Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.MetaOptimization/HeuristicLab.MetaOptimization.Test/Program.cs @ 6451

Last change on this file since 6451 was 6445, checked in by cneumuel, 14 years ago

#1215

  • minor changes
File size: 62.3 KB
Line 
1using System;
2using System.Collections;
3using System.Collections.Generic;
4using System.Diagnostics;
5using System.IO;
6using System.Linq;
7using System.Reflection;
8using System.Text;
9using System.Threading;
10using System.Threading.Tasks;
11using HeuristicLab.Algorithms.EvolutionStrategy;
12using HeuristicLab.Algorithms.GeneticAlgorithm;
13using HeuristicLab.Common;
14using HeuristicLab.Core;
15using HeuristicLab.Data;
16using HeuristicLab.Encodings.RealVectorEncoding;
17using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
18//using HeuristicLab.Hive.ExperimentManager;
19using HeuristicLab.Optimization;
20using HeuristicLab.Parameters;
21using HeuristicLab.PluginInfrastructure;
22using HeuristicLab.PluginInfrastructure.Manager;
23using HeuristicLab.Problems.DataAnalysis.Symbolic;
24using HeuristicLab.Problems.MetaOptimization;
25using HeuristicLab.Problems.TestFunctions;
26using HeuristicLab.Problems.TravelingSalesman;
27using HeuristicLab.Random;
28using HeuristicLab.Selection;
29
30namespace HeuristicLab.MetaOptimization.Test {
31  class Program {
32    static void Main(string[] args) {
33      PluginManager pm = new PluginManager(Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location));
34      pm.DiscoverAndCheckPlugins();
35      pm.Run(pm.Applications.Where(x => x.Name == "TestApp").SingleOrDefault());
36    }
37  }
38
39  [Plugin("TestPlugin", "1.0.0.0")]
40  [PluginFile("HeuristicLab.MetaOptimization.Test.exe", PluginFileType.Assembly)]
41  public class TestPlugin : PluginBase { }
42
43  [Application("TestApp")]
44  public class TestApp : ApplicationBase {
45    //private static int metaAlgorithmPopulationSize = 30;
46    //private static int metaAlgorithmMaxGenerations = 30;
47    //private static int metaProblemRepetitions = 3;
48    //private static int baseAlgorithmMaxGenerations = 500;
49    //private static double mutationProbability = 0.10;
50
51    private static int metaAlgorithmPopulationSize = 30;
52    private static int metaAlgorithmMaxGenerations = 10;
53    private static double metaAlgorithmMutationProbability = 0.10;
54    private static int metaProblemRepetitions = 3;
55    private static int baseAlgorithmMaxGenerations = 20;
56    private static int baseAlgorithmPopulationSize = 100;
57
58    public override void Run() {
59      ContentManager.Initialize(new PersistenceContentManager());
60
61      //TestTableBuilder();
62      //TestShorten();
63
64
65      bool y = ParameterConfiguration.IsSubclassOfRawGeneric(typeof(Tuple<,,,>), typeof(Tuple<,>));
66      bool a = ParameterConfiguration.IsSubclassOfRawGeneric(typeof(Tuple<>), typeof(Tuple<int>));
67
68
69      var x = typeof(float).IsPrimitive;
70
71      //TestSimilarities(); return;
72      //TestIntSampling();
73      //TestDoubleSampling(); return;
74      //TestTypeDiscovery();
75      //TestOperators(); return;
76      //TestCombinations();
77      //TestCombinations2();
78      //TestCombinations3();
79      //TestEnumeratorCollectionEnumerator();
80      //TestCombinations4(); return;
81      //TestAlgorithmPerformanceIssue(); return;
82      //TestWaitAny();
83      //TestExecutionTimeUpdateInvervalPerformance();
84      //TestMemoryConsumption();
85      //TestNormalCrossover();
86      //TestItemDictionary();
87
88      //TestSymbolicDataAnalysisGrammar(); return;
89      //TestObjectGraphObjectsTraversal(); return;
90      //TestParameterizedItem(); return;
91
92      //MetaOptimizationProblem metaOptimizationProblem = LoadOptimizationProblem("Meta Optimization Problem (Genetic Programming - Symbolic Regression 3.4 scaled).hl");
93      //var algorithmVc = metaOptimizationProblem.ParameterConfigurationTree;
94
95      var metaOptimizationProblem = new MetaOptimizationProblem();
96      var algorithmVc = SetupGAAlgorithm(typeof(GeneticAlgorithm), metaOptimizationProblem);
97
98      metaOptimizationProblem.Repetitions = new IntValue(metaProblemRepetitions);
99      //GeneticAlgorithm metaLevelAlgorithm = GetSequentialMetaGA(metaOptimizationProblem);
100      GeneticAlgorithm metaLevelAlgorithm = GetParallelMetaGA(metaOptimizationProblem);
101      //GeneticAlgorithm metaLevelAlgorithm = GetHiveParallelMetaGA(metaOptimizationProblem);
102      //EvolutionStrategy metaLevelAlgorithm = GetMetaES(metaOptimizationProblem);
103
104      //Console.WriteLine("Press enter to start"); Console.ReadLine();
105      //TestConfiguration(algorithmVc, typeof(GeneticAlgorithm), metaOptimizationProblem.Problems.First());
106
107      Console.WriteLine("Press enter to start"); Console.ReadLine();
108      TestOptimization(metaLevelAlgorithm);
109
110      //TestMemoryLeak(metaLevelAlgorithm);
111
112      Console.ReadLine();
113    }
114
115    private void TestParameterizedItem() {
116      var value = new MyParameterizedItem();
117      Console.WriteLine("P1=1;; " + value.ToString());
118
119      var vc = new ParameterizedValueConfiguration(value, typeof(MyParameterizedItem), true);
120      vc.Optimize = true;
121      ((IntValue)vc.ParameterConfigurations.Single(x => x.Name == "P1").ActualValue.Value).Value = 22;
122      Console.WriteLine("P1=22;; " + value.ToString());
123      vc.ParameterConfigurations.Single(x => x.Name == "P1").ActualValue.Value = new IntValue(33);
124      Console.WriteLine("P1=33;; " + value.ToString());
125      vc.Parameterize(value);
126      Console.WriteLine("P1=33;; " + value.ToString());
127           
128      Console.ReadLine();
129    }
130
131    private void TestObjectGraphObjectsTraversal() {
132      //var obj = new GeneticAlgorithm();
133      var obj = ContentManager.Load("Genetic Programming - Symbolic Regression 3.4_scaled_paused.hl");
134      Console.WriteLine("loaded");
135
136      for (int i = 0; i < 10; i++) {
137        var sw = new Stopwatch();
138        sw.Start();
139        var objects = obj.GetObjectGraphObjects().ToArray();
140        sw.Stop();
141
142        var typeCount = GetTypeCount(objects).ToArray();
143        Console.WriteLine("objects: {0}", objects.Count());
144        Console.WriteLine(sw.Elapsed);
145      }
146    }
147
148    private IOrderedEnumerable<KeyValuePair<Type, long>> GetTypeCount(object[] objects) {
149      var dict = new Dictionary<Type, long>();
150      foreach (var item in objects) {
151        var t = item.GetType();
152        if (!dict.ContainsKey(t))
153          dict.Add(t, 0);
154        dict[t]++;
155      }
156      return dict.OrderByDescending(x => x.Value);
157    }
158
159    private MetaOptimizationProblem LoadOptimizationProblem(string filename) {
160      return (MetaOptimizationProblem)ContentManager.Load(filename);
161    }
162
163    private void TestSymbolicDataAnalysisGrammar() {
164      var random = new MersenneTwister();
165
166      var grammar1 = new TypeCoherentExpressionGrammar();
167      var grammar2 = new TypeCoherentExpressionGrammar();
168
169      Console.WriteLine("========== Grammar1: ==========");
170      PrintGrammar(grammar1);
171      //Console.WriteLine("========== Grammar2: ==========");
172      //PrintGrammar(grammar2);
173
174      var vc1 = new SymbolicExpressionGrammarValueConfiguration(grammar1);
175
176      string info = vc1.ParameterInfoString;
177
178      ConfigureSymbolicExpressionGrammarVc(vc1);
179
180      info = vc1.ParameterInfoString;
181
182
183      var vc2 = new SymbolicExpressionGrammarValueConfiguration(grammar2);
184      ConfigureSymbolicExpressionGrammarVc(vc2);
185
186      vc1.Mutate(random, new MutateDelegate(ParameterConfigurationManipulator.Mutate), new UniformIntValueManipulator(), new UniformDoubleValueManipulator());
