[5144] | 1 | using System;
|
---|
| 2 | using System.Collections;
|
---|
| 3 | using System.Collections.Generic;
|
---|
[5653] | 4 | using System.Diagnostics;
|
---|
[5144] | 5 | using System.IO;
|
---|
[4997] | 6 | using System.Linq;
|
---|
[5653] | 7 | using System.Reflection;
|
---|
[5144] | 8 | using System.Text;
|
---|
| 9 | using System.Threading;
|
---|
[5653] | 10 | using System.Threading.Tasks;
|
---|
[5144] | 11 | using HeuristicLab.Algorithms.EvolutionStrategy;
|
---|
[4997] | 12 | using HeuristicLab.Algorithms.GeneticAlgorithm;
|
---|
[5144] | 13 | using HeuristicLab.Common;
|
---|
[4997] | 14 | using HeuristicLab.Core;
|
---|
[5144] | 15 | using HeuristicLab.Data;
|
---|
[5927] | 16 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
[5653] | 17 | using HeuristicLab.Hive.ExperimentManager;
|
---|
[5144] | 18 | using HeuristicLab.Optimization;
|
---|
[5653] | 19 | using HeuristicLab.Parameters;
|
---|
[4997] | 20 | using HeuristicLab.PluginInfrastructure;
|
---|
[5653] | 21 | using HeuristicLab.PluginInfrastructure.Manager;
|
---|
[5927] | 22 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
| 23 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
[4997] | 24 | using HeuristicLab.Problems.MetaOptimization;
|
---|
[5144] | 25 | using HeuristicLab.Problems.TestFunctions;
|
---|
[5009] | 26 | using HeuristicLab.Random;
|
---|
[5023] | 27 | using HeuristicLab.Selection;
|
---|
[4997] | 28 |
|
---|
| 29 | namespace HeuristicLab.MetaOptimization.Test {
|
---|
| 30 | class Program {
|
---|
[5522] | 31 | static void Main(string[] args) {
|
---|
| 32 | //PluginLoader.pluginAssemblies.Any();
|
---|
| 33 | PluginManager pm = new PluginManager(Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location));
|
---|
| 34 | pm.DiscoverAndCheckPlugins();
|
---|
| 35 |
|
---|
| 36 | pm.Run(pm.Applications.Where(x => x.Name == "TestApp").SingleOrDefault());
|
---|
| 37 | }
|
---|
| 38 | }
|
---|
| 39 |
|
---|
| 40 | [Plugin("TestPlugin", "1.0.0.0")]
|
---|
| 41 | [PluginFile("HeuristicLab.MetaOptimization.Test.exe", PluginFileType.Assembly)]
|
---|
| 42 | public class TestPlugin : PluginBase { }
|
---|
| 43 |
|
---|
| 44 | [Application("TestApp")]
|
---|
| 45 | public class TestApp : ApplicationBase {
|
---|
[5212] | 46 | //private static int metaAlgorithmPopulationSize = 50;
|
---|
| 47 | //private static int metaAlgorithmMaxGenerations = 30;
|
---|
| 48 | //private static int metaProblemRepetitions = 5;
|
---|
| 49 | //private static int baseAlgorithmMaxGenerations = 1000;
|
---|
[5009] | 50 |
|
---|
[5927] | 51 | private static int metaAlgorithmPopulationSize = 10;
|
---|
[5576] | 52 | private static int metaAlgorithmMaxGenerations = 15;
|
---|
[5927] | 53 | private static int metaProblemRepetitions = 3;
|
---|
| 54 | private static int baseAlgorithmMaxGenerations = 10;
|
---|
[5313] | 55 | private static double mutationProbability = 0.10;
|
---|
[5009] | 56 |
|
---|
[5522] | 57 | public override void Run() {
|
---|
[5267] | 58 | ContentManager.Initialize(new PersistenceContentManager());
|
---|
[5522] | 59 |
|
---|
[5207] | 60 | //TestTableBuilder();
|
---|
[5087] | 61 | //TestShorten();
|
---|
| 62 |
|
---|
[5522] | 63 | //TestSimilarities(); return;
|
---|
[4997] | 64 | //TestIntSampling();
|
---|
[5207] | 65 | //TestDoubleSampling(); return;
|
---|
[5110] | 66 | //TestTypeDiscovery();
|
---|
[5111] | 67 | //TestOperators();
|
---|
[5144] | 68 | //TestCombinations();
|
---|
| 69 | //TestCombinations2();
|
---|
| 70 | //TestCombinations3();
|
---|
[5184] | 71 | //TestEnumeratorCollectionEnumerator();
|
---|
[5522] | 72 | //TestCombinations4(); return;
|
---|
[5653] | 73 | //TestAlgorithmPerformanceIssue(); return;
|
---|
[5262] | 74 | //TestWaitAny();
|
---|
[5267] | 75 | //TestExecutionTimeUpdateInvervalPerformance();
|
---|
[5277] | 76 | //TestMemoryConsumption();
|
---|
[5293] | 77 | //TestNormalCrossover();
|
---|
[5303] | 78 | //TestItemDictionary();
|
---|
[5927] | 79 |
|
---|
| 80 | //TestSymbolicDataAnalysisGrammar(); return;
|
---|
| 81 |
|
---|
[4997] | 82 | MetaOptimizationProblem metaOptimizationProblem = new MetaOptimizationProblem();
|
---|
[5110] | 83 | metaOptimizationProblem.Repetitions = new IntValue(metaProblemRepetitions);
|
---|
[5340] | 84 | GeneticAlgorithm metaLevelAlgorithm = GetMetaGA(metaOptimizationProblem);
|
---|
| 85 | //GeneticAlgorithm metaLevelAlgorithm = GetParallelMetaGA(metaOptimizationProblem);
|
---|
[5212] | 86 | //GeneticAlgorithm metaLevelAlgorithm = GetHiveParallelMetaGA(metaOptimizationProblem);
|
---|
| 87 |
|
---|
[5087] | 88 | //EvolutionStrategy metaLevelAlgorithm = GetMetaES(metaOptimizationProblem);
|
---|
[5009] | 89 |
|
---|
[5653] | 90 | var algorithmVc = SetupGAAlgorithm(typeof(GeneticAlgorithm), metaOptimizationProblem);
|
---|
[5009] | 91 |
|
---|
[5144] | 92 | //TestToString(algorithmVc);
|
---|
| 93 |
|
---|
| 94 |
|
---|
[5023] | 95 | //Console.WriteLine("Press enter to start");
|
---|
| 96 | //Console.ReadLine();
|
---|
[5927] | 97 | TestConfiguration(algorithmVc, typeof(GeneticAlgorithm), metaOptimizationProblem.Problems.First());
|
---|
[5144] | 98 |
|
---|
[5665] | 99 | Console.WriteLine("Press enter to start");
|
---|
| 100 | Console.ReadLine();
|
---|
[5009] | 101 | TestOptimization(metaLevelAlgorithm);
|
---|
| 102 |
|
---|
