[5144] | 1 | using System;
|
---|
| 2 | using System.Collections;
|
---|
| 3 | using System.Collections.Generic;
|
---|
[5653] | 4 | using System.Diagnostics;
|
---|
[5144] | 5 | using System.IO;
|
---|
[4997] | 6 | using System.Linq;
|
---|
[5653] | 7 | using System.Reflection;
|
---|
[5144] | 8 | using System.Text;
|
---|
| 9 | using System.Threading;
|
---|
[5653] | 10 | using System.Threading.Tasks;
|
---|
[5144] | 11 | using HeuristicLab.Algorithms.EvolutionStrategy;
|
---|
[4997] | 12 | using HeuristicLab.Algorithms.GeneticAlgorithm;
|
---|
[5144] | 13 | using HeuristicLab.Common;
|
---|
[4997] | 14 | using HeuristicLab.Core;
|
---|
[5144] | 15 | using HeuristicLab.Data;
|
---|
[5927] | 16 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
[6090] | 17 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
[6017] | 18 | //using HeuristicLab.Hive.ExperimentManager;
|
---|
[5144] | 19 | using HeuristicLab.Optimization;
|
---|
[5653] | 20 | using HeuristicLab.Parameters;
|
---|
[4997] | 21 | using HeuristicLab.PluginInfrastructure;
|
---|
[5653] | 22 | using HeuristicLab.PluginInfrastructure.Manager;
|
---|
[5927] | 23 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
[4997] | 24 | using HeuristicLab.Problems.MetaOptimization;
|
---|
[5144] | 25 | using HeuristicLab.Problems.TestFunctions;
|
---|
[5009] | 26 | using HeuristicLab.Random;
|
---|
[5023] | 27 | using HeuristicLab.Selection;
|
---|
[4997] | 28 |
|
---|
| 29 | namespace HeuristicLab.MetaOptimization.Test {
|
---|
| 30 | class Program {
|
---|
[5522] | 31 | static void Main(string[] args) {
|
---|
| 32 | PluginManager pm = new PluginManager(Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location));
|
---|
| 33 | pm.DiscoverAndCheckPlugins();
|
---|
| 34 | pm.Run(pm.Applications.Where(x => x.Name == "TestApp").SingleOrDefault());
|
---|
| 35 | }
|
---|
| 36 | }
|
---|
| 37 |
|
---|
| 38 | [Plugin("TestPlugin", "1.0.0.0")]
|
---|
| 39 | [PluginFile("HeuristicLab.MetaOptimization.Test.exe", PluginFileType.Assembly)]
|
---|
| 40 | public class TestPlugin : PluginBase { }
|
---|
| 41 |
|
---|
| 42 | [Application("TestApp")]
|
---|
| 43 | public class TestApp : ApplicationBase {
|
---|
[6090] | 44 | //private static int metaAlgorithmPopulationSize = 30;
|
---|
[5212] | 45 | //private static int metaAlgorithmMaxGenerations = 30;
|
---|
[6090] | 46 | //private static int metaProblemRepetitions = 3;
|
---|
| 47 | //private static int baseAlgorithmMaxGenerations = 500;
|
---|
| 48 | //private static double mutationProbability = 0.10;
|
---|
[5009] | 49 |
|
---|
[6018] | 50 | private static int metaAlgorithmPopulationSize = 10;
|
---|
[6024] | 51 | private static int metaAlgorithmMaxGenerations = 20;
|
---|
[6090] | 52 | private static double metaAlgorithmMutationProbability = 0.10;
|
---|
[6018] | 53 | private static int metaProblemRepetitions = 2;
|
---|
[6090] | 54 | private static int baseAlgorithmMaxGenerations = 10;
|
---|
| 55 | private static int baseAlgorithmPopulationSize = 10;
|
---|
| 56 |
|
---|
[5522] | 57 | public override void Run() {
|
---|
[5267] | 58 | ContentManager.Initialize(new PersistenceContentManager());
|
---|
[5522] | 59 |
|
---|
[5207] | 60 | //TestTableBuilder();
|
---|
[5087] | 61 | //TestShorten();
|
---|
| 62 |
|
---|
[5522] | 63 | //TestSimilarities(); return;
|
---|
[4997] | 64 | //TestIntSampling();
|
---|
[5207] | 65 | //TestDoubleSampling(); return;
|
---|
[5110] | 66 | //TestTypeDiscovery();
|
---|
[6090] | 67 | //TestOperators(); return;
|
---|
[5144] | 68 | //TestCombinations();
|
---|
| 69 | //TestCombinations2();
|
---|
| 70 | //TestCombinations3();
|
---|
[5184] | 71 | //TestEnumeratorCollectionEnumerator();
|
---|
[5522] | 72 | //TestCombinations4(); return;
|
---|
[5653] | 73 | //TestAlgorithmPerformanceIssue(); return;
|
---|
[5262] | 74 | //TestWaitAny();
|
---|
[5267] | 75 | //TestExecutionTimeUpdateInvervalPerformance();
|
---|
[5277] | 76 | //TestMemoryConsumption();
|
---|
[5293] | 77 | //TestNormalCrossover();
|
---|
[5303] | 78 | //TestItemDictionary();
|
---|
[5927] | 79 |
|
---|
| 80 | //TestSymbolicDataAnalysisGrammar(); return;
|
---|
| 81 |
|
---|
[6090] | 82 | //MetaOptimizationProblem metaOptimizationProblem = LoadOptimizationProblem("Meta Optimization Problem (Genetic Programming - Symbolic Regression 3.4 scaled).hl");
|
---|
| 83 | //var algorithmVc = metaOptimizationProblem.ParameterConfigurationTree;
|
---|
| 84 |
|
---|
| 85 | var metaOptimizationProblem = new MetaOptimizationProblem();
|
---|
| 86 | var algorithmVc = SetupGAAlgorithm(typeof(GeneticAlgorithm), metaOptimizationProblem);
|
---|
| 87 |
|
---|
[5110] | 88 | metaOptimizationProblem.Repetitions = new IntValue(metaProblemRepetitions);
|
---|
[6090] | 89 | //GeneticAlgorithm metaLevelAlgorithm = GetSequentialMetaGA(metaOptimizationProblem);
|
---|
[6024] | 90 | GeneticAlgorithm metaLevelAlgorithm = GetParallelMetaGA(metaOptimizationProblem);
|
---|
[5212] | 91 | //GeneticAlgorithm metaLevelAlgorithm = GetHiveParallelMetaGA(metaOptimizationProblem);
|
---|
[5087] | 92 | //EvolutionStrategy metaLevelAlgorithm = GetMetaES(metaOptimizationProblem);
|
---|
[5009] | 93 |
|
---|
[5023] | 94 | //Console.WriteLine("Press enter to start");
|
---|
| 95 | //Console.ReadLine();
|
---|
[6017] | 96 | //TestConfiguration(algorithmVc, typeof(GeneticAlgorithm), metaOptimizationProblem.Problems.First());
|
---|
[5144] | 97 |
|
---|
[6017] | 98 | //Console.WriteLine("Press enter to start");
|
---|
| 99 | //Console.ReadLine();
|
---|
[5009] | 100 | TestOptimization(metaLevelAlgorithm);
|
---|
| 101 |
|
---|
| 102 | //TestMemoryLeak(metaLevelAlgorithm);
|
---|
| 103 |
|
---|
| 104 | Console.ReadLine();
|
---|
| 105 | }
|
---|
| 106 |
|
---|
[6090] | 107 | private MetaOptimizationProblem LoadOptimizationProblem(string filename) {
|
---|
| 108 | return (MetaOptimizationProblem)ContentManager.Load(filename);
|
---|
| 109 | }
|
---|
| 110 |
|
---|
[5927] | 111 | private void TestSymbolicDataAnalysisGrammar() {
|
---|
| 112 | var random = new MersenneTwister();
|
---|
| 113 |
|
---|
| 114 | var grammar1 = new TypeCoherentExpressionGrammar();
|
---|
| 115 | var grammar2 = new TypeCoherentExpressionGrammar();
|
---|
[6090] | 116 |
|
---|
[6017] | 117 | Console.WriteLine("========== Grammar1: ==========");
|
---|
| 118 | PrintGrammar(grammar1);
|
---|
| 119 | //Console.WriteLine("========== Grammar2: ==========");
|
---|
| 120 | //PrintGrammar(grammar2);
|
---|
[5927] | 121 |
|
---|
[6017] | 122 | var vc1 = new SymbolicExpressionGrammarValueConfiguration(grammar1);
|
---|
[6018] | 123 |
|
---|
| 124 | string info = vc1.ParameterInfoString;
|
---|
| 125 |
|
---|
[6017] | 126 | ConfigureSymbolicExpressionGrammarVc(vc1);
|
---|
[6018] | 127 |
|
---|
| 128 | info = vc1.ParameterInfoString;
|
---|
| 129 |
|
---|
| 130 |
|
---|
[6017] | 131 | var vc2 = new SymbolicExpressionGrammarValueConfiguration(grammar2);
|
---|
| 132 | ConfigureSymbolicExpressionGrammarVc(vc2);
|
---|
[5927] | 133 |
|
---|
[6017] | 134 | vc1.Mutate(random, new MutateDelegate(ParameterConfigurationManipulator.Mutate), new UniformIntValueManipulator(), new UniformDoubleValueManipulator());
|
---|
| 135 | vc1.Parameterize(grammar1);
|
---|
| 136 |
|
---|
| 137 | Console.WriteLine("========== Grammar1 (mutated): ==========");
|
---|
[5927] | 138 | PrintGrammar(grammar1);
|
---|
| 139 |
|
---|
[6017] | 140 | vc1.Cross(random, vc2, new CrossDelegate(ParameterConfigurationCrossover.Cross), new DiscreteIntValueCrossover(), new AverageDoubleValueCrossover());
|
---|
| 141 | vc1.Parameterize(grammar1);
|
---|
[5927] | 142 |
|
---|
[6017] | 143 | Console.WriteLine("========== Grammar1 (crossed): ==========");
|
---|
| 144 | PrintGrammar(grammar1);
|
---|
[5927] | 145 |
|
---|
[6017] | 146 | //RealVector v1 = GetInitialFrequenciesAsRealVector(grammar1);
|
---|
| 147 | //RealVector v2 = GetInitialFrequenciesAsRealVector(grammar2);
|
---|
[5927] | 148 |
|
---|
[6017] | 149 | //for (int i = 0; i < 10; i++) {
|
---|
| 150 | // RealVector v3 = DiscreteCrossover.Apply(random, new ItemArray<RealVector>(new List<RealVector> { v1, v2 }));
|
---|
[5927] | 151 |
|
---|
[6017] | 152 | // var grammar3 = new TypeCoherentExpressionGrammar();
|
---|
| 153 | // SetInitialFrequenciesFromRealVector(grammar3, v3);
|
---|
[5927] | 154 |
|
---|
[6017] | 155 | // Console.WriteLine("\n========== Crossed: ==========");
|
---|
| 156 | // PrintGrammar(grammar3);
|
---|
| 157 | //}
|
---|
| 158 |
|
---|
[5927] | 159 | }