187      vc1.Parameterize(grammar1);
188
189      Console.WriteLine("========== Grammar1 (mutated): ==========");
190      PrintGrammar(grammar1);
191
192      vc1.Cross(random, vc2, new CrossDelegate(ParameterConfigurationCrossover.Cross), new DiscreteIntValueCrossover(), new AverageDoubleValueCrossover());
193      vc1.Parameterize(grammar1);
194
195      Console.WriteLine("========== Grammar1 (crossed): ==========");
196      PrintGrammar(grammar1);
197
198      //RealVector v1 = GetInitialFrequenciesAsRealVector(grammar1);
199      //RealVector v2 = GetInitialFrequenciesAsRealVector(grammar2);
200
201      //for (int i = 0; i < 10; i++) {
202      //  RealVector v3 = DiscreteCrossover.Apply(random, new ItemArray<RealVector>(new List<RealVector> { v1, v2 }));
203
204      //  var grammar3 = new TypeCoherentExpressionGrammar();
205      //  SetInitialFrequenciesFromRealVector(grammar3, v3);
206
207      //  Console.WriteLine("\n========== Crossed: ==========");
208      //  PrintGrammar(grammar3);
209      //}
210
211    }
212
213    private static void PrintGrammar(TypeCoherentExpressionGrammar grammar) {
214      foreach (var symbol in grammar.Symbols) {
215        Console.WriteLine("{0} ({1})", symbol.ToString(), symbol.InitialFrequency);
216      }
217    }
218
219    private static RealVector GetInitialFrequenciesAsRealVector(TypeCoherentExpressionGrammar grammar) {
220      var vector = new RealVector(grammar.Symbols.Count());
221      for (int i = 0; i < grammar.Symbols.Count(); i++) {
222        vector[i] = grammar.Symbols.ElementAt(i).InitialFrequency;
223      }
224      return vector;
225    }
226
227    private static void SetInitialFrequenciesFromRealVector(TypeCoherentExpressionGrammar grammar, RealVector vector) {
228      for (int i = 0; i < grammar.Symbols.Count(); i++) {
229        grammar.Symbols.ElementAt(i).InitialFrequency = vector[i];
230      }
231    }
232
233    private static void TestSimilarities() {
234      Console.WriteLine("\nDoubleRange:");
235      var doubleRange = new DoubleValueRange(new DoubleValue(0), new DoubleValue(10), new DoubleValue(1));
236      var a = new DoubleValue(5.0);
237
238      for (double d = 0; d < 10; d += 0.1) {
239        var similarity = doubleRange.CalculateSimilarity(a, new DoubleValue(d));
240        Console.WriteLine("{0}: {1}", d, similarity);
241      }
242
243      Console.WriteLine("\nPecentRange:");
244      var percentRange = new PercentValueRange(new PercentValue(0), new PercentValue(1), new PercentValue(1));
245      var b = new PercentValue(0.05);
246
247      for (double d = 0; d < 1; d += 0.01) {
248        var similarity = percentRange.CalculateSimilarity(b, new PercentValue(d));
249        Console.WriteLine("{0}: {1}", d, similarity);
250      }
251
252      Console.WriteLine("\nIntRange:");
253      var intRange = new IntValueRange(new IntValue(50), new IntValue(100), new IntValue(1));
254      var c = new IntValue(90);
255
256      for (int i = 0; i < 100; i++) {
257        var similarity = intRange.CalculateSimilarity(c, new IntValue(i));
258        Console.WriteLine("{0}: {1}", i, similarity);
259      }
260
261      Console.WriteLine("\nValueConfigurations:");
262      var vc1 = SetupGAAlgorithm(typeof(GeneticAlgorithm), new MetaOptimizationProblem());
263      vc1.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "Elites").Optimize = true;
264      vc1.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "PopulationSize").Optimize = true;
265      vc1.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").Optimize = true;
266      vc1.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "Selector").Optimize = true;
267
268      var vc2 = (ParameterConfigurationTree)vc1.Clone();
269      Console.WriteLine("Assert(1): {0}", vc1.CalculateSimilarity(vc2));
270
271      ((IntValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "PopulationSize").ValueConfigurations[0].ActualValue.Value).Value = 75;
272      Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2));
273
274      ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.15;
275      Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2));
276
277      ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.25;
278      Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2));
279      ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.35;
280      Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2));
281      ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.45;
282      Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2));
283      ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.55;
284      Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2));
285
286      vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "Selector").ActualValueConfigurationIndex = 3;
287      Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2));
288
289      var random = new Random.MersenneTwister(0);
290      for (int i = 0; i < 10; i++) {
291        vc2.Randomize(random);
292        Console.WriteLine("Randomized: {0}", vc1.CalculateSimilarity(vc2));
293      }
294    }
295
296    private static void TestItemDictionary() {
297      var dict = new ItemDictionary<StringValue, RunCollection>();
298      dict.Add(new StringValue("a"), new RunCollection());
299      dict.Add(new StringValue("b"), new RunCollection());
300      dict.Add(new StringValue("c"), new RunCollection());
301
302      Console.WriteLine(dict.ContainsKey(new StringValue("a")));
303      Console.WriteLine(dict.Count(x => x.Key.Value == "a"));
304
305    }
306
307    private static void TestNormalCrossover() {
308      var random = new MersenneTwister();
309      double d1 = 0.5;
310      double d2 = 0.6;
311      var doubleRange = new DoubleValueRange(new DoubleValue(0.0), new DoubleValue(1.0), new DoubleValue(0.01));
312
313      using (var sw = new StreamWriter("normalCrossover-DoubleValue.txt")) {
314        for (int i = 0; i < 10000; i++) {
315          sw.WriteLine(NormalDoubleValueCrossover.ApplyStatic(random, new DoubleValue(d1), new DoubleValue(d2), doubleRange));
316        }
317      }
318
319      int i1 = 180;
320      int i2 = 160;
321      var intRange = new IntValueRange(new IntValue(100), new IntValue(200), new IntValue(1));
322
323      using (var sw = new StreamWriter("normalCrossover-IntValue.txt")) {
324        for (int i = 0; i < 10000; i++) {
325          sw.WriteLine(NormalIntValueCrossover.ApplyStatic(random, new IntValue(i1), new IntValue(i2), intRange));
326        }
327      }
328    }
329
330    private static void TestMemoryConsumption() {
331      Queue<TimeSpan> latestExecutionTimes = new Queue<TimeSpan>();
332      GeneticAlgorithm ga = new GeneticAlgorithm();
333      ga.PopulationSize.Value = 3;
334      ga.MaximumGenerations.Value = 1;
335      ga.Engine = new SequentialEngine.SequentialEngine();
336      throw new NotImplementedException("TODO: set ga properties correctly");
337
338      MetaOptimizationProblem metaOptimizationProblem = new MetaOptimizationProblem();
339      metaOptimizationProblem.Repetitions = new IntValue(metaProblemRepetitions);
340      GeneticAlgorithm metaLevelAlgorithm = GetSequentialMetaGA(metaOptimizationProblem);
341      ParameterConfigurationTree algorithmVc = SetupGAAlgorithm(typeof(GeneticAlgorithm), metaOptimizationProblem);
342      Stopwatch sw = new Stopwatch();
343
344      var algs = new List<IAlgorithm>();
345      for (int i = 0; i < 10000; i++) {
346        sw.Start();
347        GeneticAlgorithm clonedGa = (GeneticAlgorithm)ga.Clone();
348        clonedGa.Name = "CLONED GA";
349        algorithmVc.Parameterize(clonedGa);
350        algs.Add(clonedGa);
351        sw.Reset();
352        ContentManager.Save((IStorableContent)metaLevelAlgorithm, "alg_" + i + ".hl", true);