| 103 | //TestMemoryLeak(metaLevelAlgorithm);
|
---|
| 104 |
|
---|
| 105 | Console.ReadLine();
|
---|
| 106 | }
|
---|
| 107 |
|
---|
[5927] | 108 | private void TestSymbolicDataAnalysisGrammar() {
|
---|
| 109 | var random = new MersenneTwister();
|
---|
| 110 |
|
---|
| 111 | var grammar1 = new TypeCoherentExpressionGrammar();
|
---|
| 112 | var grammar2 = new TypeCoherentExpressionGrammar();
|
---|
| 113 |
|
---|
| 114 | grammar2.Symbols.Single(x => x.Name == "Addition").InitialFrequency = 0.5;
|
---|
| 115 |
|
---|
| 116 | Console.WriteLine("========== Grammar1: ==========");
|
---|
| 117 | PrintGrammar(grammar1);
|
---|
| 118 | Console.WriteLine("========== Grammar2: ==========");
|
---|
| 119 | PrintGrammar(grammar2);
|
---|
| 120 |
|
---|
| 121 |
|
---|
| 122 | RealVector v1 = GetInitialFrequenciesAsRealVector(grammar1);
|
---|
| 123 | RealVector v2 = GetInitialFrequenciesAsRealVector(grammar2);
|
---|
| 124 |
|
---|
| 125 | for (int i = 0; i < 10; i++) {
|
---|
| 126 | RealVector v3 = DiscreteCrossover.Apply(random, new ItemArray<RealVector>(new List<RealVector> { v1, v2 }));
|
---|
| 127 |
|
---|
| 128 | var grammar3 = new TypeCoherentExpressionGrammar();
|
---|
| 129 | SetInitialFrequenciesFromRealVector(grammar3, v3);
|
---|
| 130 |
|
---|
| 131 | Console.WriteLine("\n========== Crossed: ==========");
|
---|
| 132 | PrintGrammar(grammar3);
|
---|
| 133 | }
|
---|
| 134 |
|
---|
| 135 | }
|
---|
| 136 |
|
---|
| 137 | private static void PrintGrammar(TypeCoherentExpressionGrammar grammar) {
|
---|
| 138 | foreach (var symbol in grammar.Symbols) {
|
---|
| 139 | Console.WriteLine("{0} ({1})", symbol.ToString(), symbol.InitialFrequency);
|
---|
| 140 | }
|
---|
| 141 | }
|
---|
| 142 |
|
---|
| 143 | private static RealVector GetInitialFrequenciesAsRealVector(TypeCoherentExpressionGrammar grammar) {
|
---|
| 144 | var vector = new RealVector(grammar.Symbols.Count());
|
---|
| 145 | for (int i = 0; i < grammar.Symbols.Count(); i++) {
|
---|
| 146 | vector[i] = grammar.Symbols.ElementAt(i).InitialFrequency;
|
---|
| 147 | }
|
---|
| 148 | return vector;
|
---|
| 149 | }
|
---|
| 150 |
|
---|
| 151 | private static void SetInitialFrequenciesFromRealVector(TypeCoherentExpressionGrammar grammar, RealVector vector) {
|
---|
| 152 | for (int i = 0; i < grammar.Symbols.Count(); i++) {
|
---|
| 153 | grammar.Symbols.ElementAt(i).InitialFrequency = vector[i];
|
---|
| 154 | }
|
---|
| 155 | }
|
---|
| 156 |
|
---|
[5522] | 157 | private static void TestSimilarities() {
|
---|
| 158 | Console.WriteLine("\nDoubleRange:");
|
---|
| 159 | var doubleRange = new DoubleValueRange(new DoubleValue(0), new DoubleValue(10), new DoubleValue(1));
|
---|
| 160 | var a = new DoubleValue(5.0);
|
---|
| 161 |
|
---|
| 162 | for (double d = 0; d < 10; d += 0.1) {
|
---|
| 163 | var similarity = doubleRange.CalculateSimilarity(a, new DoubleValue(d));
|
---|
| 164 | Console.WriteLine("{0}: {1}", d, similarity);
|
---|
| 165 | }
|
---|
| 166 |
|
---|
| 167 | Console.WriteLine("\nPecentRange:");
|
---|
| 168 | var percentRange = new PercentValueRange(new PercentValue(0), new PercentValue(1), new PercentValue(1));
|
---|
| 169 | var b = new PercentValue(0.05);
|
---|
| 170 |
|
---|
| 171 | for (double d = 0; d < 1; d += 0.01) {
|
---|
| 172 | var similarity = percentRange.CalculateSimilarity(b, new PercentValue(d));
|
---|
| 173 | Console.WriteLine("{0}: {1}", d, similarity);
|
---|
| 174 | }
|
---|
| 175 |
|
---|
| 176 | Console.WriteLine("\nIntRange:");
|
---|
| 177 | var intRange = new IntValueRange(new IntValue(50), new IntValue(100), new IntValue(1));
|
---|
| 178 | var c = new IntValue(90);
|
---|
| 179 |
|
---|
| 180 | for (int i = 0; i < 100; i++) {
|
---|
| 181 | var similarity = intRange.CalculateSimilarity(c, new IntValue(i));
|
---|
| 182 | Console.WriteLine("{0}: {1}", i, similarity);
|
---|
| 183 | }
|
---|
| 184 |
|
---|
| 185 | Console.WriteLine("\nValueConfigurations:");
|
---|
| 186 | var vc1 = SetupGAAlgorithm(typeof(GeneticAlgorithm), new MetaOptimizationProblem());
|
---|
[5665] | 187 | vc1.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "Elites").Optimize = true;
|
---|
| 188 | vc1.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "PopulationSize").Optimize = true;
|
---|
| 189 | vc1.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").Optimize = true;
|
---|
| 190 | vc1.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "Selector").Optimize = true;
|
---|
[5522] | 191 |
|
---|
[5653] | 192 | var vc2 = (ParameterConfigurationTree)vc1.Clone();
|
---|
[5522] | 193 | Console.WriteLine("Assert(1): {0}", vc1.CalculateSimilarity(vc2));
|
---|
| 194 |
|
---|
[5665] | 195 | ((IntValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "PopulationSize").ValueConfigurations[0].ActualValue.Value).Value = 75;
|
---|
[5522] | 196 | Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2));
|
---|
| 197 |
|
---|
[5665] | 198 | ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.15;
|
---|
[5522] | 199 | Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2));
|
---|
| 200 |
|
---|
[5665] | 201 | ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.25;
|
---|
[5522] | 202 | Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2));
|
---|
[5665] | 203 | ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.35;
|
---|
