value = 3;
119      ga.MaximumGenerations.Value = 1;
120      ga.Engine = new SequentialEngine.SequentialEngine();
121
122      MetaOptimizationProblem metaOptimizationProblem = new MetaOptimizationProblem();
123      metaOptimizationProblem.Repetitions = new IntValue(metaProblemRepetitions);
124      GeneticAlgorithm metaLevelAlgorithm = GetMetaGA(metaOptimizationProblem);
125      ParameterConfigurationTree algorithmVc = SetupGAAlgorithm(ga, metaOptimizationProblem);
126      Stopwatch sw = new Stopwatch();
127
128      for (int i = 0; i < 1000; i++) {
129        sw.Start();
130        GeneticAlgorithm clonedGa = (GeneticAlgorithm)ga.Clone();
131        clonedGa.Name = "CLONED GA";
132        algorithmVc.Parameterize(clonedGa);
133        clonedGa.Prepare(true);
134        var executor = new AlgorithmExecutor(clonedGa);
135        executor.StartSync();
136        sw.Stop();
137        latestExecutionTimes.Enqueue(sw.Elapsed);
138        Console.WriteLine("{0}: {1} ({2})", i, sw.Elapsed, latestExecutionTimes.Count > size ? TimeSpan.FromMilliseconds(latestExecutionTimes.Average(t => t.TotalMilliseconds)).ToString() : "-");
139        if (latestExecutionTimes.Count > size) {
140          latestExecutionTimes.Dequeue();
141        }
142        sw.Reset();
143      }
144    }
145
146    private static void TestTableBuilder() {
147      TableBuilder tb = new TableBuilder("column_1", "col2", "col3");
148      tb.AppendRow("1", "humpi", "0.23124");
149      tb.AppendRow("2", "sf", "0.23124");
150      tb.AppendRow("5", "humpi dampti", "0.224");
151      tb.AppendRow("10", "egon asdf", "0.4");
152      tb.AppendRow("15", "MichaelizcMultiVfds", "0.23124564");
153      Console.WriteLine(tb.ToString());
154    }
155
156    private static void TestToInfoString(IValueConfiguration algorithmVc) {
157      var random = new MersenneTwister();
158      Console.WriteLine(algorithmVc.ParameterInfoString);
159      algorithmVc.Randomize(random);
160      Console.WriteLine(algorithmVc.ParameterInfoString);
161      algorithmVc.Randomize(random);
162      Console.WriteLine(algorithmVc.ParameterInfoString);
163      algorithmVc.Randomize(random);
164    }
165
166    private static void TestCombinations() {
167      Console.WriteLine("IntRange 3-18:3");
168      IntValueRange intRange = new IntValueRange(new IntValue(3), new IntValue(18), new IntValue(3));
169      foreach (var val in intRange.GetCombinations()) {
170        Console.WriteLine(val);
171      }
172
173      Console.WriteLine("DoubleRange 1.0-2.5:0.5");
174      var dblRange = new DoubleValueRange(new DoubleValue(0.7), new DoubleValue(2.8), new DoubleValue(0.5));
175      foreach (var val in dblRange.GetCombinations()) {
176        Console.WriteLine(val);
177      }
178
179      Console.WriteLine("PercentRange 33%-66%:33%");
180      var pctRange = new PercentValueRange(new PercentValue(0.32), new PercentValue(0.98), new PercentValue(0.33));
181      foreach (var val in pctRange.GetCombinations()) {
182        Console.WriteLine(val);
183      }
184    }
185
186    private static void TestCombinations3() {
187      Node root = new Node("root");
188      root.ChildNodes.Add(new Node("root.n1"));
189      root.ChildNodes.Add(new Node("root.n2"));
190      Node n3 = new Node("root.n3");
191      n3.ChildNodes.Add(new Node("root.n3.n1"));
192      n3.ChildNodes.Add(new Node("root.n3.n2"));
193      root.ChildNodes.Add(n3);
194
195      Console.WriteLine(root.ToString());
196      Console.WriteLine("--");
197      int cnt = 0;
198      var enumerator = new NodeEnumerator(root);
199      enumerator.Reset();
200      while (enumerator.MoveNext()) {
201        Console.WriteLine(enumerator.Current.ToString());
202        cnt++;
203      }
204      Console.WriteLine("count: " + cnt);
205    }
206
207    private static void TestEnumeratorCollectionEnumerator() {