353        Console.WriteLine("Cloned alg #{0}", i);
354      }
355    }
356
357    private static void TestExecutionTimeUpdateInvervalPerformance() {
358      TableBuilder tb = new TableBuilder("Tasks", "Interval", "TotalExecutionTime", "AvgExecutionTime", "TimeElapsed", "TotalTimeElapsed", "Speedup", "ExecutionTimeChangedCount", "RealExecutionTimeUpdate(ms)");
359      int tasks = 4;
360      int repetitions = 3;
361
362      // warmup
363      RepeatExecuteParallel(3, 1, 1, tb);
364      tb.AppendRow("--", "--", "--", "--", "--", "--", "--", "--", "--");
365      RepeatExecuteParallel(repetitions, tasks, 1, tb);
366      RepeatExecuteParallel(repetitions, tasks, 2.5, tb);
367      RepeatExecuteParallel(repetitions, tasks, 5, tb);
368      RepeatExecuteParallel(repetitions, tasks, 10, tb);
369      RepeatExecuteParallel(repetitions, tasks, 25, tb);
370      RepeatExecuteParallel(repetitions, tasks, 50, tb);
371      RepeatExecuteParallel(repetitions, tasks, 100, tb);
372      RepeatExecuteParallel(repetitions, tasks, 250, tb);
373      RepeatExecuteParallel(repetitions, tasks, 500, tb);
374      RepeatExecuteParallel(repetitions, tasks, 1000, tb);
375      RepeatExecuteParallel(repetitions, tasks, 2500, tb);
376      RepeatExecuteParallel(repetitions, tasks, 5000, tb);
377
378      using (var sw = new StreamWriter("TestExecutionTimeUpdateInvervalPerformance.txt")) {
379        sw.Write(tb.ToString());
380      }
381    }
382
383    private static GeneticAlgorithm CreateGA() {
384      GeneticAlgorithm ga = new GeneticAlgorithm();
385      ga.Problem = new SingleObjectiveTestFunctionProblem() { ProblemSize = new IntValue(250) };
386      ga.Engine = new SequentialEngine.SequentialEngine();
387      ga.SetSeedRandomly.Value = false;
388      ga.Seed.Value = 0;
389      return ga;
390    }
391
392    private static void RepeatExecuteParallel(int repetitions, int tasks, double executionTimeUpdateIntervalMs, TableBuilder tb) {
393      for (int i = 0; i < repetitions; i++) {
394        ExecuteParallel(tasks, executionTimeUpdateIntervalMs, tb);
395        Console.Clear();
396        Console.WriteLine(tb.ToString());
397      }
398    }
399
400    private static void ExecuteParallel(int taskCount, double executionTimeUpdateIntervalMs, TableBuilder tb) {
401      Task<TimeSpan>[] tasks = new Task<TimeSpan>[taskCount];
402      EngineAlgorithm[] algs = new EngineAlgorithm[taskCount];
403      for (int i = 0; i < taskCount; i++) {
404        GeneticAlgorithm alg = CreateGA();
405        //((Engine)alg.Engine).ExecutionTimeUpdateInterval = TimeSpan.FromMilliseconds(executionTimeUpdateIntervalMs);
406        algs[i] = alg;
407      }
408      Console.WriteLine("Creating algs finished.");
409
410      for (int i = 0; i < taskCount; i++) {
411        tasks[i] = new Task<TimeSpan>((alg) => {
412          Console.WriteLine("Task {0} started.", Task.CurrentId);
413          var cancellationTokenSource = new CancellationTokenSource();
414
415          Stopwatch swx = new Stopwatch();
416          swx.Start();
417          ((EngineAlgorithm)alg).ExecutionTimeChanged += new EventHandler(Program_ExecutionTimeChanged);
418          ((EngineAlgorithm)alg).StartSync(cancellationTokenSource.Token);
419          ((EngineAlgorithm)alg).ExecutionTimeChanged -= new EventHandler(Program_ExecutionTimeChanged);
420          swx.Stop();
421          Console.WriteLine("Task {0} finished.", Task.CurrentId);
422          return swx.Elapsed;
423        }, algs[i]);
424      }
425      Console.WriteLine("Creating tasks finished.");
426      counter = 0;
427      Stopwatch sw = new Stopwatch();
428      sw.Start();
429      foreach (var task in tasks) task.Start();
430      Task.WaitAll(tasks);
431      sw.Stop();
432
433      if (!algs.All(alg => alg.ExecutionState == ExecutionState.Stopped))
434        throw new Exception("Not all algs stopped properly");
435
436      if (!algs.All(alg => ((DoubleValue)alg.Results["BestQuality"].Value).Value == ((DoubleValue)algs.First().Results["BestQuality"].Value).Value))
437        throw new Exception("Not all algs have the same resutls");
438
439      if (tb != null) {
440        double totalExecutionTimeMilliseconds = algs.Select(x => x.ExecutionTime.TotalMilliseconds).Sum();
441        double totalMilliseconds = tasks.Select(t => t.Result.TotalMilliseconds).Sum();
442        tb.AppendRow(
443          taskCount.ToString(),
444          executionTimeUpdateIntervalMs.ToString(),
445          TimeSpan.FromMilliseconds(totalExecutionTimeMilliseconds).ToString(),
446          TimeSpan.FromMilliseconds(totalExecutionTimeMilliseconds / taskCount).ToString(),
447          sw.Elapsed.ToString(),
448          TimeSpan.FromMilliseconds(totalMilliseconds).ToString(),
449          (totalMilliseconds / sw.ElapsedMilliseconds).ToString("0.00"),
450          counter.ToString(),
451          (totalExecutionTimeMilliseconds / counter).ToString("0.00"));
452      }
453      tasks = null;
454      algs = null;
455      GC.Collect();
456      Console.WriteLine("Test finished.");
457    }
458
459    private static int counter = 0;
460    static void Program_ExecutionTimeChanged(object sender, EventArgs e) {
461      System.Threading.Interlocked.Increment(ref counter);
462    }
463
464    private static void TestWaitAny() {
465      System.Random rand = new System.Random();
466      var tasks = new List<Task<int>>();
467      for (int i = 0; i < 10; i++) {
468        tasks.Add(Task.Factory.StartNew<int>((x) => {
469          int sleep = ((int)x - 10) * -1000;
470          Console.WriteLine("sleeping: {0} ms", sleep);
471          Thread.Sleep(0); // make context switch
472          Thread.Sleep(sleep);
473          return (int)x * (int)x;
474        }, i));
475      }
476
477      // --> WaitAll processes tasks lazy but in order.
478      Task.WaitAll();
479      foreach (var task in tasks) {
480        Console.WriteLine(task.Result);
481      }
482
483      // -> WaitAny processes any finished task first. but the finished task needs to be removed from list in order to process all tasks
484      //for (int i = 0; i < 10; i++) {
485      //  var tasksArray = tasks.ToArray();
486      //  var task = tasksArray[Task.WaitAny(tasksArray)];
487      //  Console.WriteLine(task.Result);
488      //  tasks.Remove(task);
489      //}
490
491      Console.WriteLine("Finished TestWaitAny");
492    }
493
494    private static void TestAlgorithmPerformanceIssue() {
495      Queue<TimeSpan> latestExecutionTimes = new Queue<TimeSpan>();
496      int size = 10;
497      var random = new Random.MersenneTwister(0);
498
499      GeneticAlgorithm ga = new GeneticAlgorithm();
500      ga.PopulationSize.Value = 5;
501      ga.MaximumGenerations.Value = 5;
502      ga.Engine = new SequentialEngine.SequentialEngine();
503      ga.Problem = new SingleObjectiveTestFunctionProblem();
504
505      //MetaOptimizationProblem metaOptimizationProblem = new MetaOptimizationProblem();
506      ////metaOptimizationProblem.Repetitions = new IntValue(metaProblemRepetitions);
507      //GeneticAlgorithm metaLevelAlgorithm = GetMetaGA(metaOptimizationProblem);
508      //ParameterConfigurationTree algorithmVc = SetupGAAlgorithm(typeof(GeneticAlgorithm), metaOptimizationProblem);
509      //algorithmVc.Randomize(random);
510      Stopwatch sw = new Stopwatch();
511
512      var algs = new Queue<IAlgorithm>(); // keep them in memory
513      // -> BINGO! -> .NET cannot hold more than 16 algorithms with their ThreadLocal<T> objects efficiently,
514      // so if they are kept in memory, runtime at the 17. execution drops significantly
515      // because creating ThreadLocal<T> takes all the runtime.
516      // when the algs are not stored in a list however this effect does not occur.