[5522] | 204 | Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2));
|
---|
[5665] | 205 | ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.45;
|
---|
[5522] | 206 | Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2));
|
---|
[5665] | 207 | ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.55;
|
---|
[5522] | 208 | Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2));
|
---|
| 209 |
|
---|
[5665] | 210 | vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "Selector").ActualValueConfigurationIndex = 3;
|
---|
[5522] | 211 | Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2));
|
---|
| 212 |
|
---|
| 213 | var random = new Random.MersenneTwister(0);
|
---|
| 214 | for (int i = 0; i < 10; i++) {
|
---|
| 215 | vc2.Randomize(random);
|
---|
| 216 | Console.WriteLine("Randomized: {0}", vc1.CalculateSimilarity(vc2));
|
---|
| 217 | }
|
---|
| 218 | }
|
---|
| 219 |
|
---|
[5303] | 220 | private static void TestItemDictionary() {
|
---|
| 221 | var dict = new ItemDictionary<StringValue, RunCollection>();
|
---|
| 222 | dict.Add(new StringValue("a"), new RunCollection());
|
---|
| 223 | dict.Add(new StringValue("b"), new RunCollection());
|
---|
| 224 | dict.Add(new StringValue("c"), new RunCollection());
|
---|
| 225 |
|
---|
| 226 | Console.WriteLine(dict.ContainsKey(new StringValue("a")));
|
---|
| 227 | Console.WriteLine(dict.Count(x => x.Key.Value == "a"));
|
---|
| 228 |
|
---|
| 229 | }
|
---|
| 230 |
|
---|
[5293] | 231 | private static void TestNormalCrossover() {
|
---|
| 232 | var random = new MersenneTwister();
|
---|
| 233 | double d1 = 0.5;
|
---|
| 234 | double d2 = 0.6;
|
---|
| 235 | var doubleRange = new DoubleValueRange(new DoubleValue(0.0), new DoubleValue(1.0), new DoubleValue(0.01));
|
---|
| 236 |
|
---|
| 237 | using (var sw = new StreamWriter("normalCrossover-DoubleValue.txt")) {
|
---|
| 238 | for (int i = 0; i < 10000; i++) {
|
---|
| 239 | sw.WriteLine(NormalDoubleValueCrossover.ApplyStatic(random, new DoubleValue(d1), new DoubleValue(d2), doubleRange));
|
---|
| 240 | }
|
---|
| 241 | }
|
---|
| 242 |
|
---|
| 243 | int i1 = 180;
|
---|
| 244 | int i2 = 160;
|
---|
| 245 | var intRange = new IntValueRange(new IntValue(100), new IntValue(200), new IntValue(1));
|
---|
| 246 |
|
---|
| 247 | using (var sw = new StreamWriter("normalCrossover-IntValue.txt")) {
|
---|
| 248 | for (int i = 0; i < 10000; i++) {
|
---|
[5522] | 249 | sw.WriteLine(NormalIntValueCrossover.ApplyStatic(random, new IntValue(i1), new IntValue(i2), intRange));
|
---|
[5293] | 250 | }
|
---|
| 251 | }
|
---|
| 252 | }
|
---|
| 253 |
|
---|
[5267] | 254 | private static void TestMemoryConsumption() {
|
---|
| 255 | Queue<TimeSpan> latestExecutionTimes = new Queue<TimeSpan>();
|
---|
| 256 | GeneticAlgorithm ga = new GeneticAlgorithm();
|
---|
| 257 | ga.PopulationSize.Value = 3;
|
---|
| 258 | ga.MaximumGenerations.Value = 1;
|
---|
| 259 | ga.Engine = new SequentialEngine.SequentialEngine();
|
---|
[5313] | 260 | throw new NotImplementedException("TODO: set ga properties correctly");
|
---|
[5267] | 261 |
|
---|
| 262 | MetaOptimizationProblem metaOptimizationProblem = new MetaOptimizationProblem();
|
---|
| 263 | metaOptimizationProblem.Repetitions = new IntValue(metaProblemRepetitions);
|
---|
| 264 | GeneticAlgorithm metaLevelAlgorithm = GetMetaGA(metaOptimizationProblem);
|
---|
[5313] | 265 | ParameterConfigurationTree algorithmVc = SetupGAAlgorithm(typeof(GeneticAlgorithm), metaOptimizationProblem);
|
---|
[5267] | 266 | Stopwatch sw = new Stopwatch();
|
---|
| 267 |
|
---|
| 268 | var algs = new List<IAlgorithm>();
|
---|
| 269 | for (int i = 0; i < 10000; i++) {
|
---|
| 270 | sw.Start();
|
---|
| 271 | GeneticAlgorithm clonedGa = (GeneticAlgorithm)ga.Clone();
|
---|
| 272 | clonedGa.Name = "CLONED GA";
|
---|
| 273 | algorithmVc.Parameterize(clonedGa);
|
---|
| 274 | algs.Add(clonedGa);
|
---|
| 275 | sw.Reset();
|
---|
[5277] | 276 | ContentManager.Save((IStorableContent)metaLevelAlgorithm, "alg_" + i + ".hl", true);
|
---|
[5267] | 277 | Console.WriteLine("Cloned alg #{0}", i);
|
---|
| 278 | }
|
---|
| 279 | }
|
---|
| 280 |
|
---|
[5262] | 281 | private static void TestExecutionTimeUpdateInvervalPerformance() {
|
---|
| 282 | TableBuilder tb = new TableBuilder("Tasks", "Interval", "TotalExecutionTime", "AvgExecutionTime", "TimeElapsed", "TotalTimeElapsed", "Speedup", "ExecutionTimeChangedCount", "RealExecutionTimeUpdate(ms)");
|
---|
[5267] | 283 | int tasks = 4;
|
---|
[5262] | 284 | int repetitions = 3;
|
---|
| 285 |
|
---|
| 286 | // warmup
|
---|
| 287 | RepeatExecuteParallel(3, 1, 1, tb);
|
---|
| 288 | tb.AppendRow("--", "--", "--", "--", "--", "--", "--", "--", "--");
|
---|
[5277] | 289 | RepeatExecuteParallel(repetitions, tasks, 1, tb);
|
---|
| 290 | RepeatExecuteParallel(repetitions, tasks, 2.5, tb);
|
---|
[5262] | 291 | RepeatExecuteParallel(repetitions, tasks, 5, tb);
|
---|
| 292 | RepeatExecuteParallel(repetitions, tasks, 10, tb);
|
---|
| 293 | RepeatExecuteParallel(repetitions, tasks, 25, tb);
|
---|
| 294 | RepeatExecuteParallel(repetitions, tasks, 50, tb);
|
---|
[5277] | 295 | RepeatExecuteParallel(repetitions, tasks, 100, tb);
|
---|
| 296 | RepeatExecuteParallel(repetitions, tasks, 250, tb);
|
---|
| 297 | RepeatExecuteParallel(repetitions, tasks, 500, tb);
|
---|