208      IEnumerable<int> list1 = new int[] { 1, 2, 3, 4, 5 };
209      IEnumerable<int> list2 = new int[] { 10, 20, 30 };
210      IEnumerable<int> list3 = new int[] { 300, 400, 500 };
211
212      var enumerators = new List<IEnumerator>();
213
214      EnumeratorCollectionEnumerator<int> enu = new EnumeratorCollectionEnumerator<int>();
215      enu.AddEnumerator(list1.GetEnumerator());
216      enu.AddEnumerator(list2.GetEnumerator());
217      enu.AddEnumerator(list3.GetEnumerator());
218      enu.Reset();
219      while (enu.MoveNext()) {
220        Console.WriteLine(enu.Current);
221      }
222    }
223
224    private static void TestCombinations4() {
225      GeneticAlgorithm ga = new GeneticAlgorithm();
226      ga.Problem = new SingleObjectiveTestFunctionProblem();
227      ga.Engine = new SequentialEngine.SequentialEngine();
228
229      ParameterConfigurationTree vc = new ParameterConfigurationTree(ga);
230
231      ConfigurePopulationSize(vc, 20, 100, 20);
232      //ConfigureMutationRate(vc, 0.10, 0.60, 0.10);
233      //ConfigureMutationOperator(vc);
234      ConfigureSelectionOperator(vc, true);
235
236      int count = 0;
237      IEnumerator enumerator = new ParameterCombinationsEnumerator(vc);
238      enumerator.Reset();
239      while (enumerator.MoveNext()) {
240        var current = (IValueConfiguration)enumerator.Current;
241        count++;
242        Console.WriteLine(current.ParameterInfoString);
243      }
244      Console.WriteLine("You are about to create {0} algorithms.", count);
245
246      Experiment experiment = vc.GenerateExperiment(ga);
247      //foreach (var opt in experiment.Optimizers) {
248      //  Console.WriteLine(opt.Name);
249      //}
250
251      experiment.Prepare();
252      experiment.Start();
253
254      while (experiment.ExecutionState != ExecutionState.Stopped) {
255        Thread.Sleep(500);
256      }
257    }
258
259    private static void TestOperators() {
260      IRandom random = new MersenneTwister();
261
262      var doubleRange = new DoubleValueRange(new DoubleValue(0), new DoubleValue(100), new DoubleValue(0.1));
263      using (var sw = new StreamWriter("out-DoubleValue.txt")) {
264        for (int i = 0; i < 10000; i++) {
265          var val = new DoubleValue(90);
266          NormalDoubleValueManipulator.ApplyStatic(random, val, doubleRange);
267
268          sw.WriteLine(val);
269        }
270      }
271
272      var percentRange = new PercentValueRange(new PercentValue(0), new PercentValue(1), new PercentValue(0.001));
273      using (var sw = new StreamWriter("out-PercentValue.txt")) {
274        for (int i = 0; i < 10000; i++) {
275          var val = new PercentValue(0.5);
276          NormalDoubleValueManipulator.ApplyStatic(random, val, percentRange.AsDoubleValueRange());
277          sw.WriteLine(val);
278        }
279      }
280
281      var intRange = new IntValueRange(new IntValue(0), new IntValue(100), new IntValue(1));
282      using (var sw = new StreamWriter("out-IntValue.txt")) {
283        for (int i = 0; i < 10000; i++) {
284          var val = new IntValue(50);
285          UniformIntValueManipulator.ApplyStatic(random, val, intRange);
286          sw.WriteLine(val);
287        }
288      }
289
290      Console.ReadLine();
291    }
292
293    private static void TestTypeDiscovery() {
294      PluginLoader.pluginAssemblies.Any();
295
296      var items = ApplicationManager.Manager.GetInstances(typeof(DoubleArray)).ToArray();
297
298      foreach (var item in items) {
299        Console.WriteLine(item.ToString());
300      }
301    }
302
303    private static void TestMemoryLeak(GeneticAlgorithm metaLevelAlgorithm) {
304      IValueConfiguration algorithmVc = ((MetaOptimizationProblem)metaLevelAlgorithm.Problem).ParameterConfigurationTree;
305
306      Console.WriteLine("Starting Memory Test...");
307      Console.ReadLine();
308
309      var clones = new List<object>();