517
518
519      for (int i = 0; i < 10000; i++) {
520        GeneticAlgorithm clonedGa = (GeneticAlgorithm)ga.Clone();
521        clonedGa.Name = "CLONED GA";
522        //algorithmVc.Randomize(random);
523        //algorithmVc.Parameterize(clonedGa);
524        clonedGa.Prepare(true);
525        sw.Start();
526        algs.Enqueue(clonedGa);
527
528        var cancellationTokenSource = new CancellationTokenSource();
529        //if (algs.Count > 24)
530        //  algs.Dequeue();
531        clonedGa.StartSync(cancellationTokenSource.Token);
532        sw.Stop();
533        latestExecutionTimes.Enqueue(sw.Elapsed);
534        Console.WriteLine("{0}: {1} ({2})", i, sw.Elapsed, latestExecutionTimes.Count > size ? TimeSpan.FromMilliseconds(latestExecutionTimes.Average(t => t.TotalMilliseconds)).ToString() : "-");
535        if (latestExecutionTimes.Count > size) {
536          latestExecutionTimes.Dequeue();
537        }
538        sw.Reset();
539        //Console.ReadLine();
540      }
541    }
542
543    private static void TestTableBuilder() {
544      TableBuilder tb = new TableBuilder("column_1", "col2", "col3");
545      tb.AppendRow("1", "humpi", "0.23124");
546      tb.AppendRow("2", "sf", "0.23124");
547      tb.AppendRow("5", "humpi dampti", "0.224");
548      tb.AppendRow("10", "egon asdf", "0.4");
549      tb.AppendRow("15", "MichaelizcMultiVfds", "0.23124564");
550      Console.WriteLine(tb.ToString());
551    }
552
553    private static void TestToInfoString(IValueConfiguration algorithmVc) {
554      var random = new MersenneTwister();
555      Console.WriteLine(algorithmVc.ParameterInfoString);
556      algorithmVc.Randomize(random);
557      Console.WriteLine(algorithmVc.ParameterInfoString);
558      algorithmVc.Randomize(random);
559      Console.WriteLine(algorithmVc.ParameterInfoString);
560      algorithmVc.Randomize(random);
561    }
562
563    private static void TestCombinations() {
564      Console.WriteLine("IntRange 3-18:3");
565      IntValueRange intRange = new IntValueRange(new IntValue(3), new IntValue(18), new IntValue(3));
566      foreach (var val in intRange.GetCombinations()) {
567        Console.WriteLine(val);
568      }
569
570      Console.WriteLine("DoubleRange 1.0-2.5:0.5");
571      var dblRange = new DoubleValueRange(new DoubleValue(0.7), new DoubleValue(2.8), new DoubleValue(0.5));
572      foreach (var val in dblRange.GetCombinations()) {
573        Console.WriteLine(val);
574      }
575
576      Console.WriteLine("PercentRange 33%-66%:33%");
577      var pctRange = new PercentValueRange(new PercentValue(0.32), new PercentValue(0.98), new PercentValue(0.33));
578      foreach (var val in pctRange.GetCombinations()) {
579        Console.WriteLine(val);
580      }
581    }
582
583    private static void TestCombinations3() {
584      Node root = new Node("root");
585      root.ChildNodes.Add(new Node("root.n1"));
586      root.ChildNodes.Add(new Node("root.n2"));
587      Node n3 = new Node("root.n3");
588      n3.ChildNodes.Add(new Node("root.n3.n1"));
589      n3.ChildNodes.Add(new Node("root.n3.n2"));
590      root.ChildNodes.Add(n3);
591
592      Console.WriteLine(root.ToString());
593      Console.WriteLine("--");
594      int cnt = 0;
595      var enumerator = new NodeEnumerator(root);
596      enumerator.Reset();
597      while (enumerator.MoveNext()) {
598        Console.WriteLine(enumerator.Current.ToString());
599        cnt++;
600      }
601      Console.WriteLine("count: " + cnt);
602    }
603
604    private static void TestEnumeratorCollectionEnumerator() {
605      IEnumerable<int> list1 = new int[] { 1, 2, 3, 4, 5 };
606      IEnumerable<int> list2 = new int[] { 10, 20, 30 };
607      IEnumerable<int> list3 = new int[] { 300, 400, 500 };
608
609      var enumerators = new List<IEnumerator>();
610
611      EnumeratorCollectionEnumerator<int> enu = new EnumeratorCollectionEnumerator<int>();
612      enu.AddEnumerator(list1.GetEnumerator());
613      enu.AddEnumerator(list2.GetEnumerator());
614      enu.AddEnumerator(list3.GetEnumerator());
615      enu.Reset();
616      while (enu.MoveNext()) {
617        Console.WriteLine(enu.Current);
618      }
619    }
620
621    private static void TestCombinations4() {
622      GeneticAlgorithm ga = new GeneticAlgorithm();
623      ga.Problem = new SingleObjectiveTestFunctionProblem();
624      ga.Engine = new SequentialEngine.SequentialEngine();
625
626      ParameterConfigurationTree vc = new ParameterConfigurationTree(ga, new SingleObjectiveTestFunctionProblem());
627
628      ConfigurePopulationSize(vc, 20, 100, 20);
629      //ConfigureMutationRate(vc, 0.10, 0.60, 0.10);
630      ConfigureMutationOperator(vc);
631      //ConfigureSelectionOperator(vc, true);
632
633      int count = 0;
634      IEnumerator enumerator = new ParameterCombinationsEnumerator(vc);
635      enumerator.Reset();
636      while (enumerator.MoveNext()) {
637        var current = (IValueConfiguration)enumerator.Current;
638        count++;
639        Console.WriteLine(current.ParameterInfoString);
640      }
641      Console.WriteLine("You are about to create {0} algorithms.", count);
642
643      Experiment experiment = vc.GenerateExperiment(ga);
644      //foreach (var opt in experiment.Optimizers) {
645      //  Console.WriteLine(opt.Name);
646      //}
647
648      experiment.Prepare();
649      experiment.Start();
650
651      while (experiment.ExecutionState != ExecutionState.Stopped) {
652        Thread.Sleep(500);
653      }
654    }
655
656    private static void TestOperators() {
657      IRandom random = new MersenneTwister();
658
659      var doubleRange = new DoubleValueRange(new DoubleValue(0), new DoubleValue(1), new DoubleValue(0.001));
660      using (var sw = new StreamWriter("out-DoubleValue.txt")) {
661        for (int i = 0; i < 10000; i++) {
662          var val = new DoubleValue(0.0);
663          NormalDoubleValueManipulator.ApplyStatic(random, val, doubleRange);
664
665          sw.WriteLine(val);
666          Debug.Assert(val.Value >= 0.0 && val.Value <= 1.0);
667        }
668      }
669
670      var percentRange = new PercentValueRange(new PercentValue(0), new PercentValue(1), new PercentValue(0.001));
671      using (var sw = new StreamWriter("out-PercentValue.txt")) {
672        for (int i = 0; i < 10000; i++) {
673          var val = new PercentValue(0.5);
674          NormalDoubleValueManipulator.ApplyStatic(random, val, percentRange.AsDoubleValueRange());
675          sw.WriteLine(val);
676        }
677      }
678
679      var intRange = new IntValueRange(new IntValue(0), new IntValue(100), new IntValue(1));
680      using (var sw = new StreamWriter("out-IntValue.txt")) {
681        for (int i = 0; i < 10000; i++) {
682          var val = new IntValue(50);
683          UniformIntValueManipulator.ApplyStatic(random, val, intRange);
684          sw.WriteLine(val);
685        }
686      }
687
688      using (var sw = new StreamWriter("out-DoubleValueCrossed.txt")) {
689        for (int i = 0; i < 10000; i++) {
690          var val1 = new DoubleValue(0.0);
691          var val2 = new DoubleValue(0.5);
692          var val3 = NormalDoubleValueCrossover.ApplyStatic(random, val1, val2, doubleRange);
693
694          sw.WriteLine(val3);
695          Debug.Assert(val3.Value >= 0.0 && val3.Value <= 1.0);
696        }
697      }
698
699      Console.ReadLine();
700    }
701
702    private static void TestTypeDiscovery() {
703      var items = ApplicationManager.Manager.GetInstances(typeof(DoubleArray)).ToArray();
704
705      foreach (var item in items) {
706        Console.WriteLine(item.ToString());
707      }
708    }
709
710    private static void TestMemoryLeak(GeneticAlgorithm metaLevelAlgorithm) {
711      IValueConfiguration algorithmVc = ((MetaOptimizationProblem)metaLevelAlgorithm.Problem).ParameterConfigurationTree;
712
713      Console.WriteLine("Starting Memory Test...");
714      Console.ReadLine();
715
716      var clones = new List<object>();
717      for (int i = 0; i < 1000; i++) {
718        var clone = algorithmVc.Clone();
719        clones.Add(clone);
720      }
721
722      Console.WriteLine("Finished. Now GC...");
723      Console.ReadLine();
724
725      GC.Collect();
726
727      Console.WriteLine("Finished!");
728      Console.ReadLine();
729    }
730
731    private static GeneticAlgorithm GetSequentialMetaGA(MetaOptimizationProblem metaOptimizationProblem) {
732      GeneticAlgorithm metaLevelAlgorithm = new GeneticAlgorithm();