[5262] | 298 | RepeatExecuteParallel(repetitions, tasks, 1000, tb);
|
---|
[5277] | 299 | RepeatExecuteParallel(repetitions, tasks, 2500, tb);
|
---|
[5262] | 300 | RepeatExecuteParallel(repetitions, tasks, 5000, tb);
|
---|
| 301 |
|
---|
| 302 | using (var sw = new StreamWriter("TestExecutionTimeUpdateInvervalPerformance.txt")) {
|
---|
| 303 | sw.Write(tb.ToString());
|
---|
| 304 | }
|
---|
| 305 | }
|
---|
| 306 |
|
---|
| 307 | private static GeneticAlgorithm CreateGA() {
|
---|
| 308 | GeneticAlgorithm ga = new GeneticAlgorithm();
|
---|
| 309 | ga.Problem = new SingleObjectiveTestFunctionProblem() { ProblemSize = new IntValue(250) };
|
---|
| 310 | ga.Engine = new SequentialEngine.SequentialEngine();
|
---|
| 311 | ga.SetSeedRandomly.Value = false;
|
---|
| 312 | ga.Seed.Value = 0;
|
---|
| 313 | return ga;
|
---|
| 314 | }
|
---|
| 315 |
|
---|
| 316 | private static void RepeatExecuteParallel(int repetitions, int tasks, double executionTimeUpdateIntervalMs, TableBuilder tb) {
|
---|
| 317 | for (int i = 0; i < repetitions; i++) {
|
---|
[5277] | 318 | ExecuteParallel(tasks, executionTimeUpdateIntervalMs, tb);
|
---|
| 319 | Console.Clear();
|
---|
[5262] | 320 | Console.WriteLine(tb.ToString());
|
---|
| 321 | }
|
---|
| 322 | }
|
---|
| 323 |
|
---|
| 324 | private static void ExecuteParallel(int taskCount, double executionTimeUpdateIntervalMs, TableBuilder tb) {
|
---|
| 325 | Task<TimeSpan>[] tasks = new Task<TimeSpan>[taskCount];
|
---|
| 326 | EngineAlgorithm[] algs = new EngineAlgorithm[taskCount];
|
---|
| 327 | for (int i = 0; i < taskCount; i++) {
|
---|
| 328 | GeneticAlgorithm alg = CreateGA();
|
---|
[5267] | 329 | //((Engine)alg.Engine).ExecutionTimeUpdateInterval = TimeSpan.FromMilliseconds(executionTimeUpdateIntervalMs);
|
---|
[5262] | 330 | algs[i] = alg;
|
---|
| 331 | }
|
---|
| 332 | Console.WriteLine("Creating algs finished.");
|
---|
| 333 |
|
---|
| 334 | for (int i = 0; i < taskCount; i++) {
|
---|
| 335 | tasks[i] = new Task<TimeSpan>((alg) => {
|
---|
| 336 | Console.WriteLine("Task {0} started.", Task.CurrentId);
|
---|
[5277] | 337 |
|
---|
[5262] | 338 | Stopwatch swx = new Stopwatch();
|
---|
| 339 | swx.Start();
|
---|
| 340 | ((EngineAlgorithm)alg).ExecutionTimeChanged += new EventHandler(Program_ExecutionTimeChanged);
|
---|
[5653] | 341 | ((EngineAlgorithm)alg).StartSync();
|
---|
[5262] | 342 | ((EngineAlgorithm)alg).ExecutionTimeChanged -= new EventHandler(Program_ExecutionTimeChanged);
|
---|
| 343 | swx.Stop();
|
---|
| 344 | Console.WriteLine("Task {0} finished.", Task.CurrentId);
|
---|
| 345 | return swx.Elapsed;
|
---|
| 346 | }, algs[i]);
|
---|
| 347 | }
|
---|
| 348 | Console.WriteLine("Creating tasks finished.");
|
---|
| 349 | counter = 0;
|
---|
| 350 | Stopwatch sw = new Stopwatch();
|
---|
| 351 | sw.Start();
|
---|
| 352 | foreach (var task in tasks) task.Start();
|
---|
| 353 | Task.WaitAll(tasks);
|
---|
| 354 | sw.Stop();
|
---|
| 355 |
|
---|
| 356 | if (!algs.All(alg => alg.ExecutionState == ExecutionState.Stopped))
|
---|
| 357 | throw new Exception("Not all algs stopped properly");
|
---|
| 358 |
|
---|
| 359 | if (!algs.All(alg => ((DoubleValue)alg.Results["BestQuality"].Value).Value == ((DoubleValue)algs.First().Results["BestQuality"].Value).Value))
|
---|
| 360 | throw new Exception("Not all algs have the same resutls");
|
---|
| 361 |
|
---|
| 362 | if (tb != null) {
|
---|
| 363 | double totalExecutionTimeMilliseconds = algs.Select(x => x.ExecutionTime.TotalMilliseconds).Sum();
|
---|
| 364 | double totalMilliseconds = tasks.Select(t => t.Result.TotalMilliseconds).Sum();
|
---|
| 365 | tb.AppendRow(
|
---|
[5277] | 366 | taskCount.ToString(),
|
---|
| 367 | executionTimeUpdateIntervalMs.ToString(),
|
---|
[5262] | 368 | TimeSpan.FromMilliseconds(totalExecutionTimeMilliseconds).ToString(),
|
---|
[5277] | 369 | TimeSpan.FromMilliseconds(totalExecutionTimeMilliseconds / taskCount).ToString(),
|
---|
[5262] | 370 | sw.Elapsed.ToString(),
|
---|
| 371 | TimeSpan.FromMilliseconds(totalMilliseconds).ToString(),
|
---|
| 372 | (totalMilliseconds / sw.ElapsedMilliseconds).ToString("0.00"),
|
---|
| 373 | counter.ToString(),
|
---|
[5277] | 374 | (totalExecutionTimeMilliseconds / counter).ToString("0.00"));
|
---|
[5262] | 375 | }
|
---|
| 376 | tasks = null;
|
---|
| 377 | algs = null;
|
---|
| 378 | GC.Collect();
|
---|
| 379 | Console.WriteLine("Test finished.");
|
---|
| 380 | }
|
---|
| 381 |
|
---|
| 382 | private static int counter = 0;
|
---|
| 383 | static void Program_ExecutionTimeChanged(object sender, EventArgs e) {
|
---|
| 384 | System.Threading.Interlocked.Increment(ref counter);
|
---|
| 385 | }
|
---|
| 386 |
|
---|
[5231] | 387 | private static void TestWaitAny() {
|
---|
| 388 | System.Random rand = new System.Random();
|
---|
| 389 | var tasks = new List<Task<int>>();
|
---|
| 390 | for (int i = 0; i < 10; i++) {
|
---|
| 391 | tasks.Add(Task.Factory.StartNew<int>((x) => {
|
---|
| 392 | int sleep = ((int)x - 10) * -1000;
|
---|
| 393 | Console.WriteLine("sleeping: {0} ms", sleep);
|
---|
| 394 | Thread.Sleep(0); // make context switch
|
---|
| 395 | Thread.Sleep(sleep);
|
---|
| 396 | return (int)x * (int)x;
|
---|
| 397 | }, i));
|
---|
| 398 | }
|
---|
| 399 |
|
---|
| 400 | // --> WaitAll processes tasks lazy but in order.