|
---|
| 160 |
|
---|
| 161 | private static void PrintGrammar(TypeCoherentExpressionGrammar grammar) {
|
---|
| 162 | foreach (var symbol in grammar.Symbols) {
|
---|
| 163 | Console.WriteLine("{0} ({1})", symbol.ToString(), symbol.InitialFrequency);
|
---|
| 164 | }
|
---|
| 165 | }
|
---|
| 166 |
|
---|
| 167 | private static RealVector GetInitialFrequenciesAsRealVector(TypeCoherentExpressionGrammar grammar) {
|
---|
| 168 | var vector = new RealVector(grammar.Symbols.Count());
|
---|
| 169 | for (int i = 0; i < grammar.Symbols.Count(); i++) {
|
---|
| 170 | vector[i] = grammar.Symbols.ElementAt(i).InitialFrequency;
|
---|
| 171 | }
|
---|
| 172 | return vector;
|
---|
| 173 | }
|
---|
| 174 |
|
---|
| 175 | private static void SetInitialFrequenciesFromRealVector(TypeCoherentExpressionGrammar grammar, RealVector vector) {
|
---|
| 176 | for (int i = 0; i < grammar.Symbols.Count(); i++) {
|
---|
| 177 | grammar.Symbols.ElementAt(i).InitialFrequency = vector[i];
|
---|
| 178 | }
|
---|
| 179 | }
|
---|
| 180 |
|
---|
[5522] | 181 | private static void TestSimilarities() {
|
---|
| 182 | Console.WriteLine("\nDoubleRange:");
|
---|
| 183 | var doubleRange = new DoubleValueRange(new DoubleValue(0), new DoubleValue(10), new DoubleValue(1));
|
---|
| 184 | var a = new DoubleValue(5.0);
|
---|
| 185 |
|
---|
| 186 | for (double d = 0; d < 10; d += 0.1) {
|
---|
| 187 | var similarity = doubleRange.CalculateSimilarity(a, new DoubleValue(d));
|
---|
| 188 | Console.WriteLine("{0}: {1}", d, similarity);
|
---|
| 189 | }
|
---|
| 190 |
|
---|
| 191 | Console.WriteLine("\nPecentRange:");
|
---|
| 192 | var percentRange = new PercentValueRange(new PercentValue(0), new PercentValue(1), new PercentValue(1));
|
---|
| 193 | var b = new PercentValue(0.05);
|
---|
| 194 |
|
---|
| 195 | for (double d = 0; d < 1; d += 0.01) {
|
---|
| 196 | var similarity = percentRange.CalculateSimilarity(b, new PercentValue(d));
|
---|
| 197 | Console.WriteLine("{0}: {1}", d, similarity);
|
---|
| 198 | }
|
---|
| 199 |
|
---|
| 200 | Console.WriteLine("\nIntRange:");
|
---|
| 201 | var intRange = new IntValueRange(new IntValue(50), new IntValue(100), new IntValue(1));
|
---|
| 202 | var c = new IntValue(90);
|
---|
| 203 |
|
---|
| 204 | for (int i = 0; i < 100; i++) {
|
---|
| 205 | var similarity = intRange.CalculateSimilarity(c, new IntValue(i));
|
---|
| 206 | Console.WriteLine("{0}: {1}", i, similarity);
|
---|
| 207 | }
|
---|
| 208 |
|
---|
| 209 | Console.WriteLine("\nValueConfigurations:");
|
---|
| 210 | var vc1 = SetupGAAlgorithm(typeof(GeneticAlgorithm), new MetaOptimizationProblem());
|
---|
[5665] | 211 | vc1.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "Elites").Optimize = true;
|
---|
| 212 | vc1.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "PopulationSize").Optimize = true;
|
---|
| 213 | vc1.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").Optimize = true;
|
---|
| 214 | vc1.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "Selector").Optimize = true;
|
---|
[5522] | 215 |
|
---|
[5653] | 216 | var vc2 = (ParameterConfigurationTree)vc1.Clone();
|
---|
[5522] | 217 | Console.WriteLine("Assert(1): {0}", vc1.CalculateSimilarity(vc2));
|
---|
| 218 |
|
---|
[5665] | 219 | ((IntValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "PopulationSize").ValueConfigurations[0].ActualValue.Value).Value = 75;
|
---|
[5522] | 220 | Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2));
|
---|
| 221 |
|
---|
[5665] | 222 | ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.15;
|
---|
[5522] | 223 | Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2));
|
---|
| 224 |
|
---|
[5665] | 225 | ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.25;
|
---|
[5522] | 226 | Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2));
|
---|
[5665] | 227 | ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.35;
|
---|
[5522] | 228 | Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2));
|
---|
[5665] | 229 | ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.45;
|
---|
[5522] | 230 | Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2));
|
---|
[5665] | 231 | ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.55;
|
---|
[5522] | 232 | Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2));
|
---|
| 233 |
|
---|
[5665] | 234 | vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "Selector").ActualValueConfigurationIndex = 3;
|
---|
[5522] | 235 | Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2));
|
---|
| 236 |
|
---|
| 237 | var random = new Random.MersenneTwister(0);
|
---|
| 238 | for (int i = 0; i < 10; i++) {
|
---|
| 239 | vc2.Randomize(random);
|
---|
| 240 | Console.WriteLine("Randomized: {0}", vc1.CalculateSimilarity(vc2));
|
---|
| 241 | }
|
---|
| 242 | }
|
---|
| 243 |
|
---|
[5303] | 244 | private static void TestItemDictionary() {
|
---|
| 245 | var dict = new ItemDictionary<StringValue, RunCollection>();
|
---|
| 246 | dict.Add(new StringValue("a"), new RunCollection());
|
---|
| 247 | dict.Add(new StringValue("b"), new RunCollection());
|
---|
| 248 | dict.Add(new StringValue("c"), new RunCollection());
|
---|
| 249 |
|
---|
| 250 | Console.WriteLine(dict.ContainsKey(new StringValue("a")));
|
---|
| 251 | Console.WriteLine(dict.Count(x => x.Key.Value == "a"));
|
---|
| 252 |
|
---|
| 253 | }
|
---|
| 254 |
|
---|
[5293] | 255 | private static void TestNormalCrossover() {
|
---|
| 256 | var random = new MersenneTwister();
|
---|
| 257 | double d1 = 0.5;
|
---|
| 258 | double d2 = 0.6;
|
---|
| 259 | var doubleRange = new DoubleValueRange(new DoubleValue(0.0), new DoubleValue(1.0), new DoubleValue(0.01));
|
---|
| 260 |
|
---|
| 261 | using (var sw = new StreamWriter("normalCrossover-DoubleValue.txt")) {
|
---|
| 262 | for (int i = 0; i < 10000; i++) {
|
---|
| 263 | sw.WriteLine(NormalDoubleValueCrossover.ApplyStatic(random, new DoubleValue(d1), new DoubleValue(d2), doubleRange));
|
---|
| 264 | }
|
---|
| 265 | }
|
---|
| 266 |
|
---|
| 267 | int i1 = 180;
|
---|
| 268 | int i2 = 160;
|
---|
| 269 | var intRange = new IntValueRange(new IntValue(100), new IntValue(200), new IntValue(1));
|
---|
| 270 |
|
---|
| 271 | using (var sw = new StreamWriter("normalCrossover-IntValue.txt")) {
|
---|
| 272 | for (int i = 0; i < 10000; i++) {
|
---|
[5522] | 273 | sw.WriteLine(NormalIntValueCrossover.ApplyStatic(random, new IntValue(i1), new IntValue(i2), intRange));
|
---|
[5293] | 274 | }
|
---|
| 275 | }
|
---|
| 276 | }
|
---|
| 277 |
|
---|
[5267] | 278 | private static void TestMemoryConsumption() {
|
---|
| 279 | Queue<TimeSpan> latestExecutionTimes = new Queue<TimeSpan>();
|
---|
| 280 | GeneticAlgorithm ga = new GeneticAlgorithm();
|
---|
| 281 | ga.PopulationSize.Value = 3;
|
---|
| 282 | ga.MaximumGenerations.Value = 1;
|
---|
| 283 | ga.Engine = new SequentialEngine.SequentialEngine();
|
---|
[5313] | 284 | throw new NotImplementedException("TODO: set ga properties correctly");
|
---|
[5267] | 285 |
|
---|
| 286 | MetaOptimizationProblem metaOptimizationProblem = new MetaOptimizationProblem();
|
---|
| 287 | metaOptimizationProblem.Repetitions = new IntValue(metaProblemRepetitions);
|
---|
[6090] | 288 | GeneticAlgorithm metaLevelAlgorithm = GetSequentialMetaGA(metaOptimizationProblem);
|
---|
[5313] | 289 | ParameterConfigurationTree algorithmVc = SetupGAAlgorithm(typeof(GeneticAlgorithm), metaOptimizationProblem);
|
---|
[5267] | 290 | Stopwatch sw = new Stopwatch();
|
---|
| 291 |
|
---|
| 292 | var algs = new List<IAlgorithm>();
|
---|
| 293 | for (int i = 0; i < 10000; i++) {
|
---|
| 294 | sw.Start();
|
---|
| 295 | GeneticAlgorithm clonedGa = (GeneticAlgorithm)ga.Clone();
|
---|
| 296 | clonedGa.Name = "CLONED GA";
|
---|
| 297 | algorithmVc.Parameterize(clonedGa);
|
---|
| 298 | algs.Add(clonedGa);
|
---|
| 299 | sw.Reset();
|
---|
[5277] | 300 | ContentManager.Save((IStorableContent)metaLevelAlgorithm, "alg_" + i + ".hl", true);
|
---|
[5267] | 301 | Console.WriteLine("Cloned alg #{0}", i);
|
---|
| 302 | }
|
---|
| 303 | }
|
---|
| 304 |
|
---|
[5262] | 305 | private static void TestExecutionTimeUpdateInvervalPerformance() {
|
---|
| 306 | TableBuilder tb = new TableBuilder("Tasks", "Interval", "TotalExecutionTime", "AvgExecutionTime", "TimeElapsed", "TotalTimeElapsed", "Speedup", "ExecutionTimeChangedCount", "RealExecutionTimeUpdate(ms)");
|
---|
[5267] | 307 | int tasks = 4;
|
---|
[5262] | 308 | int repetitions = 3;
|
---|
| 309 |
|
---|
| 310 | // warmup