733      metaLevelAlgorithm.PopulationSize.Value = metaAlgorithmPopulationSize;
734      metaLevelAlgorithm.MaximumGenerations.Value = metaAlgorithmMaxGenerations;
735
736      metaLevelAlgorithm.Problem = metaOptimizationProblem;
737      metaLevelAlgorithm.Engine = new SequentialEngine.SequentialEngine();
738
739      metaLevelAlgorithm.Mutator = ((OptionalConstrainedValueParameter<IManipulator>)((IAlgorithm)metaLevelAlgorithm).Parameters["Mutator"]).ValidValues.Where(x => x.GetType() == typeof(ParameterConfigurationOnePositionsManipulator)).Single();
740      //metaLevelAlgorithm.Mutator = ((OptionalConstrainedValueParameter<IManipulator>)((IAlgorithm)metaLevelAlgorithm).Parameters["Mutator"]).ValidValues.Where(x => x.GetType() == typeof(ParameterConfigurationAllPositionsManipulator)).Single();
741
742      metaLevelAlgorithm.MutationProbability.Value = metaAlgorithmMutationProbability;
743      //metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter<ISelector>)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(LinearRankSelector)).Single();
744      //metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter<ISelector>)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(TournamentSelector)).Single();
745      //metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter<ISelector>)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(GenderSpecificSelector)).Single();
746      //metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter<ISelector>)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(BestSelector)).Single();
747      metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter<ISelector>)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(TournamentSelector)).Single();
748
749      metaLevelAlgorithm.SetSeedRandomly.Value = false;
750      //metaLevelAlgorithm.Seed.Value = new MersenneTwister().Next(0, 1000000);
751      metaLevelAlgorithm.Seed.Value = 527875;
752
753      return metaLevelAlgorithm;
754    }
755
756    private static GeneticAlgorithm GetParallelMetaGA(MetaOptimizationProblem metaOptimizationProblem) {
757      GeneticAlgorithm metaLevelAlgorithm = GetSequentialMetaGA(metaOptimizationProblem);
758      metaLevelAlgorithm.Engine = new ParallelEngine.ParallelEngine();
759      return metaLevelAlgorithm;
760    }
761
762    //private static GeneticAlgorithm GetHiveParallelMetaGA(MetaOptimizationProblem metaOptimizationProblem) {
763    //  GeneticAlgorithm metaLevelAlgorithm = GetParallelMetaGA(metaOptimizationProblem);
764    //  metaLevelAlgorithm.Engine = new HiveEngine.HiveEngine();
765    //  ServiceLocator.Instance.ClientFacadePool.UserName = "cneumuel";
766    //  ServiceLocator.Instance.ClientFacadePool.Password = "cneumuel";
767    //  ServiceLocator.Instance.StreamedClientFacadePool.UserName = "cneumuel";
768    //  ServiceLocator.Instance.StreamedClientFacadePool.Password = "cneumuel";
769    //  return metaLevelAlgorithm;
770    //}
771
772    private static EvolutionStrategy GetMetaES(MetaOptimizationProblem metaOptimizationProblem) {
773      EvolutionStrategy metaLevelAlgorithm = new EvolutionStrategy();
774      metaLevelAlgorithm.PopulationSize.Value = metaAlgorithmPopulationSize;
775      metaLevelAlgorithm.MaximumGenerations.Value = metaAlgorithmMaxGenerations;
776
777      metaLevelAlgorithm.Problem = metaOptimizationProblem;
778      metaLevelAlgorithm.Engine = new SequentialEngine.SequentialEngine();
779
780      metaLevelAlgorithm.Mutator = ((OptionalConstrainedValueParameter<IManipulator>)((IAlgorithm)metaLevelAlgorithm).Parameters["Mutator"]).ValidValues.Last();
781
782      return metaLevelAlgorithm;
783    }
784
785    private static ParameterConfigurationTree SetupGAAlgorithm(Type baseLevelAlgorithmType, MetaOptimizationProblem metaOptimizationProblem) {
786      metaOptimizationProblem.AlgorithmType.Value = baseLevelAlgorithmType;
787
788      //metaOptimizationProblem.ProblemType.Value = typeof(SingleObjectiveTestFunctionProblem);
789      //metaOptimizationProblem.Problems.Clear();
790      //metaOptimizationProblem.Problems.Add(new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem() {
791      //  Evaluator = new GriewankEvaluator(),
792      //  ProblemSize = new IntValue(2)
793      //});
794      //metaOptimizationProblem.Problems.Add(new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem() {
795      //  Evaluator = new GriewankEvaluator(),
796      //  ProblemSize = new IntValue(50)
797      //});
798      //metaOptimizationProblem.Problems.Add(new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem() {
799      //  Evaluator = new GriewankEvaluator(),
800      //  ProblemSize = new IntValue(500)
801      //});
802
803      //metaOptimizationProblem.ProblemType.Value = typeof(SymbolicRegressionSingleObjectiveProblem);
804      //metaOptimizationProblem.Maximization.Value = true;
805
806      // tower problem
807      //metaOptimizationProblem.ImportAlgorithm((IAlgorithm)ContentManager.Load("Genetic Programming - Symbolic Regression 3.4_scaled.hl"));
808      //metaOptimizationProblem.Maximization.Value = true;
809
810      // tsp
811      metaOptimizationProblem.ProblemType.Value = typeof(TravelingSalesmanProblem);
812
813      ParameterConfigurationTree algorithmVc = metaOptimizationProblem.ParameterConfigurationTree;
814      ((IntValue)algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MaximumGenerations").ActualValue.Value).Value = baseAlgorithmMaxGenerations;
815      ((IntValue)algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "PopulationSize").ActualValue.Value).Value = baseAlgorithmPopulationSize;
816
817      ConfigurePopulationSize(algorithmVc, 10, 100, 1);
818      ConfigureMutationRate(algorithmVc, 0.0, 1.0, 0.01);
819      ConfigureMutationOperator(algorithmVc);
820      ConfigureElites(algorithmVc, 0, 10, 1);
821      ConfigureSelectionOperator(algorithmVc, true);
822
823      //ConfigureSymbolicExpressionGrammar(algorithmVc);
824
825      return algorithmVc;
826    }
827
828    private static void ConfigureSymbolicExpressionGrammar(ParameterConfigurationTree vc) {
829      var pc = vc.ProblemConfiguration.ParameterConfigurations.Single(x => x.Name == "SymbolicExpressionTreeGrammar");
830      pc.Optimize = true;
831
832      SymbolicExpressionGrammarValueConfiguration symbolicExpressionGrammarVc = null;
833      foreach (var valconf in pc.ValueConfigurations) {
834        if (valconf.ActualValue.Value.ItemName != "TypeCoherentExpressionGrammar") {
835          pc.ValueConfigurations.SetItemCheckedState(valconf, false);
836        } else {
837          symbolicExpressionGrammarVc = valconf as SymbolicExpressionGrammarValueConfiguration;
838        }
839      }
840
841      ConfigureSymbolicExpressionGrammarVc(symbolicExpressionGrammarVc);
842    }
843
844    private static void ConfigureSymbolicExpressionGrammarVc(SymbolicExpressionGrammarValueConfiguration symbolicExpressionGrammarVc) {
845      symbolicExpressionGrammarVc.Optimize = true;
846
847      SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Addition", 1.0);
848      SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Subtraction", 1.0);
849      SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Multiplication", 1.0);
850      SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Division", 1.0);
851      SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Average", 1.0);
852
853      SetInitialFrequencyValue(symbolicExpressionGrammarVc, "IfThenElse", 0.0);
854      SetInitialFrequencyValue(symbolicExpressionGrammarVc, "GreaterThan", 0.0);
855      SetInitialFrequencyValue(symbolicExpressionGrammarVc, "LessThan", 0.0);
856      SetInitialFrequencyValue(symbolicExpressionGrammarVc, "And", 0.0);
857      SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Or", 0.0);
858      SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Not", 0.0);
859
860      SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Sine", 0.0);
861      SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Cosine", 0.0);
862      SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Tangent", 0.0);
863
864      OptimizeInitialFrequency(symbolicExpressionGrammarVc, "Logarithm", "InitialFrequency", 0.0, 5.0, 0.01);
865      OptimizeInitialFrequency(symbolicExpressionGrammarVc, "Power", "InitialFrequency", 0.0, 5.0, 0.01);
866      OptimizeInitialFrequency(symbolicExpressionGrammarVc, "Root", "InitialFrequency", 0.0, 5.0, 0.01);
867