310      for (int i = 0; i < 1000; i++) {
311        var clone = algorithmVc.Clone();
312        clones.Add(clone);
313      }
314
315      Console.WriteLine("Finished. Now GC...");
316      Console.ReadLine();
317
318      GC.Collect();
319
320      Console.WriteLine("Finished!");
321      Console.ReadLine();
322    }
323
324    private static GeneticAlgorithm GetMetaGA(MetaOptimizationProblem metaOptimizationProblem) {
325      GeneticAlgorithm metaLevelAlgorithm = new GeneticAlgorithm();
326      metaLevelAlgorithm.PopulationSize.Value = metaAlgorithmPopulationSize;
327      metaLevelAlgorithm.MaximumGenerations.Value = metaAlgorithmMaxGenerations;
328
329      metaLevelAlgorithm.Problem = metaOptimizationProblem;
330      metaLevelAlgorithm.Engine = new SequentialEngine.SequentialEngine();
331
332      metaLevelAlgorithm.Mutator = ((OptionalConstrainedValueParameter<IManipulator>)((IAlgorithm)metaLevelAlgorithm).Parameters["Mutator"]).ValidValues.Last();
333
334      metaLevelAlgorithm.MutationProbability.Value = 0.15;
335
336      return metaLevelAlgorithm;
337    }
338
339    private static GeneticAlgorithm GetParallelMetaGA(MetaOptimizationProblem metaOptimizationProblem) {
340      GeneticAlgorithm metaLevelAlgorithm = GetMetaGA(metaOptimizationProblem);
341      metaLevelAlgorithm.Engine = new ParallelEngine.ParallelEngine();
342      return metaLevelAlgorithm;
343    }
344
345    private static GeneticAlgorithm GetHiveParallelMetaGA(MetaOptimizationProblem metaOptimizationProblem) {
346      GeneticAlgorithm metaLevelAlgorithm = GetParallelMetaGA(metaOptimizationProblem);
347      metaLevelAlgorithm.Engine = new HiveEngine.HiveEngine();
348      ServiceLocator.Instance.ClientFacadePool.UserName = "cneumuel";
349      ServiceLocator.Instance.ClientFacadePool.Password = "cneumuel";
350      ServiceLocator.Instance.StreamedClientFacadePool.UserName = "cneumuel";
351      ServiceLocator.Instance.StreamedClientFacadePool.Password = "cneumuel";
352      return metaLevelAlgorithm;
353    }
354
355    private static EvolutionStrategy GetMetaES(MetaOptimizationProblem metaOptimizationProblem) {
356      EvolutionStrategy metaLevelAlgorithm = new EvolutionStrategy();
357      metaLevelAlgorithm.PopulationSize.Value = metaAlgorithmPopulationSize;
358      metaLevelAlgorithm.MaximumGenerations.Value = metaAlgorithmMaxGenerations;
359
360      metaLevelAlgorithm.Problem = metaOptimizationProblem;
361      metaLevelAlgorithm.Engine = new SequentialEngine.SequentialEngine();
362
363      metaLevelAlgorithm.Mutator = ((OptionalConstrainedValueParameter<IManipulator>)((IAlgorithm)metaLevelAlgorithm).Parameters["Mutator"]).ValidValues.Last();
364
365      return metaLevelAlgorithm;
366    }
367
368    private static ParameterConfigurationTree SetupGAAlgorithm(GeneticAlgorithm baseLevelAlgorithm, MetaOptimizationProblem metaOptimizationProblem) {
369      baseLevelAlgorithm.Problem = new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem();
370      baseLevelAlgorithm.MaximumGenerations.Value = baseAlgorithmMaxGenerations;
371
372      metaOptimizationProblem.Algorithm = baseLevelAlgorithm;
373      ParameterConfigurationTree algorithmVc = metaOptimizationProblem.ParameterConfigurationTree;
374
375      metaOptimizationProblem.Problems.Add(new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem() {
376        Evaluator = new GriewankEvaluator(),
377        ProblemSize = new IntValue(5)
378      });
379      metaOptimizationProblem.Problems.Add(new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem() {
380        Evaluator = new GriewankEvaluator(),
381        ProblemSize = new IntValue(50)
382      });
383      metaOptimizationProblem.Problems.Add(new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem() {
384        Evaluator = new GriewankEvaluator(),
385        ProblemSize = new IntValue(500)
386      });