|
---|
| 401 | Task.WaitAll();
|
---|
| 402 | foreach (var task in tasks) {
|
---|
| 403 | Console.WriteLine(task.Result);
|
---|
| 404 | }
|
---|
| 405 |
|
---|
| 406 | // -> WaitAny processes any finished task first. but the finished task needs to be removed from list in order to process all tasks
|
---|
| 407 | //for (int i = 0; i < 10; i++) {
|
---|
| 408 | // var tasksArray = tasks.ToArray();
|
---|
| 409 | // var task = tasksArray[Task.WaitAny(tasksArray)];
|
---|
| 410 | // Console.WriteLine(task.Result);
|
---|
| 411 | // tasks.Remove(task);
|
---|
| 412 | //}
|
---|
| 413 |
|
---|
| 414 | Console.WriteLine("Finished TestWaitAny");
|
---|
| 415 | }
|
---|
| 416 |
|
---|
[5207] | 417 | private static void TestAlgorithmPerformanceIssue() {
|
---|
| 418 | Queue<TimeSpan> latestExecutionTimes = new Queue<TimeSpan>();
|
---|
| 419 | int size = 10;
|
---|
[5653] | 420 | var random = new Random.MersenneTwister(0);
|
---|
[5207] | 421 |
|
---|
| 422 | GeneticAlgorithm ga = new GeneticAlgorithm();
|
---|
| 423 | ga.PopulationSize.Value = 3;
|
---|
| 424 | ga.MaximumGenerations.Value = 1;
|
---|
| 425 | ga.Engine = new SequentialEngine.SequentialEngine();
|
---|
[5653] | 426 | ga.Problem = new SingleObjectiveTestFunctionProblem();
|
---|
[5207] | 427 |
|
---|
| 428 | MetaOptimizationProblem metaOptimizationProblem = new MetaOptimizationProblem();
|
---|
[5653] | 429 | //metaOptimizationProblem.Repetitions = new IntValue(metaProblemRepetitions);
|
---|
[5207] | 430 | GeneticAlgorithm metaLevelAlgorithm = GetMetaGA(metaOptimizationProblem);
|
---|
[5313] | 431 | ParameterConfigurationTree algorithmVc = SetupGAAlgorithm(typeof(GeneticAlgorithm), metaOptimizationProblem);
|
---|
[5653] | 432 | algorithmVc.Randomize(random);
|
---|
[5207] | 433 | Stopwatch sw = new Stopwatch();
|
---|
| 434 |
|
---|
[5653] | 435 | var algs = new Queue<IAlgorithm>(); // keep them in memory
|
---|
| 436 | // -> BINGO! -> .NET cannot hold more than 16 algorithms with their ThreadLocal<T> objects efficiently,
|
---|
| 437 | // so if they are kept in memory, runtime at the 17. execution drops significantly
|
---|
| 438 | // because creating ThreadLocal<T> takes all the runtime.
|
---|
| 439 | // when the algs are not stored in a list however this effect does not occur.
|
---|
| 440 |
|
---|
[5927] | 441 |
|
---|
[5207] | 442 | for (int i = 0; i < 1000; i++) {
|
---|
| 443 | GeneticAlgorithm clonedGa = (GeneticAlgorithm)ga.Clone();
|
---|
| 444 | clonedGa.Name = "CLONED GA";
|
---|
[5653] | 445 | //algorithmVc.Randomize(random);
|
---|
| 446 | //algorithmVc.Parameterize(clonedGa);
|
---|
[5207] | 447 | clonedGa.Prepare(true);
|
---|
[5653] | 448 | sw.Start();
|
---|
| 449 | algs.Enqueue(clonedGa);
|
---|
| 450 |
|
---|
| 451 | if (algs.Count > 24)
|
---|
| 452 | algs.Dequeue();
|
---|
| 453 | clonedGa.StartSync();
|
---|
[5207] | 454 | sw.Stop();
|
---|
| 455 | latestExecutionTimes.Enqueue(sw.Elapsed);
|
---|
| 456 | Console.WriteLine("{0}: {1} ({2})", i, sw.Elapsed, latestExecutionTimes.Count > size ? TimeSpan.FromMilliseconds(latestExecutionTimes.Average(t => t.TotalMilliseconds)).ToString() : "-");
|
---|
| 457 | if (latestExecutionTimes.Count > size) {
|
---|
| 458 | latestExecutionTimes.Dequeue();
|
---|
| 459 | }
|
---|
| 460 | sw.Reset();
|
---|
| 461 | }
|
---|
| 462 | }
|
---|
| 463 |
|
---|
| 464 | private static void TestTableBuilder() {
|
---|
| 465 | TableBuilder tb = new TableBuilder("column_1", "col2", "col3");
|
---|
| 466 | tb.AppendRow("1", "humpi", "0.23124");
|
---|
| 467 | tb.AppendRow("2", "sf", "0.23124");
|
---|
| 468 | tb.AppendRow("5", "humpi dampti", "0.224");
|
---|
| 469 | tb.AppendRow("10", "egon asdf", "0.4");
|
---|
| 470 | tb.AppendRow("15", "MichaelizcMultiVfds", "0.23124564");
|
---|
| 471 | Console.WriteLine(tb.ToString());
|
---|
| 472 | }
|
---|
| 473 |
|
---|
| 474 | private static void TestToInfoString(IValueConfiguration algorithmVc) {
|
---|
[5144] | 475 | var random = new MersenneTwister();
|
---|
[5184] | 476 | Console.WriteLine(algorithmVc.ParameterInfoString);
|
---|
[5144] | 477 | algorithmVc.Randomize(random);
|
---|
[5184] | 478 | Console.WriteLine(algorithmVc.ParameterInfoString);
|
---|
[5144] | 479 | algorithmVc.Randomize(random);
|
---|
[5184] | 480 | Console.WriteLine(algorithmVc.ParameterInfoString);
|
---|
[5144] | 481 | algorithmVc.Randomize(random);
|
---|
| 482 | }
|
---|
| 483 |
|
---|
| 484 | private static void TestCombinations() {
|
---|
| 485 | Console.WriteLine("IntRange 3-18:3");
|
---|
| 486 | IntValueRange intRange = new IntValueRange(new IntValue(3), new IntValue(18), new IntValue(3));
|
---|
| 487 | foreach (var val in intRange.GetCombinations()) {
|
---|
| 488 | Console.WriteLine(val);
|
---|
| 489 | }
|
---|
| 490 |
|
---|
| 491 | Console.WriteLine("DoubleRange 1.0-2.5:0.5");
|
---|
| 492 | var dblRange = new DoubleValueRange(new DoubleValue(0.7), new DoubleValue(2.8), new DoubleValue(0.5));
|
---|
| 493 | foreach (var val in dblRange.GetCombinations()) {
|
---|
| 494 | Console.WriteLine(val);
|
---|
| 495 | }
|
---|
| 496 |
|
---|
| 497 | Console.WriteLine("PercentRange 33%-66%:33%");
|
---|
| 498 | var pctRange = new PercentValueRange(new PercentValue(0.32), new PercentValue(0.98), new PercentValue(0.33));
|
---|
| 499 | foreach (var val in pctRange.GetCombinations()) {
|
---|
| 500 | Console.WriteLine(val);
|
---|
| 501 | }
|
---|
| 502 | }
|
---|
| 503 |
|
---|
| 504 | private static void TestCombinations3() {
|
---|
| 505 | Node root = new Node("root");
|
---|
| 506 | root.ChildNodes.Add(new Node("root.n1"));
|
---|
| 507 | root.ChildNodes.Add(new Node("root.n2"));