|
---|
| 311 | RepeatExecuteParallel(3, 1, 1, tb);
|
---|
| 312 | tb.AppendRow("--", "--", "--", "--", "--", "--", "--", "--", "--");
|
---|
[5277] | 313 | RepeatExecuteParallel(repetitions, tasks, 1, tb);
|
---|
| 314 | RepeatExecuteParallel(repetitions, tasks, 2.5, tb);
|
---|
[5262] | 315 | RepeatExecuteParallel(repetitions, tasks, 5, tb);
|
---|
| 316 | RepeatExecuteParallel(repetitions, tasks, 10, tb);
|
---|
| 317 | RepeatExecuteParallel(repetitions, tasks, 25, tb);
|
---|
| 318 | RepeatExecuteParallel(repetitions, tasks, 50, tb);
|
---|
[5277] | 319 | RepeatExecuteParallel(repetitions, tasks, 100, tb);
|
---|
| 320 | RepeatExecuteParallel(repetitions, tasks, 250, tb);
|
---|
| 321 | RepeatExecuteParallel(repetitions, tasks, 500, tb);
|
---|
[5262] | 322 | RepeatExecuteParallel(repetitions, tasks, 1000, tb);
|
---|
[5277] | 323 | RepeatExecuteParallel(repetitions, tasks, 2500, tb);
|
---|
[5262] | 324 | RepeatExecuteParallel(repetitions, tasks, 5000, tb);
|
---|
| 325 |
|
---|
| 326 | using (var sw = new StreamWriter("TestExecutionTimeUpdateInvervalPerformance.txt")) {
|
---|
| 327 | sw.Write(tb.ToString());
|
---|
| 328 | }
|
---|
| 329 | }
|
---|
| 330 |
|
---|
| 331 | private static GeneticAlgorithm CreateGA() {
|
---|
| 332 | GeneticAlgorithm ga = new GeneticAlgorithm();
|
---|
| 333 | ga.Problem = new SingleObjectiveTestFunctionProblem() { ProblemSize = new IntValue(250) };
|
---|
| 334 | ga.Engine = new SequentialEngine.SequentialEngine();
|
---|
| 335 | ga.SetSeedRandomly.Value = false;
|
---|
| 336 | ga.Seed.Value = 0;
|
---|
| 337 | return ga;
|
---|
| 338 | }
|
---|
| 339 |
|
---|
| 340 | private static void RepeatExecuteParallel(int repetitions, int tasks, double executionTimeUpdateIntervalMs, TableBuilder tb) {
|
---|
| 341 | for (int i = 0; i < repetitions; i++) {
|
---|
[5277] | 342 | ExecuteParallel(tasks, executionTimeUpdateIntervalMs, tb);
|
---|
| 343 | Console.Clear();
|
---|
[5262] | 344 | Console.WriteLine(tb.ToString());
|
---|
| 345 | }
|
---|
| 346 | }
|
---|
| 347 |
|
---|
| 348 | private static void ExecuteParallel(int taskCount, double executionTimeUpdateIntervalMs, TableBuilder tb) {
|
---|
| 349 | Task<TimeSpan>[] tasks = new Task<TimeSpan>[taskCount];
|
---|
| 350 | EngineAlgorithm[] algs = new EngineAlgorithm[taskCount];
|
---|
| 351 | for (int i = 0; i < taskCount; i++) {
|
---|
| 352 | GeneticAlgorithm alg = CreateGA();
|
---|
[5267] | 353 | //((Engine)alg.Engine).ExecutionTimeUpdateInterval = TimeSpan.FromMilliseconds(executionTimeUpdateIntervalMs);
|
---|
[5262] | 354 | algs[i] = alg;
|
---|
| 355 | }
|
---|
| 356 | Console.WriteLine("Creating algs finished.");
|
---|
| 357 |
|
---|
| 358 | for (int i = 0; i < taskCount; i++) {
|
---|
| 359 | tasks[i] = new Task<TimeSpan>((alg) => {
|
---|
| 360 | Console.WriteLine("Task {0} started.", Task.CurrentId);
|
---|
[6024] | 361 | var cancellationTokenSource = new CancellationTokenSource();
|
---|
[5277] | 362 |
|
---|
[5262] | 363 | Stopwatch swx = new Stopwatch();
|
---|
| 364 | swx.Start();
|
---|
| 365 | ((EngineAlgorithm)alg).ExecutionTimeChanged += new EventHandler(Program_ExecutionTimeChanged);
|
---|
[6024] | 366 | ((EngineAlgorithm)alg).StartSync(cancellationTokenSource.Token);
|
---|
[5262] | 367 | ((EngineAlgorithm)alg).ExecutionTimeChanged -= new EventHandler(Program_ExecutionTimeChanged);
|
---|
| 368 | swx.Stop();
|
---|
| 369 | Console.WriteLine("Task {0} finished.", Task.CurrentId);
|
---|
| 370 | return swx.Elapsed;
|
---|
| 371 | }, algs[i]);
|
---|
| 372 | }
|
---|
| 373 | Console.WriteLine("Creating tasks finished.");
|
---|
| 374 | counter = 0;
|
---|
| 375 | Stopwatch sw = new Stopwatch();
|
---|
| 376 | sw.Start();
|
---|
| 377 | foreach (var task in tasks) task.Start();
|
---|
| 378 | Task.WaitAll(tasks);
|
---|
| 379 | sw.Stop();
|
---|
| 380 |
|
---|
| 381 | if (!algs.All(alg => alg.ExecutionState == ExecutionState.Stopped))
|
---|
| 382 | throw new Exception("Not all algs stopped properly");
|
---|
| 383 |
|
---|
| 384 | if (!algs.All(alg => ((DoubleValue)alg.Results["BestQuality"].Value).Value == ((DoubleValue)algs.First().Results["BestQuality"].Value).Value))
|
---|
| 385 | throw new Exception("Not all algs have the same resutls");
|
---|
| 386 |
|
---|
| 387 | if (tb != null) {
|
---|
| 388 | double totalExecutionTimeMilliseconds = algs.Select(x => x.ExecutionTime.TotalMilliseconds).Sum();
|
---|
| 389 | double totalMilliseconds = tasks.Select(t => t.Result.TotalMilliseconds).Sum();
|
---|
| 390 | tb.AppendRow(
|
---|
[5277] | 391 | taskCount.ToString(),
|
---|
| 392 | executionTimeUpdateIntervalMs.ToString(),
|
---|
[5262] | 393 | TimeSpan.FromMilliseconds(totalExecutionTimeMilliseconds).ToString(),
|
---|
[5277] | 394 | TimeSpan.FromMilliseconds(totalExecutionTimeMilliseconds / taskCount).ToString(),
|
---|
[5262] | 395 | sw.Elapsed.ToString(),
|
---|
| 396 | TimeSpan.FromMilliseconds(totalMilliseconds).ToString(),
|
---|
| 397 | (totalMilliseconds / sw.ElapsedMilliseconds).ToString("0.00"),
|
---|
| 398 | counter.ToString(),
|
---|
[5277] | 399 | (totalExecutionTimeMilliseconds / counter).ToString("0.00"));
|
---|
[5262] | 400 | }
|
---|
| 401 | tasks = null;
|
---|
| 402 | algs = null;
|
---|
| 403 | GC.Collect();
|
---|
| 404 | Console.WriteLine("Test finished.");
|
---|
| 405 | }
|
---|
| 406 |
|
---|
| 407 | private static int counter = 0;
|
---|
| 408 | static void Program_ExecutionTimeChanged(object sender, EventArgs e) {
|
---|
| 409 | System.Threading.Interlocked.Increment(ref counter);
|
---|
| 410 | }
|
---|
| 411 |
|
---|
[5231] | 412 | private static void TestWaitAny() {
|
---|
| 413 | System.Random rand = new System.Random();
|
---|
| 414 | var tasks = new List<Task<int>>();
|
---|
| 415 | for (int i = 0; i < 10; i++) {
|
---|
| 416 | tasks.Add(Task.Factory.StartNew<int>((x) => {
|
---|
| 417 | int sleep = ((int)x - 10) * -1000;
|
---|
| 418 | Console.WriteLine("sleeping: {0} ms", sleep);
|
---|
| 419 | Thread.Sleep(0); // make context switch
|
---|
| 420 | Thread.Sleep(sleep);
|
---|
| 421 | return (int)x * (int)x;
|
---|
| 422 | }, i));
|
---|
| 423 | }
|
---|
| 424 |
|
---|
| 425 | // --> WaitAll processes tasks lazy but in order.
|
---|
| 426 | Task.WaitAll();
|
---|
| 427 | foreach (var task in tasks) {
|
---|
| 428 | Console.WriteLine(task.Result);
|
---|
| 429 | }
|
---|
| 430 |
|
---|
| 431 | // -> WaitAny processes any finished task first. but the finished task needs to be removed from list in order to process all tasks
|
---|
| 432 | //for (int i = 0; i < 10; i++) {
|
---|
| 433 | // var tasksArray = tasks.ToArray();
|
---|
| 434 | // var task = tasksArray[Task.WaitAny(tasksArray)];
|
---|
| 435 | // Console.WriteLine(task.Result);
|
---|
| 436 | // tasks.Remove(task);
|
---|
| 437 | //}
|
---|
| 438 |
|
---|
| 439 | Console.WriteLine("Finished TestWaitAny");
|
---|
| 440 | }
|
---|
| 441 |
|
---|
[5207] | 442 | private static void TestAlgorithmPerformanceIssue() {
|
---|
| 443 | Queue<TimeSpan> latestExecutionTimes = new Queue<TimeSpan>();
|
---|
| 444 | int size = 10;
|
---|
[5653] | 445 | var random = new Random.MersenneTwister(0);
|
---|
[5207] | 446 |
|
---|
| 447 | GeneticAlgorithm ga = new GeneticAlgorithm();
|
---|
[6017] | 448 | ga.PopulationSize.Value = 5;
|
---|
| 449 | ga.MaximumGenerations.Value = 5;
|
---|
[5207] | 450 | ga.Engine = new SequentialEngine.SequentialEngine();
|
---|
[5653] | 451 | ga.Problem = new SingleObjectiveTestFunctionProblem();
|
---|
[5207] | 452 |
|
---|
[6017] | 453 | //MetaOptimizationProblem metaOptimizationProblem = new MetaOptimizationProblem();
|
---|
| 454 | ////metaOptimizationProblem.Repetitions = new IntValue(metaProblemRepetitions);
|
---|
| 455 | //GeneticAlgorithm metaLevelAlgorithm = GetMetaGA(metaOptimizationProblem);
|
---|
| 456 | //ParameterConfigurationTree algorithmVc = SetupGAAlgorithm(typeof(GeneticAlgorithm), metaOptimizationProblem);
|
---|
| 457 | //algorithmVc.Randomize(random);
|
---|
[5207] | 458 | Stopwatch sw = new Stopwatch();
|
---|
| 459 |
|
---|
[5653] | 460 | var algs = new Queue<IAlgorithm>(); // keep them in memory
|
---|
| 461 | // -> BINGO! -> .NET cannot hold more than 16 algorithms with their ThreadLocal<T> objects efficiently,
|
---|
| 462 | // so if they are kept in memory, runtime at the 17. execution drops significantly
|
---|
| 463 | // because creating ThreadLocal<T> takes all the runtime.
|
---|
| 464 | // when the algs are not stored in a list however this effect does not occur.