387
388      ConfigurePopulationSize(algorithmVc, 12, 100, 1);
389      ConfigureMutationRate(algorithmVc, 0.0, 1.0, 0.01);
390      //ConfigureMutationOperator(algorithmVc);
391      ConfigureElites(algorithmVc, 0, 10, 1);
392      //ConfigureSelectionOperator(algorithmVc, true);
393      return algorithmVc;
394    }
395
396    private static void TestConfiguration(IValueConfiguration algorithmVc, GeneticAlgorithm baseLevelAlgorithm) {
397      IRandom rand = new FastRandom(0);
398      // set random values
399      for (int i = 0; i < 10; i++) {
400        IValueConfiguration clonedVc = (IValueConfiguration)algorithmVc.Clone();
401        GeneticAlgorithm newAlg = (GeneticAlgorithm)baseLevelAlgorithm.Clone();
402        clonedVc.Randomize(rand);
403        clonedVc.Parameterize(newAlg);
404        Console.WriteLine(string.Format("PopSize: original: {0}, randomized: {1}", baseLevelAlgorithm.PopulationSize, newAlg.PopulationSize));
405        Console.WriteLine(string.Format("MutRate: original: {0}, randomized: {1}", baseLevelAlgorithm.MutationProbability, newAlg.MutationProbability));
406        Console.WriteLine(string.Format("MutOp: original: {0}, randomized: {1}", baseLevelAlgorithm.Mutator, newAlg.Mutator));
407        Console.WriteLine(string.Format("SelOp: original: {0}, randomized: {1}", baseLevelAlgorithm.Selector, newAlg.Selector));
408        //Console.WriteLine(string.Format("GrSi: original: {0}, randomized: {1}", "?", ((TournamentSelector)newAlg.Selector).GroupSizeParameter.Value));
409        Console.WriteLine("---");
410      }
411
412      Console.WriteLine("=======================");
413      algorithmVc.Randomize(rand);
414      algorithmVc.Parameterize(baseLevelAlgorithm);
415      // mutate
416      for (int i = 0; i < 10; i++) {
417        IValueConfiguration clonedVc = (IValueConfiguration)algorithmVc.Clone();
418        GeneticAlgorithm newAlg = (GeneticAlgorithm)baseLevelAlgorithm.Clone();
419        //clonedVc.Mutate(rand);
420
421        //.Apply(rand, clonedVc); todo
422        clonedVc.Parameterize(newAlg);
423        Console.WriteLine(string.Format("PopSize: original: {0}, mutated: {1}", baseLevelAlgorithm.PopulationSize, newAlg.PopulationSize));
424        Console.WriteLine(string.Format("MutRate: original: {0}, mutated: {1}", baseLevelAlgorithm.MutationProbability, newAlg.MutationProbability));
425        Console.WriteLine(string.Format("MutOp: original: {0}, mutated: {1}", baseLevelAlgorithm.Mutator, newAlg.Mutator));
426        Console.WriteLine(string.Format("SelOp: original: {0}, mutated: {1}", baseLevelAlgorithm.Selector, newAlg.Selector));
427        //Console.WriteLine(string.Format("GrSi: original: {0}, mutated: {1}", ((TournamentSelector)baseLevelAlgorithm.Selector).GroupSizeParameter.Value, ((TournamentSelector)newAlg.Selector).GroupSizeParameter.Value));
428        Console.WriteLine("---");
429      }
430
431      Console.WriteLine("=======================");
432      // cross
433      for (int i = 0; i < 10; i++) {
434        IValueConfiguration clonedVc1 = (IValueConfiguration)algorithmVc.Clone();
435        IValueConfiguration clonedVc2 = (IValueConfiguration)algorithmVc.Clone();
436
437        GeneticAlgorithm first = (GeneticAlgorithm)baseLevelAlgorithm.Clone();
438        GeneticAlgorithm second = (GeneticAlgorithm)baseLevelAlgorithm.Clone();
439
440        clonedVc1.Randomize(rand);
441        clonedVc1.Parameterize(first);
442
443        clonedVc2.Randomize(rand);
444        clonedVc2.Parameterize(second);
445
446        var popSizeBefore = first.PopulationSize.Value;
447        var mutRateBefore = first.MutationProbability.Value;
448        var mutOpBefore = first.Mutator;
449        var selOpBefore = first.Selector;
450        //var groupSizeBefore = ((TournamentSelector)first.Selector).GroupSizeParameter.Value.Value;
451
452        //clonedVc1.Cross(clonedVc2, rand); todo