|
---|
| 508 | Node n3 = new Node("root.n3");
|
---|
| 509 | n3.ChildNodes.Add(new Node("root.n3.n1"));
|
---|
| 510 | n3.ChildNodes.Add(new Node("root.n3.n2"));
|
---|
| 511 | root.ChildNodes.Add(n3);
|
---|
| 512 |
|
---|
| 513 | Console.WriteLine(root.ToString());
|
---|
| 514 | Console.WriteLine("--");
|
---|
| 515 | int cnt = 0;
|
---|
| 516 | var enumerator = new NodeEnumerator(root);
|
---|
| 517 | enumerator.Reset();
|
---|
| 518 | while (enumerator.MoveNext()) {
|
---|
| 519 | Console.WriteLine(enumerator.Current.ToString());
|
---|
| 520 | cnt++;
|
---|
| 521 | }
|
---|
| 522 | Console.WriteLine("count: " + cnt);
|
---|
| 523 | }
|
---|
| 524 |
|
---|
[5184] | 525 | private static void TestEnumeratorCollectionEnumerator() {
|
---|
| 526 | IEnumerable<int> list1 = new int[] { 1, 2, 3, 4, 5 };
|
---|
| 527 | IEnumerable<int> list2 = new int[] { 10, 20, 30 };
|
---|
| 528 | IEnumerable<int> list3 = new int[] { 300, 400, 500 };
|
---|
| 529 |
|
---|
| 530 | var enumerators = new List<IEnumerator>();
|
---|
| 531 |
|
---|
| 532 | EnumeratorCollectionEnumerator<int> enu = new EnumeratorCollectionEnumerator<int>();
|
---|
| 533 | enu.AddEnumerator(list1.GetEnumerator());
|
---|
| 534 | enu.AddEnumerator(list2.GetEnumerator());
|
---|
| 535 | enu.AddEnumerator(list3.GetEnumerator());
|
---|
| 536 | enu.Reset();
|
---|
| 537 | while (enu.MoveNext()) {
|
---|
| 538 | Console.WriteLine(enu.Current);
|
---|
| 539 | }
|
---|
| 540 | }
|
---|
| 541 |
|
---|
[5144] | 542 | private static void TestCombinations4() {
|
---|
| 543 | GeneticAlgorithm ga = new GeneticAlgorithm();
|
---|
| 544 | ga.Problem = new SingleObjectiveTestFunctionProblem();
|
---|
[5184] | 545 | ga.Engine = new SequentialEngine.SequentialEngine();
|
---|
| 546 |
|
---|
[5665] | 547 | ParameterConfigurationTree vc = new ParameterConfigurationTree(ga, new SingleObjectiveTestFunctionProblem());
|
---|
[5144] | 548 |
|
---|
[5184] | 549 | ConfigurePopulationSize(vc, 20, 100, 20);
|
---|
[5144] | 550 | //ConfigureMutationRate(vc, 0.10, 0.60, 0.10);
|
---|
[5361] | 551 | ConfigureMutationOperator(vc);
|
---|
| 552 | //ConfigureSelectionOperator(vc, true);
|
---|
[5144] | 553 |
|
---|
| 554 | int count = 0;
|
---|
| 555 | IEnumerator enumerator = new ParameterCombinationsEnumerator(vc);
|
---|
| 556 | enumerator.Reset();
|
---|
| 557 | while (enumerator.MoveNext()) {
|
---|
| 558 | var current = (IValueConfiguration)enumerator.Current;
|
---|
| 559 | count++;
|
---|
[5184] | 560 | Console.WriteLine(current.ParameterInfoString);
|
---|
[5144] | 561 | }
|
---|
| 562 | Console.WriteLine("You are about to create {0} algorithms.", count);
|
---|
[5207] | 563 |
|
---|
[5184] | 564 | Experiment experiment = vc.GenerateExperiment(ga);
|
---|
| 565 | //foreach (var opt in experiment.Optimizers) {
|
---|
| 566 | // Console.WriteLine(opt.Name);
|
---|
| 567 | //}
|
---|
[5144] | 568 |
|
---|
[5184] | 569 | experiment.Prepare();
|
---|
| 570 | experiment.Start();
|
---|
| 571 |
|
---|
| 572 | while (experiment.ExecutionState != ExecutionState.Stopped) {
|
---|
| 573 | Thread.Sleep(500);
|
---|
[5144] | 574 | }
|
---|
| 575 | }
|
---|
| 576 |
|
---|
[5111] | 577 | private static void TestOperators() {
|
---|
| 578 | IRandom random = new MersenneTwister();
|
---|
| 579 |
|
---|
| 580 | var doubleRange = new DoubleValueRange(new DoubleValue(0), new DoubleValue(100), new DoubleValue(0.1));
|
---|
| 581 | using (var sw = new StreamWriter("out-DoubleValue.txt")) {
|
---|
| 582 | for (int i = 0; i < 10000; i++) {
|
---|
[5207] | 583 | var val = new DoubleValue(90);
|
---|
[5111] | 584 | NormalDoubleValueManipulator.ApplyStatic(random, val, doubleRange);
|
---|
[5144] | 585 |
|
---|
[5111] | 586 | sw.WriteLine(val);
|
---|
| 587 | }
|
---|
| 588 | }
|
---|
| 589 |
|
---|
| 590 | var percentRange = new PercentValueRange(new PercentValue(0), new PercentValue(1), new PercentValue(0.001));
|
---|
| 591 | using (var sw = new StreamWriter("out-PercentValue.txt")) {
|
---|
| 592 | for (int i = 0; i < 10000; i++) {
|
---|
| 593 | var val = new PercentValue(0.5);
|
---|
| 594 | NormalDoubleValueManipulator.ApplyStatic(random, val, percentRange.AsDoubleValueRange());
|
---|
| 595 | sw.WriteLine(val);
|
---|
| 596 | }
|
---|
| 597 | }
|
---|
| 598 |
|
---|
| 599 | var intRange = new IntValueRange(new IntValue(0), new IntValue(100), new IntValue(1));
|
---|
| 600 | using (var sw = new StreamWriter("out-IntValue.txt")) {
|
---|
| 601 | for (int i = 0; i < 10000; i++) {
|
---|
| 602 | var val = new IntValue(50);
|
---|
| 603 | UniformIntValueManipulator.ApplyStatic(random, val, intRange);
|
---|
| 604 | sw.WriteLine(val);
|
---|
| 605 | }
|
---|
| 606 | }
|
---|
| 607 |
|
---|
| 608 | Console.ReadLine();
|
---|
| 609 | }
|
---|
| 610 |
|
---|
[5110] | 611 | private static void TestTypeDiscovery() {
|
---|
| 612 | PluginLoader.pluginAssemblies.Any();
|
---|
[5927] | 613 |
|
---|
[5110] | 614 | var items = ApplicationManager.Manager.GetInstances(typeof(DoubleArray)).ToArray();
|
---|
| 615 |
|
---|
| 616 | foreach (var item in items) {
|
---|
| 617 | Console.WriteLine(item.ToString());
|
---|
| 618 | }
|
---|
| 619 | }
|
---|
| 620 |
|
---|
[5009] | 621 | private static void TestMemoryLeak(GeneticAlgorithm metaLevelAlgorithm) {
|
---|
[5144] | 622 | IValueConfiguration algorithmVc = ((MetaOptimizationProblem)metaLevelAlgorithm.Problem).ParameterConfigurationTree;
|
---|
[5009] | 623 |
|
---|
| 624 | Console.WriteLine("Starting Memory Test...");
|
---|
| 625 | Console.ReadLine();
|
---|
| 626 |
|
---|
[5023] | 627 | var clones = new List<object>();
|
---|