|
---|
| 465 |
|
---|
[5927] | 466 |
|
---|
[6090] | 467 | for (int i = 0; i < 10000; i++) {
|
---|
[5207] | 468 | GeneticAlgorithm clonedGa = (GeneticAlgorithm)ga.Clone();
|
---|
| 469 | clonedGa.Name = "CLONED GA";
|
---|
[5653] | 470 | //algorithmVc.Randomize(random);
|
---|
| 471 | //algorithmVc.Parameterize(clonedGa);
|
---|
[5207] | 472 | clonedGa.Prepare(true);
|
---|
[5653] | 473 | sw.Start();
|
---|
| 474 | algs.Enqueue(clonedGa);
|
---|
| 475 |
|
---|
[6024] | 476 | var cancellationTokenSource = new CancellationTokenSource();
|
---|
[6017] | 477 | //if (algs.Count > 24)
|
---|
| 478 | // algs.Dequeue();
|
---|
[6024] | 479 | clonedGa.StartSync(cancellationTokenSource.Token);
|
---|
[5207] | 480 | sw.Stop();
|
---|
| 481 | latestExecutionTimes.Enqueue(sw.Elapsed);
|
---|
| 482 | Console.WriteLine("{0}: {1} ({2})", i, sw.Elapsed, latestExecutionTimes.Count > size ? TimeSpan.FromMilliseconds(latestExecutionTimes.Average(t => t.TotalMilliseconds)).ToString() : "-");
|
---|
| 483 | if (latestExecutionTimes.Count > size) {
|
---|
| 484 | latestExecutionTimes.Dequeue();
|
---|
| 485 | }
|
---|
| 486 | sw.Reset();
|
---|
[6090] | 487 | //Console.ReadLine();
|
---|
[5207] | 488 | }
|
---|
| 489 | }
|
---|
| 490 |
|
---|
| 491 | private static void TestTableBuilder() {
|
---|
| 492 | TableBuilder tb = new TableBuilder("column_1", "col2", "col3");
|
---|
| 493 | tb.AppendRow("1", "humpi", "0.23124");
|
---|
| 494 | tb.AppendRow("2", "sf", "0.23124");
|
---|
| 495 | tb.AppendRow("5", "humpi dampti", "0.224");
|
---|
| 496 | tb.AppendRow("10", "egon asdf", "0.4");
|
---|
| 497 | tb.AppendRow("15", "MichaelizcMultiVfds", "0.23124564");
|
---|
| 498 | Console.WriteLine(tb.ToString());
|
---|
| 499 | }
|
---|
| 500 |
|
---|
| 501 | private static void TestToInfoString(IValueConfiguration algorithmVc) {
|
---|
[5144] | 502 | var random = new MersenneTwister();
|
---|
[5184] | 503 | Console.WriteLine(algorithmVc.ParameterInfoString);
|
---|
[5144] | 504 | algorithmVc.Randomize(random);
|
---|
[5184] | 505 | Console.WriteLine(algorithmVc.ParameterInfoString);
|
---|
[5144] | 506 | algorithmVc.Randomize(random);
|
---|
[5184] | 507 | Console.WriteLine(algorithmVc.ParameterInfoString);
|
---|
[5144] | 508 | algorithmVc.Randomize(random);
|
---|
| 509 | }
|
---|
| 510 |
|
---|
| 511 | private static void TestCombinations() {
|
---|
| 512 | Console.WriteLine("IntRange 3-18:3");
|
---|
| 513 | IntValueRange intRange = new IntValueRange(new IntValue(3), new IntValue(18), new IntValue(3));
|
---|
| 514 | foreach (var val in intRange.GetCombinations()) {
|
---|
| 515 | Console.WriteLine(val);
|
---|
| 516 | }
|
---|
| 517 |
|
---|
| 518 | Console.WriteLine("DoubleRange 1.0-2.5:0.5");
|
---|
| 519 | var dblRange = new DoubleValueRange(new DoubleValue(0.7), new DoubleValue(2.8), new DoubleValue(0.5));
|
---|
| 520 | foreach (var val in dblRange.GetCombinations()) {
|
---|
| 521 | Console.WriteLine(val);
|
---|
| 522 | }
|
---|
| 523 |
|
---|
| 524 | Console.WriteLine("PercentRange 33%-66%:33%");
|
---|
| 525 | var pctRange = new PercentValueRange(new PercentValue(0.32), new PercentValue(0.98), new PercentValue(0.33));
|
---|
| 526 | foreach (var val in pctRange.GetCombinations()) {
|
---|
| 527 | Console.WriteLine(val);
|
---|
| 528 | }
|
---|
| 529 | }
|
---|
| 530 |
|
---|
| 531 | private static void TestCombinations3() {
|
---|
| 532 | Node root = new Node("root");
|
---|
| 533 | root.ChildNodes.Add(new Node("root.n1"));
|
---|
| 534 | root.ChildNodes.Add(new Node("root.n2"));
|
---|
| 535 | Node n3 = new Node("root.n3");
|
---|
| 536 | n3.ChildNodes.Add(new Node("root.n3.n1"));
|
---|
| 537 | n3.ChildNodes.Add(new Node("root.n3.n2"));
|
---|
| 538 | root.ChildNodes.Add(n3);
|
---|
| 539 |
|
---|
| 540 | Console.WriteLine(root.ToString());
|
---|
| 541 | Console.WriteLine("--");
|
---|
| 542 | int cnt = 0;
|
---|
| 543 | var enumerator = new NodeEnumerator(root);
|
---|
| 544 | enumerator.Reset();
|
---|
| 545 | while (enumerator.MoveNext()) {
|
---|
| 546 | Console.WriteLine(enumerator.Current.ToString());
|
---|
| 547 | cnt++;
|
---|
| 548 | }
|
---|
| 549 | Console.WriteLine("count: " + cnt);
|
---|
| 550 | }
|
---|
| 551 |
|
---|
[5184] | 552 | private static void TestEnumeratorCollectionEnumerator() {
|
---|
| 553 | IEnumerable<int> list1 = new int[] { 1, 2, 3, 4, 5 };
|
---|
| 554 | IEnumerable<int> list2 = new int[] { 10, 20, 30 };
|
---|
| 555 | IEnumerable<int> list3 = new int[] { 300, 400, 500 };
|
---|
| 556 |
|
---|
| 557 | var enumerators = new List<IEnumerator>();
|
---|
| 558 |
|
---|
| 559 | EnumeratorCollectionEnumerator<int> enu = new EnumeratorCollectionEnumerator<int>();
|
---|
| 560 | enu.AddEnumerator(list1.GetEnumerator());
|
---|
| 561 | enu.AddEnumerator(list2.GetEnumerator());
|
---|
| 562 | enu.AddEnumerator(list3.GetEnumerator());
|
---|
| 563 | enu.Reset();
|
---|
| 564 | while (enu.MoveNext()) {
|
---|
| 565 | Console.WriteLine(enu.Current);
|
---|
| 566 | }
|
---|
| 567 | }
|
---|
| 568 |
|
---|
[5144] | 569 | private static void TestCombinations4() {
|
---|
| 570 | GeneticAlgorithm ga = new GeneticAlgorithm();
|
---|
| 571 | ga.Problem = new SingleObjectiveTestFunctionProblem();
|
---|
[5184] | 572 | ga.Engine = new SequentialEngine.SequentialEngine();
|
---|
| 573 |
|
---|
[5665] | 574 | ParameterConfigurationTree vc = new ParameterConfigurationTree(ga, new SingleObjectiveTestFunctionProblem());
|
---|
[5144] | 575 |
|
---|
[5184] | 576 | ConfigurePopulationSize(vc, 20, 100, 20);
|
---|
[5144] | 577 | //ConfigureMutationRate(vc, 0.10, 0.60, 0.10);
|
---|
[5361] | 578 | ConfigureMutationOperator(vc);
|
---|
| 579 | //ConfigureSelectionOperator(vc, true);
|
---|
[5144] | 580 |
|
---|
| 581 | int count = 0;
|
---|
| 582 | IEnumerator enumerator = new ParameterCombinationsEnumerator(vc);
|
---|
| 583 | enumerator.Reset();
|
---|
| 584 | while (enumerator.MoveNext()) {
|
---|
| 585 | var current = (IValueConfiguration)enumerator.Current;
|
---|
| 586 | count++;
|
---|
[5184] | 587 | Console.WriteLine(current.ParameterInfoString);
|
---|
[5144] | 588 | }
|
---|
| 589 | Console.WriteLine("You are about to create {0} algorithms.", count);
|
---|
[5207] | 590 |
|
---|
[5184] | 591 | Experiment experiment = vc.GenerateExperiment(ga);
|
---|
| 592 | //foreach (var opt in experiment.Optimizers) {
|
---|
| 593 | // Console.WriteLine(opt.Name);
|
---|
| 594 | //}
|
---|
[5144] | 595 |
|
---|
[5184] | 596 | experiment.Prepare();
|
---|
| 597 | experiment.Start();
|
---|
| 598 |
|
---|
| 599 | while (experiment.ExecutionState != ExecutionState.Stopped) {
|
---|
| 600 | Thread.Sleep(500);
|
---|
[5144] | 601 | }
|
---|
| 602 | }
|
---|
| 603 |
|
---|
[5111] | 604 | private static void TestOperators() {
|
---|
| 605 | IRandom random = new MersenneTwister();
|
---|
| 606 |
|
---|
[6038] | 607 | var doubleRange = new DoubleValueRange(new DoubleValue(0), new DoubleValue(1), new DoubleValue(0.001));
|
---|
[5111] | 608 | using (var sw = new StreamWriter("out-DoubleValue.txt")) {
|
---|
| 609 | for (int i = 0; i < 10000; i++) {
|
---|
[6038] | 610 | var val = new DoubleValue(0.0);
|
---|
[5111] | 611 | NormalDoubleValueManipulator.ApplyStatic(random, val, doubleRange);
|
---|
[5144] | 612 |
|
---|
[5111] | 613 | sw.WriteLine(val);
|
---|
[6038] | 614 | Debug.Assert(val.Value >= 0.0 && val.Value <= 1.0);
|
---|
[5111] | 615 | }
|
---|
| 616 | }
|
---|
| 617 |
|
---|
| 618 | var percentRange = new PercentValueRange(new PercentValue(0), new PercentValue(1), new PercentValue(0.001));
|
---|
| 619 | using (var sw = new StreamWriter("out-PercentValue.txt")) {
|
---|
| 620 | for (int i = 0; i < 10000; i++) {
|
---|
| 621 | var val = new PercentValue(0.5);
|
---|
| 622 | NormalDoubleValueManipulator.ApplyStatic(random, val, percentRange.AsDoubleValueRange());
|
---|
| 623 | sw.WriteLine(val);
|
---|
| 624 | }
|
---|
| 625 | }
|
---|
| 626 |
|
---|
| 627 | var intRange = new IntValueRange(new IntValue(0), new IntValue(100), new IntValue(1));
|
---|
| 628 | using (var sw = new StreamWriter("out-IntValue.txt")) {
|
---|
| 629 | for (int i = 0; i < 10000; i++) {
|
---|
| 630 | var val = new IntValue(50);
|
---|
| 631 | UniformIntValueManipulator.ApplyStatic(random, val, intRange);
|
---|
| 632 | sw.WriteLine(val);
|
---|
| 633 | }
|
---|
| 634 | }
|
---|
| 635 |
|
---|
[6038] | 636 | using (var sw = new StreamWriter("out-DoubleValueCrossed.txt")) {
|
---|
| 637 | for (int i = 0; i < 10000; i++) {
|
---|
| 638 | var val1 = new DoubleValue(0.0);
|
---|
| 639 | var val2 = new DoubleValue(0.5);
|
---|
| 640 | var val3 = NormalDoubleValueCrossover.ApplyStatic(random, val1, val2, doubleRange);
|
---|
| 641 |
|
---|
| 642 | sw.WriteLine(val3);
|
---|
| 643 | Debug.Assert(val3.Value >= 0.0 && val3.Value <= 1.0);
|
---|
| 644 | }
|
---|
| 645 | }
|
---|
| 646 |
|
---|
[5111] | 647 | Console.ReadLine();
|
---|
| 648 | }
|
---|
| 649 |
|
---|
[5110] | 650 | private static void TestTypeDiscovery() {
|
---|
| 651 | var items = ApplicationManager.Manager.GetInstances(typeof(DoubleArray)).ToArray();
|
---|
| 652 |
|
---|
| 653 | foreach (var item in items) {
|
---|
| 654 | Console.WriteLine(item.ToString());
|
---|
| 655 | }
|
---|
| 656 | }
|
---|
| 657 |
|
---|
[5009] | 658 | private static void TestMemoryLeak(GeneticAlgorithm metaLevelAlgorithm) {
|
---|