453        clonedVc1.Parameterize(first);
454
455        Console.WriteLine(string.Format("PopSize: first: {0}, second: {1}, crossed: {2}", popSizeBefore, second.PopulationSize, first.PopulationSize));
456        Console.WriteLine(string.Format("MutRate: first: {0}, second: {1}, crossed: {2}", mutRateBefore, second.MutationProbability, first.MutationProbability));
457        Console.WriteLine(string.Format("MutOp: first: {0}, second: {1}, crossed: {2}", mutOpBefore, second.Mutator, first.Mutator));
458        Console.WriteLine(string.Format("SelOp: first: {0}, second: {1}, crossed: {2}", selOpBefore, second.Selector, first.Selector));
459        //Console.WriteLine(string.Format("GrSi: first: {0}, second: {1}, crossed: {2}", groupSizeBefore, ((TournamentSelector)second.Selector).GroupSizeParameter.Value, ((TournamentSelector)first.Selector).GroupSizeParameter.Value));
460        Console.WriteLine("---");
461      }
462      Console.WriteLine("=======================");
463    }
464
465    private static void ConfigureMutationOperator(IValueConfiguration algorithmVc) {
466      var mutationOperator = algorithmVc.ParameterConfigurations.Where(x => x.Name == "Mutator").SingleOrDefault();
467      mutationOperator.Optimize = true;
468
469      // uncheck multiMutator to avoid Michalewicz issue
470      var multiMutator = mutationOperator.ValueConfigurations.Where(x => x.ActualValue.Value != null && x.ActualValue.Value.ItemName.StartsWith("Multi")).SingleOrDefault();
471      if (multiMutator != null) {
472        mutationOperator.ValueConfigurations.SetItemCheckedState(multiMutator, false);
473      }
474    }
475
476    private static void ConfigureSelectionOperator(IValueConfiguration algorithmVc, bool configureTournamenSize) {
477      var selectionOperatorPc = algorithmVc.ParameterConfigurations.Where(x => x.Name == "Selector").SingleOrDefault();
478      selectionOperatorPc.Optimize = true;
479
480      foreach (var vc in selectionOperatorPc.ValueConfigurations) {
481        if (vc.ActualValue.ValueDataType == typeof(TournamentSelector)) {
482          selectionOperatorPc.ValueConfigurations.SetItemCheckedState(vc, true);
483          if (configureTournamenSize) {
484            vc.Optimize = true;
485            ConfigureTournamentGroupSize(vc);
486          }
487        } else if (vc.ActualValue.ValueDataType == typeof(RandomSelector)) {
488          selectionOperatorPc.ValueConfigurations.SetItemCheckedState(vc, true);
489        } else {
490          selectionOperatorPc.ValueConfigurations.SetItemCheckedState(vc, true);
491        }
492      }
493    }
494
495    private static void ConfigureTournamentGroupSize(IValueConfiguration tournamentVc) {
496      var groupSizePc = tournamentVc.ParameterConfigurations.Where(x => x.ParameterName == "GroupSize").SingleOrDefault();
497      groupSizePc.Optimize = true;
498
499      groupSizePc.ValueConfigurations.First().Optimize = true;
500      groupSizePc.ValueConfigurations.First().RangeConstraint.LowerBound = new IntValue(0);
501      groupSizePc.ValueConfigurations.First().RangeConstraint.UpperBound = new IntValue(10);
502      groupSizePc.ValueConfigurations.First().RangeConstraint.StepSize = new IntValue(1);
503    }
504
505    private static void ConfigurePopulationSize(IValueConfiguration algorithmVc, int lower, int upper, int stepsize) {
506      var populationSizePc = algorithmVc.ParameterConfigurations.Where(x => x.Name == "PopulationSize").SingleOrDefault();
507      populationSizePc.Optimize = true;
508      var populationSizeVc = populationSizePc.ValueConfigurations.First();
509      populationSizeVc.Optimize = true;
510      populationSizeVc.RangeConstraint.LowerBound = new IntValue(lower);
511      populationSizeVc.RangeConstraint.UpperBound = new IntValue(upper);
512      populationSizeVc.RangeConstraint.StepSize = new IntValue(stepsize);
513    }
514