[5009] | 628 | for (int i = 0; i < 1000; i++) {
|
---|
| 629 | var clone = algorithmVc.Clone();
|
---|
[5023] | 630 | clones.Add(clone);
|
---|
[5009] | 631 | }
|
---|
| 632 |
|
---|
| 633 | Console.WriteLine("Finished. Now GC...");
|
---|
| 634 | Console.ReadLine();
|
---|
| 635 |
|
---|
| 636 | GC.Collect();
|
---|
| 637 |
|
---|
| 638 | Console.WriteLine("Finished!");
|
---|
| 639 | Console.ReadLine();
|
---|
| 640 | }
|
---|
| 641 |
|
---|
[5087] | 642 | private static GeneticAlgorithm GetMetaGA(MetaOptimizationProblem metaOptimizationProblem) {
|
---|
[5009] | 643 | GeneticAlgorithm metaLevelAlgorithm = new GeneticAlgorithm();
|
---|
| 644 | metaLevelAlgorithm.PopulationSize.Value = metaAlgorithmPopulationSize;
|
---|
| 645 | metaLevelAlgorithm.MaximumGenerations.Value = metaAlgorithmMaxGenerations;
|
---|
| 646 |
|
---|
| 647 | metaLevelAlgorithm.Problem = metaOptimizationProblem;
|
---|
| 648 | metaLevelAlgorithm.Engine = new SequentialEngine.SequentialEngine();
|
---|
[5207] | 649 |
|
---|
[5303] | 650 | metaLevelAlgorithm.Mutator = ((OptionalConstrainedValueParameter<IManipulator>)((IAlgorithm)metaLevelAlgorithm).Parameters["Mutator"]).ValidValues.Where(x => x.GetType() == typeof(ParameterConfigurationOnePositionsManipulator)).Single();
|
---|
| 651 | //metaLevelAlgorithm.Mutator = ((OptionalConstrainedValueParameter<IManipulator>)((IAlgorithm)metaLevelAlgorithm).Parameters["Mutator"]).ValidValues.Where(x => x.GetType() == typeof(ParameterConfigurationAllPositionsManipulator)).Single();
|
---|
[5207] | 652 |
|
---|
[5281] | 653 | metaLevelAlgorithm.MutationProbability.Value = mutationProbability;
|
---|
[5313] | 654 | //metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter<ISelector>)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(LinearRankSelector)).Single();
|
---|
| 655 | //metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter<ISelector>)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(TournamentSelector)).Single();
|
---|
| 656 | //metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter<ISelector>)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(GenderSpecificSelector)).Single();
|
---|
| 657 | //metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter<ISelector>)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(BestSelector)).Single();
|
---|
| 658 | metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter<ISelector>)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(ProportionalSelector)).Single();
|
---|
[5023] | 659 |
|
---|
[5009] | 660 | return metaLevelAlgorithm;
|
---|
| 661 | }
|
---|
| 662 |
|
---|
[5207] | 663 | private static GeneticAlgorithm GetParallelMetaGA(MetaOptimizationProblem metaOptimizationProblem) {
|
---|
| 664 | GeneticAlgorithm metaLevelAlgorithm = GetMetaGA(metaOptimizationProblem);
|
---|
| 665 | metaLevelAlgorithm.Engine = new ParallelEngine.ParallelEngine();
|
---|
[5212] | 666 | return metaLevelAlgorithm;
|
---|
| 667 | }
|
---|
[5207] | 668 |
|
---|
[5212] | 669 | private static GeneticAlgorithm GetHiveParallelMetaGA(MetaOptimizationProblem metaOptimizationProblem) {
|
---|
| 670 | GeneticAlgorithm metaLevelAlgorithm = GetParallelMetaGA(metaOptimizationProblem);
|
---|
| 671 | metaLevelAlgorithm.Engine = new HiveEngine.HiveEngine();
|
---|
| 672 | ServiceLocator.Instance.ClientFacadePool.UserName = "cneumuel";
|
---|
| 673 | ServiceLocator.Instance.ClientFacadePool.Password = "cneumuel";
|
---|
| 674 | ServiceLocator.Instance.StreamedClientFacadePool.UserName = "cneumuel";
|
---|
| 675 | ServiceLocator.Instance.StreamedClientFacadePool.Password = "cneumuel";
|
---|
[5207] | 676 | return metaLevelAlgorithm;
|
---|
| 677 | }
|
---|
| 678 |
|
---|
[5087] | 679 | private static EvolutionStrategy GetMetaES(MetaOptimizationProblem metaOptimizationProblem) {
|
---|
| 680 | EvolutionStrategy metaLevelAlgorithm = new EvolutionStrategy();
|
---|
| 681 | metaLevelAlgorithm.PopulationSize.Value = metaAlgorithmPopulationSize;
|
---|
| 682 | metaLevelAlgorithm.MaximumGenerations.Value = metaAlgorithmMaxGenerations;
|
---|
| 683 |
|
---|
| 684 | metaLevelAlgorithm.Problem = metaOptimizationProblem;
|
---|
| 685 | metaLevelAlgorithm.Engine = new SequentialEngine.SequentialEngine();
|
---|
| 686 |
|
---|
[5184] | 687 | metaLevelAlgorithm.Mutator = ((OptionalConstrainedValueParameter<IManipulator>)((IAlgorithm)metaLevelAlgorithm).Parameters["Mutator"]).ValidValues.Last();
|
---|
[5087] | 688 |
|
---|
| 689 | return metaLevelAlgorithm;
|
---|
| 690 | }
|
---|
| 691 |
|
---|
[5313] | 692 | private static ParameterConfigurationTree SetupGAAlgorithm(Type baseLevelAlgorithmType, MetaOptimizationProblem metaOptimizationProblem) {
|
---|
| 693 | metaOptimizationProblem.AlgorithmType.Value = baseLevelAlgorithmType;
|
---|
[5927] | 694 | //metaOptimizationProblem.Problems.Clear();
|
---|
[4997] | 695 |
|
---|
[5927] | 696 | //metaOptimizationProblem.ProblemType.Value = typeof(SingleObjectiveTestFunctionProblem);
|
---|
[5653] | 697 | //metaOptimizationProblem.Problems.Add(new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem() {
|
---|
| 698 | // Evaluator = new GriewankEvaluator(),
|
---|
[5927] | 699 | // ProblemSize = new IntValue(2)
|
---|
| 700 | //});
|
---|
| 701 | //metaOptimizationProblem.Problems.Add(new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem() {
|
---|
| 702 | // Evaluator = new GriewankEvaluator(),
|
---|
[5653] | 703 | // ProblemSize = new IntValue(20)
|
---|
| 704 | //});
|
---|
| 705 | //metaOptimizationProblem.Problems.Add(new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem() {
|
---|