[5144] | 659 | IValueConfiguration algorithmVc = ((MetaOptimizationProblem)metaLevelAlgorithm.Problem).ParameterConfigurationTree;
|
---|
[5009] | 660 |
|
---|
| 661 | Console.WriteLine("Starting Memory Test...");
|
---|
| 662 | Console.ReadLine();
|
---|
| 663 |
|
---|
[5023] | 664 | var clones = new List<object>();
|
---|
[5009] | 665 | for (int i = 0; i < 1000; i++) {
|
---|
| 666 | var clone = algorithmVc.Clone();
|
---|
[5023] | 667 | clones.Add(clone);
|
---|
[5009] | 668 | }
|
---|
| 669 |
|
---|
| 670 | Console.WriteLine("Finished. Now GC...");
|
---|
| 671 | Console.ReadLine();
|
---|
| 672 |
|
---|
| 673 | GC.Collect();
|
---|
| 674 |
|
---|
| 675 | Console.WriteLine("Finished!");
|
---|
| 676 | Console.ReadLine();
|
---|
| 677 | }
|
---|
| 678 |
|
---|
[6090] | 679 | private static GeneticAlgorithm GetSequentialMetaGA(MetaOptimizationProblem metaOptimizationProblem) {
|
---|
[5009] | 680 | GeneticAlgorithm metaLevelAlgorithm = new GeneticAlgorithm();
|
---|
| 681 | metaLevelAlgorithm.PopulationSize.Value = metaAlgorithmPopulationSize;
|
---|
| 682 | metaLevelAlgorithm.MaximumGenerations.Value = metaAlgorithmMaxGenerations;
|
---|
| 683 |
|
---|
| 684 | metaLevelAlgorithm.Problem = metaOptimizationProblem;
|
---|
| 685 | metaLevelAlgorithm.Engine = new SequentialEngine.SequentialEngine();
|
---|
[5207] | 686 |
|
---|
[5303] | 687 | metaLevelAlgorithm.Mutator = ((OptionalConstrainedValueParameter<IManipulator>)((IAlgorithm)metaLevelAlgorithm).Parameters["Mutator"]).ValidValues.Where(x => x.GetType() == typeof(ParameterConfigurationOnePositionsManipulator)).Single();
|
---|
| 688 | //metaLevelAlgorithm.Mutator = ((OptionalConstrainedValueParameter<IManipulator>)((IAlgorithm)metaLevelAlgorithm).Parameters["Mutator"]).ValidValues.Where(x => x.GetType() == typeof(ParameterConfigurationAllPositionsManipulator)).Single();
|
---|
[5207] | 689 |
|
---|
[6090] | 690 | metaLevelAlgorithm.MutationProbability.Value = metaAlgorithmMutationProbability;
|
---|
[5313] | 691 | //metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter<ISelector>)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(LinearRankSelector)).Single();
|
---|
| 692 | //metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter<ISelector>)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(TournamentSelector)).Single();
|
---|
| 693 | //metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter<ISelector>)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(GenderSpecificSelector)).Single();
|
---|
| 694 | //metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter<ISelector>)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(BestSelector)).Single();
|
---|
[6090] | 695 | metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter<ISelector>)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(TournamentSelector)).Single();
|
---|
[5023] | 696 |
|
---|
[6090] | 697 | metaLevelAlgorithm.SetSeedRandomly.Value = false;
|
---|
| 698 | //metaLevelAlgorithm.Seed.Value = new MersenneTwister().Next(0, 1000000);
|
---|
| 699 | metaLevelAlgorithm.Seed.Value = 527875;
|
---|
| 700 |
|
---|
[5009] | 701 | return metaLevelAlgorithm;
|
---|
| 702 | }
|
---|
| 703 |
|
---|
[5207] | 704 | private static GeneticAlgorithm GetParallelMetaGA(MetaOptimizationProblem metaOptimizationProblem) {
|
---|
[6090] | 705 | GeneticAlgorithm metaLevelAlgorithm = GetSequentialMetaGA(metaOptimizationProblem);
|
---|
[5207] | 706 | metaLevelAlgorithm.Engine = new ParallelEngine.ParallelEngine();
|
---|
[5212] | 707 | return metaLevelAlgorithm;
|
---|
| 708 | }
|
---|
[5207] | 709 |
|
---|
[6017] | 710 | //private static GeneticAlgorithm GetHiveParallelMetaGA(MetaOptimizationProblem metaOptimizationProblem) {
|
---|
| 711 | // GeneticAlgorithm metaLevelAlgorithm = GetParallelMetaGA(metaOptimizationProblem);
|
---|
| 712 | // metaLevelAlgorithm.Engine = new HiveEngine.HiveEngine();
|
---|
| 713 | // ServiceLocator.Instance.ClientFacadePool.UserName = "cneumuel";
|
---|
| 714 | // ServiceLocator.Instance.ClientFacadePool.Password = "cneumuel";
|
---|
| 715 | // ServiceLocator.Instance.StreamedClientFacadePool.UserName = "cneumuel";
|
---|
| 716 | // ServiceLocator.Instance.StreamedClientFacadePool.Password = "cneumuel";
|
---|
| 717 | // return metaLevelAlgorithm;
|
---|
| 718 | //}
|
---|
[5207] | 719 |
|
---|
[5087] | 720 | private static EvolutionStrategy GetMetaES(MetaOptimizationProblem metaOptimizationProblem) {
|
---|
| 721 | EvolutionStrategy metaLevelAlgorithm = new EvolutionStrategy();
|
---|
| 722 | metaLevelAlgorithm.PopulationSize.Value = metaAlgorithmPopulationSize;
|
---|
| 723 | metaLevelAlgorithm.MaximumGenerations.Value = metaAlgorithmMaxGenerations;
|
---|
| 724 |
|
---|
| 725 | metaLevelAlgorithm.Problem = metaOptimizationProblem;
|
---|
| 726 | metaLevelAlgorithm.Engine = new SequentialEngine.SequentialEngine();
|
---|
| 727 |
|
---|
[5184] | 728 | metaLevelAlgorithm.Mutator = ((OptionalConstrainedValueParameter<IManipulator>)((IAlgorithm)metaLevelAlgorithm).Parameters["Mutator"]).ValidValues.Last();
|
---|
[5087] | 729 |
|
---|
| 730 | return metaLevelAlgorithm;
|
---|
| 731 | }
|
---|
| 732 |
|
---|
[5313] | 733 | private static ParameterConfigurationTree SetupGAAlgorithm(Type baseLevelAlgorithmType, MetaOptimizationProblem metaOptimizationProblem) {
|
---|
| 734 | metaOptimizationProblem.AlgorithmType.Value = baseLevelAlgorithmType;
|
---|
[6090] | 735 |
|
---|
| 736 | //metaOptimizationProblem.ProblemType.Value = typeof(SingleObjectiveTestFunctionProblem);
|
---|
[5927] | 737 | //metaOptimizationProblem.Problems.Clear();
|
---|
[5653] | 738 | //metaOptimizationProblem.Problems.Add(new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem() {
|
---|
| 739 | // Evaluator = new GriewankEvaluator(),
|
---|
[5927] | 740 | // ProblemSize = new IntValue(2)
|
---|
| 741 | //});
|
---|
| 742 | //metaOptimizationProblem.Problems.Add(new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem() {
|
---|
| 743 | // Evaluator = new GriewankEvaluator(),
|
---|
[6090] | 744 | // ProblemSize = new IntValue(50)
|
---|
[5653] | 745 | //});
|
---|
| 746 | //metaOptimizationProblem.Problems.Add(new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem() {
|
---|
| 747 | // Evaluator = new GriewankEvaluator(),
|
---|
| 748 | // ProblemSize = new IntValue(500)
|
---|
| 749 | //});
|
---|
[5087] | 750 |
|
---|
[6090] | 751 | //metaOptimizationProblem.ProblemType.Value = typeof(SymbolicRegressionSingleObjectiveProblem);
|
---|
| 752 | //metaOptimizationProblem.Maximization.Value = true;
|
---|
| 753 |
|
---|
| 754 | // tower problem
|
---|
| 755 | metaOptimizationProblem.ImportAlgorithm((IAlgorithm)ContentManager.Load("Genetic Programming - Symbolic Regression 3.4_scaled.hl"));
|
---|
| 756 | metaOptimizationProblem.Maximization.Value = true;
|
---|
| 757 |
|
---|
[5927] | 758 | ParameterConfigurationTree algorithmVc = metaOptimizationProblem.ParameterConfigurationTree;
|
---|
| 759 | ((IntValue)algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MaximumGenerations").ActualValue.Value).Value = baseAlgorithmMaxGenerations;
|
---|
[6090] | 760 | ((IntValue)algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "PopulationSize").ActualValue.Value).Value = baseAlgorithmPopulationSize;
|
---|
| 761 |
|
---|
| 762 | //ConfigurePopulationSize(algorithmVc, 10, 100, 1);
|
---|
[6017] | 763 | //ConfigureMutationRate(algorithmVc, 0.0, 1.0, 0.01);
|
---|
| 764 | //ConfigureMutationOperator(algorithmVc);
|
---|
[6090] | 765 | //ConfigureElites(algorithmVc, 0, 10, 1);
|
---|
[5653] | 766 | //ConfigureSelectionOperator(algorithmVc, true);
|
---|
[5927] | 767 |
|
---|
| 768 | ConfigureSymbolicExpressionGrammar(algorithmVc);
|
---|
| 769 |
|
---|
[5009] | 770 | return algorithmVc;
|
---|
| 771 | }
|
---|
[4997] | 772 |
|
---|
[5927] | 773 | private static void ConfigureSymbolicExpressionGrammar(ParameterConfigurationTree vc) {
|
---|
| 774 | var pc = vc.ProblemConfiguration.ParameterConfigurations.Single(x => x.Name == "SymbolicExpressionTreeGrammar");
|
---|
| 775 | pc.Optimize = true;
|
---|
| 776 |
|
---|
| 777 | SymbolicExpressionGrammarValueConfiguration symbolicExpressionGrammarVc = null;
|
---|
| 778 | foreach (var valconf in pc.ValueConfigurations) {
|
---|
| 779 | if (valconf.ActualValue.Value.ItemName != "TypeCoherentExpressionGrammar") {
|
---|
| 780 | pc.ValueConfigurations.SetItemCheckedState(valconf, false);
|
---|
| 781 | } else {
|
---|
| 782 | symbolicExpressionGrammarVc = valconf as SymbolicExpressionGrammarValueConfiguration;
|
---|
| 783 | }
|
---|
| 784 | }
|
---|
| 785 |
|
---|
[6017] | 786 | ConfigureSymbolicExpressionGrammarVc(symbolicExpressionGrammarVc);
|
---|
[5927] | 787 | }
|
---|
| 788 |
|
---|
[6017] | 789 | private static void ConfigureSymbolicExpressionGrammarVc(SymbolicExpressionGrammarValueConfiguration symbolicExpressionGrammarVc) {
|
---|
| 790 | symbolicExpressionGrammarVc.Optimize = true;
|
---|
[6090] | 791 |
|
---|
| 792 | SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Addition", 1.0);
|
---|
| 793 | SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Subtraction", 1.0);
|
---|
| 794 | SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Multiplication", 1.0);
|
---|
| 795 | SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Division", 1.0);
|
---|
| 796 | SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Average", 1.0);
|
---|