515    private static void ConfigureMutationRate(IValueConfiguration algorithmVc, double lower, double upper, double stepsize) {
516      var mutationRatePc = algorithmVc.ParameterConfigurations.Where(x => x.Name == "MutationProbability").SingleOrDefault();
517      mutationRatePc.Optimize = true;
518      var mutationRateVc = mutationRatePc.ValueConfigurations.First();
519      mutationRateVc.Optimize = true;
520      mutationRateVc.RangeConstraint.LowerBound = new PercentValue(lower);
521      mutationRateVc.RangeConstraint.UpperBound = new PercentValue(upper);
522      mutationRateVc.RangeConstraint.StepSize = new PercentValue(stepsize);
523    }
524
525    private static void ConfigureElites(IValueConfiguration algorithmVc, int from, int to, int stepSize) {
526      var elitesPc = algorithmVc.ParameterConfigurations.Where(x => x.Name == "Elites").SingleOrDefault();
527      elitesPc.Optimize = true;
528      var elitesVc = elitesPc.ValueConfigurations.First();
529      elitesVc.Optimize = true;
530      elitesVc.RangeConstraint.LowerBound = new IntValue(from);
531      elitesVc.RangeConstraint.UpperBound = new IntValue(to);
532      elitesVc.RangeConstraint.StepSize = new IntValue(stepSize);
533    }
534
535    private static void TestOptimization(EngineAlgorithm metaLevelAlgorithm) {
536      ContentManager.Initialize(new PersistenceContentManager());
537      string path = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "Results");
538      if (!Directory.Exists(path))
539        Directory.CreateDirectory(path);
540      string id = DateTime.Now.ToString("yyyy.MM.dd - HH;mm;ss,ffff");
541      string resultPath = Path.Combine(path, string.Format("{0} - Result.hl", id));
542      string outputPath = Path.Combine(path, string.Format("{0} - Console.txt", id));
543
544      using (var sw = new StreamWriter(outputPath)) {
545        sw.AutoFlush = true;
546
547        StringBuilder sb1 = new StringBuilder();
548        sb1.AppendFormat("Meta.PopulationSize: {0}\n", metaAlgorithmPopulationSize);
549        sb1.AppendFormat("Meta.MaxGenerations: {0}\n", metaAlgorithmMaxGenerations);
550        sb1.AppendFormat("Meta.Repetitions   : {0}\n", metaProblemRepetitions);
551        sb1.AppendFormat("Meta.MutProb       : {0}\n", ((GeneticAlgorithm)metaLevelAlgorithm).MutationProbability.Value);
552        sb1.AppendFormat("Base.MaxGenerations: {0}\n", baseAlgorithmMaxGenerations);
553        sb1.AppendLine("Problems:");
554        foreach (var prob in ((MetaOptimizationProblem)metaLevelAlgorithm.Problem).Problems) {
555          sb1.Append(prob.Name);
556          var sotf = prob as SingleObjectiveTestFunctionProblem;
557          if (sotf != null) {
558            sb1.AppendFormat(" {0}", sotf.ProblemSize.Value);
559          }
560          sb1.AppendLine();
561        }
562        sw.WriteLine(sb1.ToString());
563        Console.WriteLine(sb1.ToString());
564        metaLevelAlgorithm.Stopped += new EventHandler(metaLevelAlgorithm_Stopped);
565        metaLevelAlgorithm.Paused += new EventHandler(metaLevelAlgorithm_Paused);
566        metaLevelAlgorithm.ExceptionOccurred += new EventHandler<EventArgs<Exception>>(metaLevelAlgorithm_ExceptionOccurred);
567
568        metaLevelAlgorithm.Start();
569        int i = 0;
570        int currentGeneration = -1;
571        do {
572          Thread.Sleep(500);
573          if (metaLevelAlgorithm.Results.ContainsKey("Generations") && ((IntValue)metaLevelAlgorithm.Results["Generations"].Value).Value != currentGeneration) {
574            while (metaLevelAlgorithm.Results.Count < 3) Thread.Sleep(100);
575            StringBuilder sb = new StringBuilder();
576            sb.AppendLine(DateTime.Now.ToLongTimeString());
577            sb.AppendLine("=================================");
578
579            sb.AppendLine(metaLevelAlgorithm.ExecutionState.ToString());