868      OptimizeInitialFrequency(symbolicExpressionGrammarVc, "Variable", "WeightSigma", 0.01, 10.0, 0.01);
869      OptimizeInitialFrequency(symbolicExpressionGrammarVc, "Variable", "WeightManipulatorSigma", 0.01, 10.0, 0.01);
870      OptimizeInitialFrequency(symbolicExpressionGrammarVc, "Variable", "MultiplicativeWeightManipulatorSigma", 0.01, 10.0, 0.01);
871
872      OptimizeInitialFrequency(symbolicExpressionGrammarVc, "Constant", "ManipulatorSigma", 0.01, 10.0, 0.01);
873      OptimizeInitialFrequency(symbolicExpressionGrammarVc, "Constant", "MultiplicativeManipulatorSigma", 0.01, 10.0, 0.01);
874    }
875
876    private static void SetInitialFrequencyValue(SymbolicExpressionGrammarValueConfiguration symbolicExpressionGrammarVc, string symbolName, double value) {
877      ((Symbol)symbolicExpressionGrammarVc.ParameterConfigurations.Single(x => x.Name == symbolName).ActualValue.Value).InitialFrequency = value;
878    }
879
880    private static void OptimizeInitialFrequency(SymbolicExpressionGrammarValueConfiguration symbolicExpressionGrammarVc, string symbolName, string parameterName, double lower, double upper, double step) {
881      var pc = symbolicExpressionGrammarVc.ParameterConfigurations.Single(x => x.Name == symbolName);
882      pc.Optimize = true;
883      var vc = (SymbolValueConfiguration)pc.ValueConfigurations.Single();
884      var parameterPc = vc.ParameterConfigurations.Single(x => x.Name == parameterName);
885      parameterPc.Optimize = true;
886      parameterPc.ValueConfigurations.Clear();
887      var rvc = new RangeValueConfiguration(new DoubleValue(5.0), typeof(DoubleValue));
888      rvc.Optimize = true;
889      ((DoubleValueRange)rvc.RangeConstraint).LowerBound.Value = lower;
890      ((DoubleValueRange)rvc.RangeConstraint).UpperBound.Value = upper;
891      ((DoubleValueRange)rvc.RangeConstraint).StepSize.Value = step;
892      parameterPc.ValueConfigurations.Add(rvc);
893    }
894
895    private static void TestConfiguration(ParameterConfigurationTree algorithmVc, Type baseLevelAlgorithmType, IProblem problem) {
896      IRandom rand = new FastRandom(0);
897      var baseLevelAlgorithm = (GeneticAlgorithm)MetaOptimizationUtil.CreateParameterizedAlgorithmInstance(algorithmVc, baseLevelAlgorithmType, problem);
898
899      // set random values
900      for (int i = 0; i < 10; i++) {
901        var clonedVc = (ParameterConfigurationTree)algorithmVc.Clone();
902        GeneticAlgorithm newAlg = (GeneticAlgorithm)baseLevelAlgorithm.Clone();
903        clonedVc.Randomize(rand);
904        clonedVc.Parameterize(newAlg);
905        Console.WriteLine(string.Format("PopSize: original: {0}, randomized: {1}", baseLevelAlgorithm.PopulationSize, newAlg.PopulationSize));
906        Console.WriteLine(string.Format("MutRate: original: {0}, randomized: {1}", baseLevelAlgorithm.MutationProbability, newAlg.MutationProbability));
907        Console.WriteLine(string.Format("MutOp: original: {0}, randomized: {1}", baseLevelAlgorithm.Mutator, newAlg.Mutator));
908        Console.WriteLine(string.Format("SelOp: original: {0}, randomized: {1}", baseLevelAlgorithm.Selector, newAlg.Selector));
909        //Console.WriteLine(string.Format("GrSi: original: {0}, randomized: {1}", "?", ((TournamentSelector)newAlg.Selector).GroupSizeParameter.Value));
910        Console.WriteLine("---");
911      }
912
913      Console.WriteLine("=======================");
914      algorithmVc.Randomize(rand);
915      algorithmVc.Parameterize(baseLevelAlgorithm);
916      // mutate
917      for (int i = 0; i < 10; i++) {
918        var clonedVc = (ParameterConfigurationTree)algorithmVc.Clone();
919        GeneticAlgorithm newAlg = (GeneticAlgorithm)baseLevelAlgorithm.Clone();
920        ParameterConfigurationManipulator.Apply(rand, clonedVc, new UniformIntValueManipulator(), new NormalDoubleValueManipulator());
921        clonedVc.Parameterize(newAlg);
922
923        Console.WriteLine(string.Format("PopSize: original: {0}, mutated: {1}", baseLevelAlgorithm.PopulationSize, newAlg.PopulationSize));
924        Console.WriteLine(string.Format("MutRate: original: {0}, mutated: {1}", baseLevelAlgorithm.MutationProbability, newAlg.MutationProbability));
925        Console.WriteLine(string.Format("MutOp: original: {0}, mutated: {1}", baseLevelAlgorithm.Mutator, newAlg.Mutator));
926        Console.WriteLine(string.Format("SelOp: original: {0}, mutated: {1}", baseLevelAlgorithm.Selector, newAlg.Selector));
927        //Console.WriteLine(string.Format("GrSi: original: {0}, mutated: {1}", ((TournamentSelector)baseLevelAlgorithm.Selector).GroupSizeParameter.Value, ((TournamentSelector)newAlg.Selector).GroupSizeParameter.Value));
928        Console.WriteLine("---");
929      }
930
931      Console.WriteLine("=======================");
932      // cross
933      for (int i = 0; i < 10; i++) {
934        var clonedVc1 = (ParameterConfigurationTree)algorithmVc.Clone();
935        var clonedVc2 = (ParameterConfigurationTree)algorithmVc.Clone();
936
937        GeneticAlgorithm first = (GeneticAlgorithm)baseLevelAlgorithm.Clone();
938        GeneticAlgorithm second = (GeneticAlgorithm)baseLevelAlgorithm.Clone();
939
940        clonedVc1.Randomize(rand);
941        clonedVc1.Parameterize(first);
942
943        clonedVc2.Randomize(rand);
944        clonedVc2.Parameterize(second);
945
946        var popSizeBefore = first.PopulationSize.Value;
947        var mutRateBefore = first.MutationProbability.Value;
948        var mutOpBefore = first.Mutator;
949        var selOpBefore = first.Selector;
950        //var groupSizeBefore = ((TournamentSelector)first.Selector).GroupSizeParameter.Value.Value;
951
952        //clonedVc1.Cross(clonedVc2, rand); todo
953
954        ParameterConfigurationCrossover.Apply(rand, clonedVc1, clonedVc2, new DiscreteIntValueCrossover(), new AverageDoubleValueCrossover());
955        clonedVc1.Parameterize(first);
956
957        Console.WriteLine(string.Format("PopSize: first: {0}, second: {1}, crossed: {2}", popSizeBefore, second.PopulationSize, first.PopulationSize));
958        Console.WriteLine(string.Format("MutRate: first: {0}, second: {1}, crossed: {2}", mutRateBefore, second.MutationProbability, first.MutationProbability));
959        Console.WriteLine(string.Format("MutOp: first: {0}, second: {1}, crossed: {2}", mutOpBefore, second.Mutator, first.Mutator));
960        Console.WriteLine(string.Format("SelOp: first: {0}, second: {1}, crossed: {2}", selOpBefore, second.Selector, first.Selector));
961        //Console.WriteLine(string.Format("GrSi: first: {0}, second: {1}, crossed: {2}", groupSizeBefore, ((TournamentSelector)second.Selector).GroupSizeParameter.Value, ((TournamentSelector)first.Selector).GroupSizeParameter.Value));
962        Console.WriteLine("---");
963      }
964      Console.WriteLine("=======================");
965    }
966
967    private static void ConfigureMutationOperator(ParameterConfigurationTree algorithmVc) {
968      var mutationOperator = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "Mutator").SingleOrDefault();
969      mutationOperator.Optimize = true;
970
971      // uncheck multiMutator to avoid Michalewicz issue
972      //var multiMutator = mutationOperator.ValueConfigurations.Where(x => x.ActualValue.Value != null && x.ActualValue.Value.ItemName.StartsWith("Multi")).SingleOrDefault();
973      //if (multiMutator != null) {
974      //  mutationOperator.ValueConfigurations.SetItemCheckedState(multiMutator, false);
975      //}
976
977      // add another normal - don't do this with 'new', because ActualNames will not be set correctly. It should be copied from an existing one
978      // mutationOperator.ValueConfigurations.Add(new ParameterizedValueConfiguration(new NormalAllPositionsManipulator(), typeof(NormalAllPositionsManipulator)), true);
979    }
980
981    private static void ConfigureSelectionOperator(ParameterConfigurationTree algorithmVc, bool configureTournamenSize) {
982      var selectionOperatorPc = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "Selector").SingleOrDefault();
983      selectionOperatorPc.Optimize = true;
984
985      foreach (var vc in selectionOperatorPc.ValueConfigurations) {
986        if (vc.ActualValue.ValueDataType == typeof(TournamentSelector)) {
987          selectionOperatorPc.ValueConfigurations.SetItemCheckedState(vc, true);
988          if (configureTournamenSize) {
989            vc.Optimize = true;
990            ConfigureTournamentGroupSize((ParameterizedValueConfiguration)vc);