| 797 |
|
---|
| 798 | SetInitialFrequencyValue(symbolicExpressionGrammarVc, "IfThenElse", 0.0);
|
---|
| 799 | SetInitialFrequencyValue(symbolicExpressionGrammarVc, "GreaterThan", 0.0);
|
---|
| 800 | SetInitialFrequencyValue(symbolicExpressionGrammarVc, "LessThan", 0.0);
|
---|
| 801 | SetInitialFrequencyValue(symbolicExpressionGrammarVc, "And", 0.0);
|
---|
| 802 | SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Or", 0.0);
|
---|
| 803 | SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Not", 0.0);
|
---|
| 804 |
|
---|
| 805 | SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Sine", 0.0);
|
---|
| 806 | SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Cosine", 0.0);
|
---|
| 807 | SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Tangent", 0.0);
|
---|
| 808 |
|
---|
| 809 | OptimizeInitialFrequency(symbolicExpressionGrammarVc, "Logarithm", "InitialFrequency", 0.0, 5.0, 0.01);
|
---|
| 810 | OptimizeInitialFrequency(symbolicExpressionGrammarVc, "Power", "InitialFrequency", 0.0, 5.0, 0.01);
|
---|
| 811 | OptimizeInitialFrequency(symbolicExpressionGrammarVc, "Root", "InitialFrequency", 0.0, 5.0, 0.01);
|
---|
| 812 |
|
---|
| 813 | OptimizeInitialFrequency(symbolicExpressionGrammarVc, "Variable", "WeightSigma", 0.01, 10.0, 0.01);
|
---|
| 814 | OptimizeInitialFrequency(symbolicExpressionGrammarVc, "Variable", "WeightManipulatorSigma", 0.01, 10.0, 0.01);
|
---|
| 815 | OptimizeInitialFrequency(symbolicExpressionGrammarVc, "Variable", "MultiplicativeWeightManipulatorSigma", 0.01, 10.0, 0.01);
|
---|
| 816 |
|
---|
| 817 | OptimizeInitialFrequency(symbolicExpressionGrammarVc, "Constant", "ManipulatorSigma", 0.01, 10.0, 0.01);
|
---|
| 818 | OptimizeInitialFrequency(symbolicExpressionGrammarVc, "Constant", "MultiplicativeManipulatorSigma", 0.01, 10.0, 0.01);
|
---|
[6017] | 819 | }
|
---|
| 820 |
|
---|
[6090] | 821 | private static void SetInitialFrequencyValue(SymbolicExpressionGrammarValueConfiguration symbolicExpressionGrammarVc, string symbolName, double value) {
|
---|
| 822 | ((Symbol)symbolicExpressionGrammarVc.ParameterConfigurations.Single(x => x.Name == symbolName).ActualValue.Value).InitialFrequency = value;
|
---|
| 823 | }
|
---|
| 824 |
|
---|
| 825 | private static void OptimizeInitialFrequency(SymbolicExpressionGrammarValueConfiguration symbolicExpressionGrammarVc, string symbolName, string parameterName, double lower, double upper, double step) {
|
---|
| 826 | var pc = symbolicExpressionGrammarVc.ParameterConfigurations.Single(x => x.Name == symbolName);
|
---|
| 827 | pc.Optimize = true;
|
---|
| 828 | var vc = (SymbolValueConfiguration)pc.ValueConfigurations.Single();
|
---|
| 829 | var parameterPc = vc.ParameterConfigurations.Single(x => x.Name == parameterName);
|
---|
| 830 | parameterPc.Optimize = true;
|
---|
| 831 | parameterPc.ValueConfigurations.Clear();
|
---|
| 832 | var rvc = new RangeValueConfiguration(new DoubleValue(5.0), typeof(DoubleValue));
|
---|
| 833 | rvc.Optimize = true;
|
---|
| 834 | ((DoubleValueRange)rvc.RangeConstraint).LowerBound.Value = lower;
|
---|
| 835 | ((DoubleValueRange)rvc.RangeConstraint).UpperBound.Value = upper;
|
---|
| 836 | ((DoubleValueRange)rvc.RangeConstraint).StepSize.Value = step;
|
---|
| 837 | parameterPc.ValueConfigurations.Add(rvc);
|
---|
| 838 | }
|
---|
| 839 |
|
---|
[5927] | 840 | private static void TestConfiguration(ParameterConfigurationTree algorithmVc, Type baseLevelAlgorithmType, IProblem problem) {
|
---|
[5023] | 841 | IRandom rand = new FastRandom(0);
|
---|
[5927] | 842 | var baseLevelAlgorithm = (GeneticAlgorithm)MetaOptimizationUtil.CreateParameterizedAlgorithmInstance(algorithmVc, baseLevelAlgorithmType, problem);
|
---|
| 843 |
|
---|
[4997] | 844 | // set random values
|
---|
| 845 | for (int i = 0; i < 10; i++) {
|
---|
[5653] | 846 | var clonedVc = (ParameterConfigurationTree)algorithmVc.Clone();
|
---|
[5111] | 847 | GeneticAlgorithm newAlg = (GeneticAlgorithm)baseLevelAlgorithm.Clone();
|
---|
[5009] | 848 | clonedVc.Randomize(rand);
|
---|
[5111] | 849 | clonedVc.Parameterize(newAlg);
|
---|
[5009] | 850 | Console.WriteLine(string.Format("PopSize: original: {0}, randomized: {1}", baseLevelAlgorithm.PopulationSize, newAlg.PopulationSize));
|
---|
[4997] | 851 | Console.WriteLine(string.Format("MutRate: original: {0}, randomized: {1}", baseLevelAlgorithm.MutationProbability, newAlg.MutationProbability));
|
---|
[5009] | 852 | Console.WriteLine(string.Format("MutOp: original: {0}, randomized: {1}", baseLevelAlgorithm.Mutator, newAlg.Mutator));
|
---|
[5023] | 853 | Console.WriteLine(string.Format("SelOp: original: {0}, randomized: {1}", baseLevelAlgorithm.Selector, newAlg.Selector));
|
---|
[5111] | 854 | //Console.WriteLine(string.Format("GrSi: original: {0}, randomized: {1}", "?", ((TournamentSelector)newAlg.Selector).GroupSizeParameter.Value));
|
---|
[5023] | 855 | Console.WriteLine("---");
|
---|
[4997] | 856 | }
|
---|
| 857 |
|
---|
[5023] | 858 | Console.WriteLine("=======================");
|
---|
| 859 | algorithmVc.Randomize(rand);
|
---|
| 860 | algorithmVc.Parameterize(baseLevelAlgorithm);
|
---|
[4997] | 861 | // mutate
|
---|
| 862 | for (int i = 0; i < 10; i++) {
|
---|
[5653] | 863 | var clonedVc = (ParameterConfigurationTree)algorithmVc.Clone();
|
---|
[5111] | 864 | GeneticAlgorithm newAlg = (GeneticAlgorithm)baseLevelAlgorithm.Clone();
|
---|
[5277] | 865 | ParameterConfigurationManipulator.Apply(rand, clonedVc, new UniformIntValueManipulator(), new NormalDoubleValueManipulator());
|
---|
| 866 | clonedVc.Parameterize(newAlg);
|
---|
[5144] | 867 |
|
---|
[5009] | 868 | Console.WriteLine(string.Format("PopSize: original: {0}, mutated: {1}", baseLevelAlgorithm.PopulationSize, newAlg.PopulationSize));
|
---|
[4997] | 869 | Console.WriteLine(string.Format("MutRate: original: {0}, mutated: {1}", baseLevelAlgorithm.MutationProbability, newAlg.MutationProbability));
|
---|
[5009] | 870 | Console.WriteLine(string.Format("MutOp: original: {0}, mutated: {1}", baseLevelAlgorithm.Mutator, newAlg.Mutator));
|
---|
[5023] | 871 | Console.WriteLine(string.Format("SelOp: original: {0}, mutated: {1}", baseLevelAlgorithm.Selector, newAlg.Selector));
|
---|
[5111] | 872 | //Console.WriteLine(string.Format("GrSi: original: {0}, mutated: {1}", ((TournamentSelector)baseLevelAlgorithm.Selector).GroupSizeParameter.Value, ((TournamentSelector)newAlg.Selector).GroupSizeParameter.Value));
|
---|
[5023] | 873 | Console.WriteLine("---");
|
---|
[4997] | 874 | }
|
---|
| 875 |
|
---|
[5023] | 876 | Console.WriteLine("=======================");
|
---|
[4997] | 877 | // cross
|
---|
| 878 | for (int i = 0; i < 10; i++) {
|
---|
[5653] | 879 | var clonedVc1 = (ParameterConfigurationTree)algorithmVc.Clone();
|
---|
| 880 | var clonedVc2 = (ParameterConfigurationTree)algorithmVc.Clone();
|
---|
[5023] | 881 |
|
---|
[5111] | 882 | GeneticAlgorithm first = (GeneticAlgorithm)baseLevelAlgorithm.Clone();
|
---|
| 883 | GeneticAlgorithm second = (GeneticAlgorithm)baseLevelAlgorithm.Clone();
|
---|
[5023] | 884 |
|
---|
[5009] | 885 | clonedVc1.Randomize(rand);
|
---|
[5023] | 886 | clonedVc1.Parameterize(first);
|
---|
[4997] | 887 |
|
---|
[5023] | 888 | clonedVc2.Randomize(rand);
|
---|
| 889 | clonedVc2.Parameterize(second);
|
---|
[4997] | 890 |
|
---|
| 891 | var popSizeBefore = first.PopulationSize.Value;
|
---|
| 892 | var mutRateBefore = first.MutationProbability.Value;
|
---|
[5009] | 893 | var mutOpBefore = first.Mutator;
|
---|
[5023] | 894 | var selOpBefore = first.Selector;
|
---|
[5111] | 895 | //var groupSizeBefore = ((TournamentSelector)first.Selector).GroupSizeParameter.Value.Value;
|
---|
[4997] | 896 |
|
---|
[5111] | 897 | //clonedVc1.Cross(clonedVc2, rand); todo
|
---|
[5277] | 898 |
|
---|
| 899 | ParameterConfigurationCrossover.Apply(rand, clonedVc1, clonedVc2, new DiscreteIntValueCrossover(), new AverageDoubleValueCrossover());
|
---|
[5023] | 900 | clonedVc1.Parameterize(first);
|
---|
[5009] | 901 |
|
---|
| 902 | Console.WriteLine(string.Format("PopSize: first: {0}, second: {1}, crossed: {2}", popSizeBefore, second.PopulationSize, first.PopulationSize));
|
---|
[4997] | 903 | Console.WriteLine(string.Format("MutRate: first: {0}, second: {1}, crossed: {2}", mutRateBefore, second.MutationProbability, first.MutationProbability));
|
---|
[5023] | 904 | Console.WriteLine(string.Format("MutOp: first: {0}, second: {1}, crossed: {2}", mutOpBefore, second.Mutator, first.Mutator));
|
---|
| 905 | Console.WriteLine(string.Format("SelOp: first: {0}, second: {1}, crossed: {2}", selOpBefore, second.Selector, first.Selector));
|
---|
[5111] | 906 | //Console.WriteLine(string.Format("GrSi: first: {0}, second: {1}, crossed: {2}", groupSizeBefore, ((TournamentSelector)second.Selector).GroupSizeParameter.Value, ((TournamentSelector)first.Selector).GroupSizeParameter.Value));
|
---|
[5023] | 907 | Console.WriteLine("---");
|
---|
[4997] | 908 | }
|
---|
[5023] | 909 | Console.WriteLine("=======================");
|
---|
[5009] | 910 | }
|
---|
[4997] | 911 |
|
---|
[5653] | 912 | private static void ConfigureMutationOperator(ParameterConfigurationTree algorithmVc) {
|
---|
[5665] | 913 | var mutationOperator = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "Mutator").SingleOrDefault();
|
---|
[5009] | 914 | mutationOperator.Optimize = true;
|
---|
| 915 |
|
---|