580            var rsClone = (ResultCollection)metaLevelAlgorithm.Results.Clone();
581            foreach (var result in rsClone) {
582              sb.AppendLine(result.ToString());
583              if (result.Name == "Population") {
584                RunCollection rc = (RunCollection)result.Value;
585                var orderedRuns = rc.OrderBy(x => x.Results["AverageQualityNormalized"]);
586
587                TableBuilder tb = new TableBuilder("QNorm", "PoSi", "MutRa", "Eli", "SelOp", "MutOp", "NrSelSubScopes");
588                foreach (IRun run in orderedRuns) {
589                  string selector;
590                  if (run.Parameters["Selector"] is TournamentSelector) {
591                    selector = string.Format("{0} ({1})", run.Parameters["Selector"].ToString(), ((TournamentSelector)run.Parameters["Selector"]).GroupSizeParameter.Value.ToString());
592                  } else {
593                    selector = string.Format("{0}", run.Parameters["Selector"].ToString());
594                  }
595
596                  tb.AppendRow(
597                    ((DoubleValue)run.Results["AverageQualityNormalized"]).Value.ToString("#0.00"),
598                    ((IntValue)run.Parameters["PopulationSize"]).Value.ToString(),
599                    ((DoubleValue)run.Parameters["MutationProbability"]).Value.ToString("0.00"),
600                    ((IntValue)run.Parameters["Elites"]).Value.ToString(),
601                    Shorten(selector, 20),
602                    Shorten(run.Parameters.ContainsKey("Mutator") ? run.Parameters["Mutator"].ToString() : "null", 40),
603                    ((ISelector)run.Parameters["Selector"]).NumberOfSelectedSubScopesParameter.Value.ToString());
604                }
605                sb.AppendLine(tb.ToString());
606              }
607            } // foreach
608            //Console.Clear();
609            Console.WriteLine(sb.ToString());
610            sw.WriteLine(sb.ToString());
611            currentGeneration = ((IntValue)metaLevelAlgorithm.Results["Generations"].Value).Value;
612          } // if
613          //if (i % 30 == 0) GC.Collect();
614          i++;
615        } while (metaLevelAlgorithm.ExecutionState != ExecutionState.Stopped);
616      }
617
618      Console.WriteLine();
619      Console.WriteLine("Storing...");
620
621      ContentManager.Save((IStorableContent)metaLevelAlgorithm, resultPath, true);
622      Console.WriteLine("Finished");
623    }
624
625    private static void metaLevelAlgorithm_ExceptionOccurred(object sender, EventArgs<Exception> e) {
626      Console.WriteLine("metaLevelAlgorithm_ExceptionOccurred");
627      Console.WriteLine(e.Value.ToString());
628      if (e.Value.InnerException != null) {
629        Console.WriteLine(e.Value.InnerException.ToString());
630      }
631    }
632
633    private static void metaLevelAlgorithm_Paused(object sender, EventArgs e) {
634      Console.WriteLine("metaLevelAlgorithm_Paused");
635    }
636
637    private static void metaLevelAlgorithm_Stopped(object sender, EventArgs e) {
638      Console.WriteLine("metaLevelAlgorithm_Stopped");
639    }
640
641    private static void TestShorten() {
642      int n = 8;
643      Console.WriteLine(Shorten("1", n));
644      Console.WriteLine(Shorten("12", n));
645      Console.WriteLine(Shorten("123", n));
646      Console.WriteLine(Shorten("1234", n));
647      Console.WriteLine(Shorten("12345", n));
648      Console.WriteLine(Shorten("123456", n));
649      Console.WriteLine(Shorten("1234567", n));
650      Console.WriteLine(Shorten("12345678", n));
651      Console.WriteLine(Shorten("123456789", n));
652      Console.WriteLine(Shorten("1234567890", n));
653      Console.WriteLine(Shorten("12345678901", n));
654    }
655
656    private static string Shorten(string s, int n) {
657      string placeholder = "..";
658      if (s.Length <= n) return s;
659      int len = n / 2 - placeholder.Length / 2;