991          }
992        } else if (vc.ActualValue.ValueDataType == typeof(RandomSelector)) {
993          selectionOperatorPc.ValueConfigurations.SetItemCheckedState(vc, true);
994        } else {
995          selectionOperatorPc.ValueConfigurations.SetItemCheckedState(vc, true);
996        }
997      }
998    }
999
1000    private static void ConfigureTournamentGroupSize(ParameterizedValueConfiguration tournamentVc) {
1001      var groupSizePc = tournamentVc.ParameterConfigurations.Where(x => x.ParameterName == "GroupSize").SingleOrDefault();
1002      groupSizePc.Optimize = true;
1003      var groupSizeVc = (RangeValueConfiguration)groupSizePc.ValueConfigurations.First();
1004      groupSizeVc.Optimize = true;
1005      groupSizeVc.RangeConstraint.LowerBound = new IntValue(0);
1006      groupSizeVc.RangeConstraint.UpperBound = new IntValue(10);
1007      groupSizeVc.RangeConstraint.StepSize = new IntValue(1);
1008    }
1009
1010    private static void ConfigurePopulationSize(ParameterConfigurationTree algorithmVc, int lower, int upper, int stepsize) {
1011      var populationSizePc = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "PopulationSize").SingleOrDefault();
1012      populationSizePc.Optimize = true;
1013      var populationSizeVc = (RangeValueConfiguration)populationSizePc.ValueConfigurations.First();
1014      populationSizeVc.Optimize = true;
1015      populationSizeVc.RangeConstraint.LowerBound = new IntValue(lower);
1016      populationSizeVc.RangeConstraint.UpperBound = new IntValue(upper);
1017      populationSizeVc.RangeConstraint.StepSize = new IntValue(stepsize);
1018    }
1019
1020    private static void ConfigureMutationRate(ParameterConfigurationTree algorithmVc, double lower, double upper, double stepsize) {
1021      var mutationRatePc = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "MutationProbability").SingleOrDefault();
1022      mutationRatePc.Optimize = true;
1023      var mutationRateVc = (RangeValueConfiguration)mutationRatePc.ValueConfigurations.First();
1024      mutationRateVc.Optimize = true;
1025      mutationRateVc.RangeConstraint.LowerBound = new PercentValue(lower);
1026      mutationRateVc.RangeConstraint.UpperBound = new PercentValue(upper);
1027      mutationRateVc.RangeConstraint.StepSize = new PercentValue(stepsize);
1028    }
1029
1030    private static void ConfigureElites(ParameterConfigurationTree algorithmVc, int from, int to, int stepSize) {
1031      var elitesPc = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "Elites").SingleOrDefault();
1032      elitesPc.Optimize = true;
1033      var elitesVc = (RangeValueConfiguration)elitesPc.ValueConfigurations.First();
1034      elitesVc.Optimize = true;
1035      elitesVc.RangeConstraint.LowerBound = new IntValue(from);
1036      elitesVc.RangeConstraint.UpperBound = new IntValue(to);
1037      elitesVc.RangeConstraint.StepSize = new IntValue(stepSize);
1038    }
1039
1040    private static void TestOptimization(EngineAlgorithm metaLevelAlgorithm) {
1041      string path = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "Results");
1042      if (!Directory.Exists(path))
1043        Directory.CreateDirectory(path);
1044      string id = DateTime.Now.ToString("yyyy.MM.dd - HH;mm;ss,ffff");
1045      string resultPath = Path.Combine(path, string.Format("{0} - Result.hl", id));
1046      string outputPath = Path.Combine(path, string.Format("{0} - Console.txt", id));
1047
1048      ContentManager.Save((IStorableContent)metaLevelAlgorithm, resultPath + "-before.hl", true);
1049
1050      using (var sw = new StreamWriter(outputPath)) {
1051        sw.AutoFlush = true;
1052
1053        StringBuilder sb1 = new StringBuilder();
1054        sb1.AppendFormat("Meta.PopulationSize: {0}\n", metaAlgorithmPopulationSize);
1055        sb1.AppendFormat("Meta.MaxGenerations: {0}\n", metaAlgorithmMaxGenerations);
1056        sb1.AppendFormat("Meta.Repetitions   : {0}\n", metaProblemRepetitions);
1057        sb1.AppendFormat("Meta.MutProb       : {0}\n", ((GeneticAlgorithm)metaLevelAlgorithm).MutationProbability.Value);
1058        sb1.AppendFormat("Meta.Seed          : {0}\n", ((GeneticAlgorithm)metaLevelAlgorithm).Seed.Value);
1059        sb1.AppendFormat("Base.MaxGenerations: {0}\n", baseAlgorithmMaxGenerations);
1060
1061        sb1.AppendLine("Problems:");
1062        foreach (var prob in ((MetaOptimizationProblem)metaLevelAlgorithm.Problem).Problems) {
1063          sb1.Append(prob.Name);
1064          var sotf = prob as SingleObjectiveTestFunctionProblem;
1065          if (sotf != null) {
1066            sb1.AppendFormat(" {0}", sotf.ProblemSize.Value);
1067          }
1068          sb1.AppendLine();
1069        }
1070        sw.WriteLine(sb1.ToString());
1071        Console.WriteLine(sb1.ToString());
1072        metaLevelAlgorithm.Stopped += new EventHandler(metaLevelAlgorithm_Stopped);
1073        metaLevelAlgorithm.Paused += new EventHandler(metaLevelAlgorithm_Paused);
1074        metaLevelAlgorithm.ExceptionOccurred += new EventHandler<EventArgs<Exception>>(metaLevelAlgorithm_ExceptionOccurred);
1075
1076        metaLevelAlgorithm.Start();
1077        int i = 0;
1078        int currentGeneration = -1;
1079        do {
1080          Thread.Sleep(1000);
1081          if (metaLevelAlgorithm.Results.ContainsKey("Generations") && ((IntValue)metaLevelAlgorithm.Results["Generations"].Value).Value != currentGeneration) {
1082            while (metaLevelAlgorithm.Results.Count < 6) Thread.Sleep(1000);
1083            StringBuilder sb = new StringBuilder();
1084            sb.AppendLine(DateTime.Now.ToLongTimeString());
1085            sb.AppendLine("=================================");
1086
1087            sb.AppendLine(metaLevelAlgorithm.ExecutionState.ToString());
1088            ResultCollection rsClone = null;
1089            while (rsClone == null) {
1090              try {
1091                rsClone = (ResultCollection)metaLevelAlgorithm.Results.Clone();
1092              }
1093              catch { }
1094            }
1095            foreach (var result in rsClone) {
1096              sb.AppendLine(result.ToString());
1097              if (result.Name == "Population") {
1098                RunCollection rc = (RunCollection)result.Value;
1099                var orderedRuns = rc.OrderBy(x => x.Results["AverageQualityNormalized"]);
1100
1101                //TableBuilder tb = new TableBuilder("QNorm", "Qualities"/*, "PoSi"*/ /*,"MutRa"*/ /*,"Eli", "SelOp",*/ /*"MutOp"*//*, "NrSelSubScopes"*/);
1102                //foreach (IRun run in orderedRuns) {
1103                //  //string selector;
1104                //  //if (run.Parameters["Selector"] is TournamentSelector) {
1105                //  //  selector = string.Format("{0} ({1})", run.Parameters["Selector"].ToString(), ((TournamentSelector)run.Parameters["Selector"]).GroupSizeParameter.Value.ToString());
1106                //  //} else {
1107                //  //  selector = string.Format("{0}", run.Parameters["Selector"].ToString());
1108                //  //}
1109
1110                //  tb.AppendRow(
1111                //    ((DoubleValue)run.Results["AverageQualityNormalized"]).Value.ToString("#0.0000")
1112                //    ,((DoubleArray)run.Results["RunsAverageQualities"]).ToString()
1113                //    //,((IntValue)run.Parameters["PopulationSize"]).Value.ToString()
1114                //    //,((DoubleValue)run.Parameters["MutationProbability"]).Value.ToString("0.0000")
1115                //    //,((IntValue)run.Parameters["Elites"]).Value.ToString()
1116                //    //,Shorten(selector, 20)
1117                //    //,Shorten(run.Parameters.ContainsKey("Mutator") ? run.Parameters["Mutator"].ToString() : "null", 40)
1118                //    //,((ISelector)run.Parameters["Selector"]).NumberOfSelectedSubScopesParameter.Value.ToString()
1119                //    );
1120                //}
1121                //sb.AppendLine(tb.ToString());
1122
1123                var tb = new TableBuilder("QNorm", "Qualities", "StdDevs", "Evaluations", "Parameters");
1124                foreach (IRun run in orderedRuns) {
1125                  tb.AppendRow(
1126                    ((DoubleValue)run.Results["AverageQualityNormalized"]).Value.ToString("#0.0000")
1127                    , ((DoubleArray)run.Results["RunsAverageQualities"]).ToString()
1128                    , ((DoubleArray)run.Results["RunsQualityStandardDeviations"]).ToString()