| 916 | // uncheck multiMutator to avoid Michalewicz issue
|
---|
[5927] | 917 | //var multiMutator = mutationOperator.ValueConfigurations.Where(x => x.ActualValue.Value != null && x.ActualValue.Value.ItemName.StartsWith("Multi")).SingleOrDefault();
|
---|
| 918 | //if (multiMutator != null) {
|
---|
| 919 | // mutationOperator.ValueConfigurations.SetItemCheckedState(multiMutator, false);
|
---|
| 920 | //}
|
---|
[5361] | 921 |
|
---|
[5653] | 922 | // add another normal - don't do this with 'new', because ActualNames will not be set correctly. It should be copied from an existing one
|
---|
| 923 | // mutationOperator.ValueConfigurations.Add(new ParameterizedValueConfiguration(new NormalAllPositionsManipulator(), typeof(NormalAllPositionsManipulator)), true);
|
---|
[4997] | 924 | }
|
---|
| 925 |
|
---|
[5653] | 926 | private static void ConfigureSelectionOperator(ParameterConfigurationTree algorithmVc, bool configureTournamenSize) {
|
---|
[5665] | 927 | var selectionOperatorPc = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "Selector").SingleOrDefault();
|
---|
[5023] | 928 | selectionOperatorPc.Optimize = true;
|
---|
| 929 |
|
---|
| 930 | foreach (var vc in selectionOperatorPc.ValueConfigurations) {
|
---|
| 931 | if (vc.ActualValue.ValueDataType == typeof(TournamentSelector)) {
|
---|
| 932 | selectionOperatorPc.ValueConfigurations.SetItemCheckedState(vc, true);
|
---|
[5144] | 933 | if (configureTournamenSize) {
|
---|
| 934 | vc.Optimize = true;
|
---|
[5653] | 935 | ConfigureTournamentGroupSize((ParameterizedValueConfiguration)vc);
|
---|
[5144] | 936 | }
|
---|
[5087] | 937 | } else if (vc.ActualValue.ValueDataType == typeof(RandomSelector)) {
|
---|
| 938 | selectionOperatorPc.ValueConfigurations.SetItemCheckedState(vc, true);
|
---|
[5023] | 939 | } else {
|
---|
[5087] | 940 | selectionOperatorPc.ValueConfigurations.SetItemCheckedState(vc, true);
|
---|
[5023] | 941 | }
|
---|
| 942 | }
|
---|
| 943 | }
|
---|
| 944 |
|
---|
[5653] | 945 | private static void ConfigureTournamentGroupSize(ParameterizedValueConfiguration tournamentVc) {
|
---|
[5023] | 946 | var groupSizePc = tournamentVc.ParameterConfigurations.Where(x => x.ParameterName == "GroupSize").SingleOrDefault();
|
---|
| 947 | groupSizePc.Optimize = true;
|
---|
[5653] | 948 | var groupSizeVc = (RangeValueConfiguration)groupSizePc.ValueConfigurations.First();
|
---|
| 949 | groupSizeVc.Optimize = true;
|
---|
| 950 | groupSizeVc.RangeConstraint.LowerBound = new IntValue(0);
|
---|
| 951 | groupSizeVc.RangeConstraint.UpperBound = new IntValue(10);
|
---|
| 952 | groupSizeVc.RangeConstraint.StepSize = new IntValue(1);
|
---|
[5023] | 953 | }
|
---|
| 954 |
|
---|
[5665] | 955 | private static void ConfigurePopulationSize(ParameterConfigurationTree algorithmVc, int lower, int upper, int stepsize) {
|
---|
| 956 | var populationSizePc = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "PopulationSize").SingleOrDefault();
|
---|
[4997] | 957 | populationSizePc.Optimize = true;
|
---|
[5653] | 958 | var populationSizeVc = (RangeValueConfiguration)populationSizePc.ValueConfigurations.First();
|
---|
[4997] | 959 | populationSizeVc.Optimize = true;
|
---|
[5144] | 960 | populationSizeVc.RangeConstraint.LowerBound = new IntValue(lower);
|
---|
| 961 | populationSizeVc.RangeConstraint.UpperBound = new IntValue(upper);
|
---|
| 962 | populationSizeVc.RangeConstraint.StepSize = new IntValue(stepsize);
|
---|
[4997] | 963 | }
|
---|
| 964 |
|
---|
[5665] | 965 | private static void ConfigureMutationRate(ParameterConfigurationTree algorithmVc, double lower, double upper, double stepsize) {
|
---|
| 966 | var mutationRatePc = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "MutationProbability").SingleOrDefault();
|
---|
[4997] | 967 | mutationRatePc.Optimize = true;
|
---|
[5653] | 968 | var mutationRateVc = (RangeValueConfiguration)mutationRatePc.ValueConfigurations.First();
|
---|
[4997] | 969 | mutationRateVc.Optimize = true;
|
---|
[5144] | 970 | mutationRateVc.RangeConstraint.LowerBound = new PercentValue(lower);
|
---|
| 971 | mutationRateVc.RangeConstraint.UpperBound = new PercentValue(upper);
|
---|
| 972 | mutationRateVc.RangeConstraint.StepSize = new PercentValue(stepsize);
|
---|
[4997] | 973 | }
|
---|
| 974 |
|
---|
[5665] | 975 | private static void ConfigureElites(ParameterConfigurationTree algorithmVc, int from, int to, int stepSize) {
|
---|
| 976 | var elitesPc = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "Elites").SingleOrDefault();
|
---|
[5023] | 977 | elitesPc.Optimize = true;
|
---|
[5653] | 978 | var elitesVc = (RangeValueConfiguration)elitesPc.ValueConfigurations.First();
|
---|
[5023] | 979 | elitesVc.Optimize = true;
|
---|
[5184] | 980 | elitesVc.RangeConstraint.LowerBound = new IntValue(from);
|
---|
| 981 | elitesVc.RangeConstraint.UpperBound = new IntValue(to);
|
---|
| 982 | elitesVc.RangeConstraint.StepSize = new IntValue(stepSize);
|
---|
[5023] | 983 | }
|
---|
| 984 |
|
---|
[5087] | 985 | private static void TestOptimization(EngineAlgorithm metaLevelAlgorithm) {
|
---|
[5023] | 986 | string path = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "Results");
|
---|
[5087] | 987 | if (!Directory.Exists(path))
|
---|
[5023] | 988 | Directory.CreateDirectory(path);
|
---|
[5087] | 989 | string id = DateTime.Now.ToString("yyyy.MM.dd - HH;mm;ss,ffff");
|
---|
| 990 | string resultPath = Path.Combine(path, string.Format("{0} - Result.hl", id));
|
---|
| 991 | string outputPath = Path.Combine(path, string.Format("{0} - Console.txt", id));
|
---|
[5023] | 992 |
|
---|
[6090] | 993 | ContentManager.Save((IStorableContent)metaLevelAlgorithm, resultPath + "-before.hl", true);
|
---|
| 994 |
|
---|
[5023] | 995 | using (var sw = new StreamWriter(outputPath)) {
|
---|
[5087] | 996 | sw.AutoFlush = true;
|
---|
| 997 |
|
---|
| 998 | StringBuilder sb1 = new StringBuilder();
|
---|
[5207] | 999 | sb1.AppendFormat("Meta.PopulationSize: {0}\n", metaAlgorithmPopulationSize);
|
---|
| 1000 | sb1.AppendFormat("Meta.MaxGenerations: {0}\n", metaAlgorithmMaxGenerations);
|
---|
| 1001 | sb1.AppendFormat("Meta.Repetitions : {0}\n", metaProblemRepetitions);
|
---|
| 1002 | sb1.AppendFormat("Meta.MutProb : {0}\n", ((GeneticAlgorithm)metaLevelAlgorithm).MutationProbability.Value);
|
---|
[6090] | 1003 | sb1.AppendFormat("Meta.Seed : {0}\n", ((GeneticAlgorithm)metaLevelAlgorithm).Seed.Value);
|
---|
[5207] | 1004 | sb1.AppendFormat("Base.MaxGenerations: {0}\n", baseAlgorithmMaxGenerations);
|
---|
[6090] | 1005 |
|
---|
[5207] | 1006 | sb1.AppendLine("Problems:");
|
---|
| 1007 | foreach (var prob in ((MetaOptimizationProblem)metaLevelAlgorithm.Problem).Problems) {
|
---|
| 1008 | sb1.Append(prob.Name);
|
---|
| 1009 | var sotf = prob as SingleObjectiveTestFunctionProblem;
|
---|
| 1010 | if (sotf != null) {
|
---|
| 1011 | sb1.AppendFormat(" {0}", sotf.ProblemSize.Value);
|
---|
| 1012 | }
|
---|
| 1013 | sb1.AppendLine();
|
---|
| 1014 | }
|
---|
[5087] | 1015 | sw.WriteLine(sb1.ToString());
|
---|
| 1016 | Console.WriteLine(sb1.ToString());
|
---|
[5184] | 1017 | metaLevelAlgorithm.Stopped += new EventHandler(metaLevelAlgorithm_Stopped);
|
---|
| 1018 | metaLevelAlgorithm.Paused += new EventHandler(metaLevelAlgorithm_Paused);
|
---|
| 1019 | metaLevelAlgorithm.ExceptionOccurred += new EventHandler<EventArgs<Exception>>(metaLevelAlgorithm_ExceptionOccurred);
|
---|
[5087] | 1020 |
|
---|
[5023] | 1021 | metaLevelAlgorithm.Start();
|
---|
| 1022 | int i = 0;
|
---|
| 1023 | int currentGeneration = -1;
|
---|
| 1024 | do {
|
---|
[5277] | 1025 | Thread.Sleep(1000);
|
---|
[5087] | 1026 | if (metaLevelAlgorithm.Results.ContainsKey("Generations") && ((IntValue)metaLevelAlgorithm.Results["Generations"].Value).Value != currentGeneration) {
|
---|
[5281] | 1027 | while (metaLevelAlgorithm.Results.Count < 6) Thread.Sleep(1000);
|
---|
[5087] | 1028 | StringBuilder sb = new StringBuilder();
|
---|
| 1029 | sb.AppendLine(DateTime.Now.ToLongTimeString());
|
---|
| 1030 | sb.AppendLine("=================================");
|
---|
[5023] | 1031 |
|
---|
[5111] | 1032 | sb.AppendLine(metaLevelAlgorithm.ExecutionState.ToString());
|
---|
[5281] | 1033 | ResultCollection rsClone = null;
|
---|
| 1034 | while (rsClone == null) {
|
---|
| 1035 | try {
|
---|
| 1036 | rsClone = (ResultCollection)metaLevelAlgorithm.Results.Clone();
|
---|
| 1037 | }
|
---|
| 1038 | catch { }
|
---|
| 1039 | }
|
---|
[5207] | 1040 | foreach (var result in rsClone) {
|
---|
[5087] | 1041 | sb.AppendLine(result.ToString());
|
---|
| 1042 | if (result.Name == "Population") {
|
---|
| 1043 | RunCollection rc = (RunCollection)result.Value;
|
---|
[5212] | 1044 | var orderedRuns = rc.OrderBy(x => x.Results["AverageQualityNormalized"]);
|
---|
[5087] | 1045 |
|
---|
[6090] | 1046 | //TableBuilder tb = new TableBuilder("QNorm", "Qualities"/*, "PoSi"*/ /*,"MutRa"*/ /*,"Eli", "SelOp",*/ /*"MutOp"*//*, "NrSelSubScopes"*/);
|
---|
| 1047 | //foreach (IRun run in orderedRuns) {
|
---|
| 1048 | // //string selector;
|
---|
| 1049 | // //if (run.Parameters["Selector"] is TournamentSelector) {
|
---|
| 1050 | // // selector = string.Format("{0} ({1})", run.Parameters["Selector"].ToString(), ((TournamentSelector)run.Parameters["Selector"]).GroupSizeParameter.Value.ToString());
|
---|
| 1051 | // //} else {
|
---|