660      string start = s.Substring(0, len);
661      string end = s.Substring(s.Length - len, len);
662      return start + placeholder + end;
663    }
664
665    private static void TestIntSampling() {
666      System.Random rand = new System.Random();
667      int lower = 10;
668      int upper = 20;
669      int stepsize = 1;
670      for (int i = 0; i < 100; i++) {
671        int val;
672        do {
673          val = rand.Next(lower / stepsize, upper / stepsize + 1) * stepsize;
674        } while (val < lower || val > upper);
675        Console.WriteLine(val);
676      }
677    }
678
679    private static void TestDoubleSampling() {
680      System.Random rand = new System.Random();
681      double lower = 2;
682      double upper = 3;
683      double stepsize = 0.6;
684      for (int i = 0; i < 100; i++) {
685        double val;
686        do {
687          val = Math.Round((rand.NextDouble() * (upper - lower) + lower) / stepsize, 0) * stepsize;
688        } while (val < lower || val > upper);
689        Console.WriteLine(val);
690      }
691    }
692
693    private static IEnumerable<IItem> GetValidValues(IValueParameter valueParameter) {
694      return ApplicationManager.Manager.GetInstances(valueParameter.DataType).Select(x => (IItem)x).OrderBy(x => x.ItemName);
695    }
696  }
697
698  public class Node {
699    public string Name { get; set; }
700    public int ActualValue { get; set; }
701    public int[] PossibleValues { get; set; }
702    public List<Node> ChildNodes { get; set; }
703
704    public Node(string name) {
705      this.Name = name;
706      PossibleValues = new int[] { 1, 2, 3 };
707      ChildNodes = new List<Node>();
708    }
709
710    public void Init() {
711      this.ActualValue = PossibleValues.First();
712      foreach (var child in ChildNodes) {
713        child.Init();
714      }
715    }
716
717    public override string ToString() {
718      StringBuilder sb = new StringBuilder();
719      sb.Append(string.Format("{0}:{1}", this.Name, this.ActualValue));
720      if (this.ChildNodes.Count() > 0) {
721        sb.Append(" (");
722        var lst = new List<string>();
723        foreach (Node child in ChildNodes) {
724          lst.Add(child.ToString());
725        }
726        sb.Append(string.Join(", ", lst.ToArray()));
727        sb.Append(")");
728      }
729
730      return sb.ToString();
731    }
732  }
733
734  public class NodeEnumerator : IEnumerator<Node> {
735    private Node node;
736    private List<IEnumerator> enumerators;
737
738    public NodeEnumerator(Node node) {
739      this.node = node;
740      this.enumerators = new List<IEnumerator>();
741    }
742
743    public Node Current {
744      get { return node; }
745    }
746    object IEnumerator.Current {
747      get { return Current; }
748    }
749
750    public void Dispose() { }
751
752    public bool MoveNext() {
753      int i = 0;
754      bool ok = false;
755      while (!ok && i < enumerators.Count) {
756        if (enumerators[i].MoveNext()) {
757          ok = true;
758        } else {
759          i++;
760        }
761      }
762
763      if (ok) {
764        for (int k = i - 1; k >= 0; k--) {
765          enumerators[k].Reset();
766          enumerators[k].MoveNext();
767        }
768      } else {
769        return false;
770      }
771
772      node.ActualValue = (int)enumerators[0].Current;
773      return true;
774    }
775
776    public void Reset() {
777      enumerators.Clear();
778      enumerators.Add(node.PossibleValues.GetEnumerator());
779      enumerators[0].Reset();
780
781      foreach (var child in node.ChildNodes) {
782        var enumerator = new NodeEnumerator(child);
783        enumerator.Reset();
784        enumerator.MoveNext();
785        enumerators.Add(enumerator);
786      }
787    }
788  }
789}
Note: See TracBrowser for help on using the repository browser.