1129                    , ((DoubleArray)run.Results["RunsAverageEvaluatedSolutions"]).ToString()
1130                    , run.Name
1131                    );
1132                }
1133                sb.AppendLine(tb.ToString());
1134              }
1135            } // foreach
1136            //Console.Clear();
1137            Console.WriteLine(sb.ToString());
1138            sw.WriteLine(sb.ToString());
1139            currentGeneration = ((IntValue)metaLevelAlgorithm.Results["Generations"].Value).Value;
1140          } // if
1141          //if (i % 30 == 0) GC.Collect();
1142          i++;
1143        } while (metaLevelAlgorithm.ExecutionState != ExecutionState.Stopped);
1144      }
1145
1146      Console.WriteLine();
1147      Console.WriteLine("Storing...");
1148
1149      ContentManager.Save((IStorableContent)metaLevelAlgorithm, resultPath, true);
1150      Console.WriteLine("Finished");
1151    }
1152
1153    private static void metaLevelAlgorithm_ExceptionOccurred(object sender, EventArgs<Exception> e) {
1154      Console.WriteLine("metaLevelAlgorithm_ExceptionOccurred");
1155      Console.WriteLine(e.Value.ToString());
1156      if (e.Value.InnerException != null) {
1157        Console.WriteLine(e.Value.InnerException.ToString());
1158      }
1159    }
1160
1161    private static void metaLevelAlgorithm_Paused(object sender, EventArgs e) {
1162      Console.WriteLine("metaLevelAlgorithm_Paused");
1163    }
1164
1165    private static void metaLevelAlgorithm_Stopped(object sender, EventArgs e) {
1166      Console.WriteLine("metaLevelAlgorithm_Stopped");
1167    }
1168
1169    private static void TestShorten() {
1170      int n = 8;
1171      Console.WriteLine(Shorten("1", n));
1172      Console.WriteLine(Shorten("12", n));
1173      Console.WriteLine(Shorten("123", n));
1174      Console.WriteLine(Shorten("1234", n));
1175      Console.WriteLine(Shorten("12345", n));
1176      Console.WriteLine(Shorten("123456", n));
1177      Console.WriteLine(Shorten("1234567", n));
1178      Console.WriteLine(Shorten("12345678", n));
1179      Console.WriteLine(Shorten("123456789", n));
1180      Console.WriteLine(Shorten("1234567890", n));
1181      Console.WriteLine(Shorten("12345678901", n));
1182    }
1183
1184    private static string Shorten(string s, int n) {
1185      string placeholder = "..";
1186      if (s.Length <= n) return s;
1187      int len = n / 2 - placeholder.Length / 2;
1188      string start = s.Substring(0, len);
1189      string end = s.Substring(s.Length - len, len);
1190      return start + placeholder + end;
1191    }
1192
1193    private static void TestIntSampling() {
1194      System.Random rand = new System.Random();
1195      int lower = 10;
1196      int upper = 20;
1197      int stepsize = 1;
1198      for (int i = 0; i < 100; i++) {
1199        int val;
1200        do {
1201          val = rand.Next(lower / stepsize, upper / stepsize + 1) * stepsize;
1202        } while (val < lower || val > upper);
1203        Console.WriteLine(val);
1204      }
1205    }
1206
1207    private static void TestDoubleSampling() {
1208      var random = new MersenneTwister();
1209      double lower = 0;
1210      double upper = 1;
1211      double stepsize = 0.0000001;
1212      DoubleValueRange range = new DoubleValueRange(new DoubleValue(lower), new DoubleValue(upper), new DoubleValue(stepsize));
1213
1214      using (var sw = new StreamWriter("out-DoubleValue.txt")) {
1215        for (int i = 0; i < 10000; i++) {
1216          var val = range.GetRandomValue(random);
1217          Debug.Assert(val.Value >= lower && val.Value <= upper);
1218          sw.WriteLine(val);
1219        }
1220      }
1221    }
1222
1223    private static IEnumerable<IItem> GetValidValues(IValueParameter valueParameter) {
1224      return ApplicationManager.Manager.GetInstances(valueParameter.DataType).Select(x => (IItem)x).OrderBy(x => x.ItemName);
1225    }
1226  }
1227
1228  public class Node {
1229    public string Name { get; set; }
1230    public int ActualValue { get; set; }
1231    public int[] PossibleValues { get; set; }
1232    public List<Node> ChildNodes { get; set; }
1233
1234    public Node(string name) {
1235      this.Name = name;
1236      PossibleValues = new int[] { 1, 2, 3 };
1237      ChildNodes = new List<Node>();
1238    }
1239
1240    public void Init() {
1241      this.ActualValue = PossibleValues.First();
1242      foreach (var child in ChildNodes) {
1243        child.Init();
1244      }
1245    }
1246
1247    public override string ToString() {
1248      StringBuilder sb = new StringBuilder();
1249      sb.Append(string.Format("{0}:{1}", this.Name, this.ActualValue));
1250      if (this.ChildNodes.Count() > 0) {
1251        sb.Append(" (");
1252        var lst = new List<string>();
1253        foreach (Node child in ChildNodes) {
1254          lst.Add(child.ToString());
1255        }
1256        sb.Append(string.Join(", ", lst.ToArray()));
1257        sb.Append(")");
1258      }
1259
1260      return sb.ToString();
1261    }
1262  }
1263
1264  public class NodeEnumerator : IEnumerator<Node> {
1265    private Node node;
1266    private List<IEnumerator> enumerators;
1267
1268    public NodeEnumerator(Node node) {
1269      this.node = node;
1270      this.enumerators = new List<IEnumerator>();
1271    }
1272
1273    public Node Current {
1274      get { return node; }
1275    }
1276    object IEnumerator.Current {
1277      get { return Current; }
1278    }
1279
1280    public void Dispose() { }
1281
1282    public bool MoveNext() {
1283      int i = 0;
1284      bool ok = false;
1285      while (!ok && i < enumerators.Count) {
1286        if (enumerators[i].MoveNext()) {
1287          ok = true;
1288        } else {
1289          i++;
1290        }
1291      }
1292
1293      if (ok) {
1294        for (int k = i - 1; k >= 0; k--) {
1295          enumerators[k].Reset();
1296          enumerators[k].MoveNext();
1297        }
1298      } else {
1299        return false;
1300      }
1301
1302      node.ActualValue = (int)enumerators[0].Current;
1303      return true;
1304    }
1305
1306    public void Reset() {
1307      enumerators.Clear();
1308      enumerators.Add(node.PossibleValues.GetEnumerator());
1309      enumerators[0].Reset();
1310
1311      foreach (var child in node.ChildNodes) {
1312        var enumerator = new NodeEnumerator(child);
1313        enumerator.Reset();
1314        enumerator.MoveNext();
1315        enumerators.Add(enumerator);
1316      }
1317    }
1318  }
1319
1320  class MyParameterizedItem : ParameterizedNamedItem {
1321    public MyParameterizedItem() {
1322      this.Parameters.Add(new ValueParameter<IntValue>("P1", new IntValue(1)));
1323      this.Parameters.Add(new ValueParameter<IntValue>("P2", new IntValue(2)));
1324      this.Parameters.Add(new ValueParameter<IntValue>("P3", new IntValue(3)));
1325      this.Parameters.Add(new ValueParameter<MyOtherParameterizedItem>("P4", new MyOtherParameterizedItem()));
1326    }
1327
1328    protected MyParameterizedItem(MyParameterizedItem original, Cloner cloner)
1329      : base(original, cloner) {
1330    }
1331    public override IDeepCloneable Clone(Cloner cloner) {
1332      return new MyParameterizedItem(this, cloner);
1333    }
1334
1335    public override string ToString() {
1336      return string.Format("P1: {0}, P2: {1}, P3: {2}, P4: {3}", Parameters["P1"].ActualValue, Parameters["P2"].ActualValue, Parameters["P3"].ActualValue, Parameters["P4"].ActualValue);
1337    }
1338  }
1339
1340  class MyOtherParameterizedItem : ParameterizedNamedItem {
1341    public MyOtherParameterizedItem() {
1342      this.Parameters.Add(new ValueParameter<IntValue>("PP1", new IntValue(1)));
1343      this.Parameters.Add(new ValueParameter<IntValue>("PP2", new IntValue(2)));
1344      this.Parameters.Add(new ValueParameter<IntValue>("PP3", new IntValue(3)));
1345    }
1346
1347    protected MyOtherParameterizedItem(MyOtherParameterizedItem original, Cloner cloner)
1348      : base(original, cloner) {
1349    }
1350    public override IDeepCloneable Clone(Cloner cloner) {
1351      return new MyOtherParameterizedItem(this, cloner);
1352    }
1353
1354    public override string ToString() {
1355      return string.Format("PP1: {0}, PP2: {1}, PP3: {2}", Parameters["PP1"].ActualValue, Parameters["PP2"].ActualValue, Parameters["PP3"].ActualValue);
1356    }
1357  }
1358}
Note: See TracBrowser for help on using the repository browser.