| 1052 | // // selector = string.Format("{0}", run.Parameters["Selector"].ToString());
|
---|
| 1053 | // //}
|
---|
| 1054 |
|
---|
| 1055 | // tb.AppendRow(
|
---|
| 1056 | // ((DoubleValue)run.Results["AverageQualityNormalized"]).Value.ToString("#0.0000")
|
---|
| 1057 | // ,((DoubleArray)run.Results["RunsAverageQualities"]).ToString()
|
---|
| 1058 | // //,((IntValue)run.Parameters["PopulationSize"]).Value.ToString()
|
---|
| 1059 | // //,((DoubleValue)run.Parameters["MutationProbability"]).Value.ToString("0.0000")
|
---|
| 1060 | // //,((IntValue)run.Parameters["Elites"]).Value.ToString()
|
---|
| 1061 | // //,Shorten(selector, 20)
|
---|
| 1062 | // //,Shorten(run.Parameters.ContainsKey("Mutator") ? run.Parameters["Mutator"].ToString() : "null", 40)
|
---|
| 1063 | // //,((ISelector)run.Parameters["Selector"]).NumberOfSelectedSubScopesParameter.Value.ToString()
|
---|
| 1064 | // );
|
---|
| 1065 | //}
|
---|
| 1066 | //sb.AppendLine(tb.ToString());
|
---|
| 1067 |
|
---|
| 1068 | var tb = new TableBuilder("QNorm", "Qualities", "StdDevs", "Evaluations", "Parameters");
|
---|
[5087] | 1069 | foreach (IRun run in orderedRuns) {
|
---|
[5207] | 1070 | tb.AppendRow(
|
---|
[5927] | 1071 | ((DoubleValue)run.Results["AverageQualityNormalized"]).Value.ToString("#0.0000")
|
---|
[6090] | 1072 | , ((DoubleArray)run.Results["RunsAverageQualities"]).ToString()
|
---|
| 1073 | , ((DoubleArray)run.Results["RunsQualityStandardDeviations"]).ToString()
|
---|
| 1074 | , ((DoubleArray)run.Results["RunsAverageEvaluatedSolutions"]).ToString()
|
---|
| 1075 | , run.Name
|
---|
[5653] | 1076 | );
|
---|
[5023] | 1077 | }
|
---|
[5207] | 1078 | sb.AppendLine(tb.ToString());
|
---|
[5087] | 1079 | }
|
---|
| 1080 | } // foreach
|
---|
[5207] | 1081 | //Console.Clear();
|
---|
[5087] | 1082 | Console.WriteLine(sb.ToString());
|
---|
| 1083 | sw.WriteLine(sb.ToString());
|
---|
| 1084 | currentGeneration = ((IntValue)metaLevelAlgorithm.Results["Generations"].Value).Value;
|
---|
| 1085 | } // if
|
---|
[5207] | 1086 | //if (i % 30 == 0) GC.Collect();
|
---|
[5087] | 1087 | i++;
|
---|
[5023] | 1088 | } while (metaLevelAlgorithm.ExecutionState != ExecutionState.Stopped);
|
---|
| 1089 | }
|
---|
[5009] | 1090 |
|
---|
[5023] | 1091 | Console.WriteLine();
|
---|
| 1092 | Console.WriteLine("Storing...");
|
---|
| 1093 |
|
---|
[5087] | 1094 | ContentManager.Save((IStorableContent)metaLevelAlgorithm, resultPath, true);
|
---|
[5009] | 1095 | Console.WriteLine("Finished");
|
---|
| 1096 | }
|
---|
| 1097 |
|
---|
[5184] | 1098 | private static void metaLevelAlgorithm_ExceptionOccurred(object sender, EventArgs<Exception> e) {
|
---|
| 1099 | Console.WriteLine("metaLevelAlgorithm_ExceptionOccurred");
|
---|
[5212] | 1100 | Console.WriteLine(e.Value.ToString());
|
---|
| 1101 | if (e.Value.InnerException != null) {
|
---|
| 1102 | Console.WriteLine(e.Value.InnerException.ToString());
|
---|
| 1103 | }
|
---|
[5184] | 1104 | }
|
---|
| 1105 |
|
---|
| 1106 | private static void metaLevelAlgorithm_Paused(object sender, EventArgs e) {
|
---|
| 1107 | Console.WriteLine("metaLevelAlgorithm_Paused");
|
---|
| 1108 | }
|
---|
| 1109 |
|
---|
| 1110 | private static void metaLevelAlgorithm_Stopped(object sender, EventArgs e) {
|
---|
| 1111 | Console.WriteLine("metaLevelAlgorithm_Stopped");
|
---|
| 1112 | }
|
---|
| 1113 |
|
---|
[5087] | 1114 | private static void TestShorten() {
|
---|
| 1115 | int n = 8;
|
---|
| 1116 | Console.WriteLine(Shorten("1", n));
|
---|
| 1117 | Console.WriteLine(Shorten("12", n));
|
---|
| 1118 | Console.WriteLine(Shorten("123", n));
|
---|
| 1119 | Console.WriteLine(Shorten("1234", n));
|
---|
| 1120 | Console.WriteLine(Shorten("12345", n));
|
---|
| 1121 | Console.WriteLine(Shorten("123456", n));
|
---|
| 1122 | Console.WriteLine(Shorten("1234567", n));
|
---|
| 1123 | Console.WriteLine(Shorten("12345678", n));
|
---|
| 1124 | Console.WriteLine(Shorten("123456789", n));
|
---|
| 1125 | Console.WriteLine(Shorten("1234567890", n));
|
---|
| 1126 | Console.WriteLine(Shorten("12345678901", n));
|
---|
| 1127 | }
|
---|
| 1128 |
|
---|
| 1129 | private static string Shorten(string s, int n) {
|
---|
| 1130 | string placeholder = "..";
|
---|
| 1131 | if (s.Length <= n) return s;
|
---|
| 1132 | int len = n / 2 - placeholder.Length / 2;
|
---|
| 1133 | string start = s.Substring(0, len);
|
---|
| 1134 | string end = s.Substring(s.Length - len, len);
|
---|
| 1135 | return start + placeholder + end;
|
---|
| 1136 | }
|
---|
| 1137 |
|
---|
[4997] | 1138 | private static void TestIntSampling() {
|
---|
| 1139 | System.Random rand = new System.Random();
|
---|
| 1140 | int lower = 10;
|
---|
| 1141 | int upper = 20;
|
---|
[5207] | 1142 | int stepsize = 1;
|
---|
[4997] | 1143 | for (int i = 0; i < 100; i++) {
|
---|
| 1144 | int val;
|
---|
| 1145 | do {
|
---|
| 1146 | val = rand.Next(lower / stepsize, upper / stepsize + 1) * stepsize;
|
---|
| 1147 | } while (val < lower || val > upper);
|
---|
| 1148 | Console.WriteLine(val);
|
---|
| 1149 | }
|
---|
| 1150 | }
|
---|
| 1151 |
|
---|
| 1152 | private static void TestDoubleSampling() {
|
---|
[6038] | 1153 | var random = new MersenneTwister();
|
---|
| 1154 | double lower = 0;
|
---|
| 1155 | double upper = 1;
|
---|
| 1156 | double stepsize = 0.0000001;
|
---|
| 1157 | DoubleValueRange range = new DoubleValueRange(new DoubleValue(lower), new DoubleValue(upper), new DoubleValue(stepsize));
|
---|
| 1158 |
|
---|
| 1159 | using (var sw = new StreamWriter("out-DoubleValue.txt")) {
|
---|
| 1160 | for (int i = 0; i < 10000; i++) {
|
---|
| 1161 | var val = range.GetRandomValue(random);
|
---|
| 1162 | Debug.Assert(val.Value >= lower && val.Value <= upper);
|
---|
| 1163 | sw.WriteLine(val);
|
---|
| 1164 | }
|
---|
[4997] | 1165 | }
|
---|
| 1166 | }
|
---|
| 1167 |
|
---|
| 1168 | private static IEnumerable<IItem> GetValidValues(IValueParameter valueParameter) {
|
---|
| 1169 | return ApplicationManager.Manager.GetInstances(valueParameter.DataType).Select(x => (IItem)x).OrderBy(x => x.ItemName);
|
---|
| 1170 | }
|
---|
| 1171 | }
|
---|
[5144] | 1172 |
|
---|
| 1173 | public class Node {
|
---|
| 1174 | public string Name { get; set; }
|
---|
| 1175 | public int ActualValue { get; set; }
|
---|
| 1176 | public int[] PossibleValues { get; set; }
|
---|
| 1177 | public List<Node> ChildNodes { get; set; }
|
---|
| 1178 |
|
---|
| 1179 | public Node(string name) {
|
---|
| 1180 | this.Name = name;
|
---|
| 1181 | PossibleValues = new int[] { 1, 2, 3 };
|
---|
| 1182 | ChildNodes = new List<Node>();
|
---|
| 1183 | }
|
---|
| 1184 |
|
---|
| 1185 | public void Init() {
|
---|
| 1186 | this.ActualValue = PossibleValues.First();
|
---|
| 1187 | foreach (var child in ChildNodes) {
|
---|
| 1188 | child.Init();
|
---|
| 1189 | }
|
---|
| 1190 | }
|
---|
| 1191 |
|
---|
| 1192 | public override string ToString() {
|
---|
| 1193 | StringBuilder sb = new StringBuilder();
|
---|
| 1194 | sb.Append(string.Format("{0}:{1}", this.Name, this.ActualValue));
|
---|
| 1195 | if (this.ChildNodes.Count() > 0) {
|
---|
| 1196 | sb.Append(" (");
|
---|
| 1197 | var lst = new List<string>();
|
---|
| 1198 | foreach (Node child in ChildNodes) {
|
---|
| 1199 | lst.Add(child.ToString());
|
---|
| 1200 | }
|
---|
| 1201 | sb.Append(string.Join(", ", lst.ToArray()));
|
---|
| 1202 | sb.Append(")");
|
---|
| 1203 | }
|
---|
| 1204 |
|
---|
| 1205 | return sb.ToString();
|
---|
| 1206 | }
|
---|
| 1207 | }
|
---|
| 1208 |
|
---|
| 1209 | public class NodeEnumerator : IEnumerator<Node> {
|
---|
| 1210 | private Node node;
|
---|
| 1211 | private List<IEnumerator> enumerators;
|
---|
| 1212 |
|
---|
| 1213 | public NodeEnumerator(Node node) {
|
---|
| 1214 | this.node = node;
|
---|
| 1215 | this.enumerators = new List<IEnumerator>();
|
---|
| 1216 | }
|
---|
| 1217 |
|
---|
| 1218 | public Node Current {
|
---|
| 1219 | get { return node; }
|
---|
| 1220 | }
|
---|
| 1221 | object IEnumerator.Current {
|
---|
| 1222 | get { return Current; }
|
---|
| 1223 | }
|
---|
| 1224 |
|
---|
| 1225 | public void Dispose() { }
|
---|
| 1226 |
|
---|
| 1227 | public bool MoveNext() {
|
---|
| 1228 | int i = 0;
|
---|
| 1229 | bool ok = false;
|
---|
[5207] | 1230 | while (!ok && i < enumerators.Count) {
|
---|
| 1231 | if (enumerators[i].MoveNext()) {
|
---|
[5144] | 1232 | ok = true;
|
---|
| 1233 | } else {
|
---|
| 1234 | i++;
|
---|
| 1235 | }
|
---|
| 1236 | }
|
---|
| 1237 |
|
---|
| 1238 | if (ok) {
|
---|
[5207] | 1239 | for (int k = i - 1; k >= 0; k--) {
|
---|
[5144] | 1240 | enumerators[k].Reset();
|
---|
| 1241 | enumerators[k].MoveNext();
|
---|
| 1242 | }
|
---|
| 1243 | } else {
|
---|
| 1244 | return false;
|
---|
| 1245 | }
|
---|
| 1246 |
|
---|
| 1247 | node.ActualValue = (int)enumerators[0].Current;
|
---|
| 1248 | return true;
|
---|
| 1249 | }
|
---|
| 1250 |
|
---|
| 1251 | public void Reset() {
|
---|
| 1252 | enumerators.Clear();
|
---|
| 1253 | enumerators.Add(node.PossibleValues.GetEnumerator());
|
---|
| 1254 | enumerators[0].Reset();
|
---|
| 1255 |
|
---|
| 1256 | foreach (var child in node.ChildNodes) {
|
---|
| 1257 | var enumerator = new NodeEnumerator(child);
|
---|
| 1258 | enumerator.Reset();
|
---|
| 1259 | enumerator.MoveNext();
|
---|
| 1260 | enumerators.Add(enumerator);
|
---|
| 1261 | }
|
---|
| 1262 | }
|
---|
| 1263 | }
|
---|
[4997] | 1264 | }
|
---|