| 706 | // Evaluator = new GriewankEvaluator(),
|
---|
| 707 | // ProblemSize = new IntValue(500)
|
---|
| 708 | //});
|
---|
[5087] | 709 |
|
---|
[5927] | 710 | metaOptimizationProblem.ProblemType.Value = typeof(SymbolicRegressionSingleObjectiveProblem);
|
---|
| 711 |
|
---|
| 712 | ParameterConfigurationTree algorithmVc = metaOptimizationProblem.ParameterConfigurationTree;
|
---|
| 713 | ((IntValue)algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MaximumGenerations").ActualValue.Value).Value = baseAlgorithmMaxGenerations;
|
---|
| 714 |
|
---|
| 715 | //ConfigurePopulationSize(algorithmVc, 15, 20, 1);
|
---|
[5665] | 716 | ConfigureMutationRate(algorithmVc, 0.0, 1.0, 0.01);
|
---|
[5927] | 717 | ConfigureMutationOperator(algorithmVc);
|
---|
[5653] | 718 | //ConfigureElites(algorithmVc, 0, 8, 1);
|
---|
| 719 | //ConfigureSelectionOperator(algorithmVc, true);
|
---|
[5927] | 720 |
|
---|
| 721 | ConfigureSymbolicExpressionGrammar(algorithmVc);
|
---|
| 722 |
|
---|
[5009] | 723 | return algorithmVc;
|
---|
| 724 | }
|
---|
[4997] | 725 |
|
---|
[5927] | 726 | private static void ConfigureSymbolicExpressionGrammar(ParameterConfigurationTree vc) {
|
---|
| 727 | var pc = vc.ProblemConfiguration.ParameterConfigurations.Single(x => x.Name == "SymbolicExpressionTreeGrammar");
|
---|
| 728 | pc.Optimize = true;
|
---|
| 729 |
|
---|
| 730 | SymbolicExpressionGrammarValueConfiguration symbolicExpressionGrammarVc = null;
|
---|
| 731 | foreach (var valconf in pc.ValueConfigurations) {
|
---|
| 732 | if (valconf.ActualValue.Value.ItemName != "TypeCoherentExpressionGrammar") {
|
---|
| 733 | pc.ValueConfigurations.SetItemCheckedState(valconf, false);
|
---|
| 734 | } else {
|
---|
| 735 | symbolicExpressionGrammarVc = valconf as SymbolicExpressionGrammarValueConfiguration;
|
---|
| 736 | }
|
---|
| 737 | }
|
---|
| 738 | symbolicExpressionGrammarVc.Optimize = true;
|
---|
| 739 |
|
---|
| 740 | var additionPc = symbolicExpressionGrammarVc.ParameterConfigurations.Single(x => x.Name == "Addition");
|
---|
| 741 | additionPc.Optimize = true;
|
---|
| 742 | var initialFrequencyVc = ((ParameterizedValueConfiguration)additionPc.ValueConfigurations.First()).ParameterConfigurations.Single(x => x.Name == "InitialFrequency");
|
---|
| 743 | initialFrequencyVc.Optimize = true;
|
---|
| 744 | }
|
---|
| 745 |
|
---|
| 746 | private static void TestConfiguration(ParameterConfigurationTree algorithmVc, Type baseLevelAlgorithmType, IProblem problem) {
|
---|
[5023] | 747 | IRandom rand = new FastRandom(0);
|
---|
[5927] | 748 | var baseLevelAlgorithm = (GeneticAlgorithm)MetaOptimizationUtil.CreateParameterizedAlgorithmInstance(algorithmVc, baseLevelAlgorithmType, problem);
|
---|
| 749 |
|
---|
[4997] | 750 | // set random values
|
---|
| 751 | for (int i = 0; i < 10; i++) {
|
---|
[5653] | 752 | var clonedVc = (ParameterConfigurationTree)algorithmVc.Clone();
|
---|
[5111] | 753 | GeneticAlgorithm newAlg = (GeneticAlgorithm)baseLevelAlgorithm.Clone();
|
---|
[5009] | 754 | clonedVc.Randomize(rand);
|
---|
[5111] | 755 | clonedVc.Parameterize(newAlg);
|
---|
[5009] | 756 | Console.WriteLine(string.Format("PopSize: original: {0}, randomized: {1}", baseLevelAlgorithm.PopulationSize, newAlg.PopulationSize));
|
---|
[4997] | 757 | Console.WriteLine(string.Format("MutRate: original: {0}, randomized: {1}", baseLevelAlgorithm.MutationProbability, newAlg.MutationProbability));
|
---|
[5009] | 758 | Console.WriteLine(string.Format("MutOp: original: {0}, randomized: {1}", baseLevelAlgorithm.Mutator, newAlg.Mutator));
|
---|
[5023] | 759 | Console.WriteLine(string.Format("SelOp: original: {0}, randomized: {1}", baseLevelAlgorithm.Selector, newAlg.Selector));
|
---|
[5111] | 760 | //Console.WriteLine(string.Format("GrSi: original: {0}, randomized: {1}", "?", ((TournamentSelector)newAlg.Selector).GroupSizeParameter.Value));
|
---|
[5023] | 761 | Console.WriteLine("---");
|
---|
[4997] | 762 | }
|
---|
| 763 |
|
---|
[5023] | 764 | Console.WriteLine("=======================");
|
---|
| 765 | algorithmVc.Randomize(rand);
|
---|
| 766 | algorithmVc.Parameterize(baseLevelAlgorithm);
|
---|
[4997] | 767 | // mutate
|
---|
| 768 | for (int i = 0; i < 10; i++) {
|
---|
[5653] | 769 | var clonedVc = (ParameterConfigurationTree)algorithmVc.Clone();
|
---|
[5111] | 770 | GeneticAlgorithm newAlg = (GeneticAlgorithm)baseLevelAlgorithm.Clone();
|
---|
[5277] | 771 | ParameterConfigurationManipulator.Apply(rand, clonedVc, new UniformIntValueManipulator(), new NormalDoubleValueManipulator());
|
---|
| 772 | clonedVc.Parameterize(newAlg);
|
---|
[5144] | 773 |
|
---|
[5009] | 774 | Console.WriteLine(string.Format("PopSize: original: {0}, mutated: {1}", baseLevelAlgorithm.PopulationSize, newAlg.PopulationSize));
|
---|
[4997] | 775 | Console.WriteLine(string.Format("MutRate: original: {0}, mutated: {1}", baseLevelAlgorithm.MutationProbability, newAlg.MutationProbability));
|
---|
[5009] | 776 | Console.WriteLine(string.Format("MutOp: original: {0}, mutated: {1}", baseLevelAlgorithm.Mutator, newAlg.Mutator));
|
---|
[5023] | 777 | Console.WriteLine(string.Format("SelOp: original: {0}, mutated: {1}", baseLevelAlgorithm.Selector, newAlg.Selector));
|
---|
[5111] | 778 | //Console.WriteLine(string.Format("GrSi: original: {0}, mutated: {1}", ((TournamentSelector)baseLevelAlgorithm.Selector).GroupSizeParameter.Value, ((TournamentSelector)newAlg.Selector).GroupSizeParameter.Value));
|
---|
[5023] | 779 | Console.WriteLine("---");
|
---|
[4997] | 780 | }
|
---|
| 781 |
|
---|
[5023] | 782 | Console.WriteLine("=======================");
|
---|
[4997] | 783 | // cross
|
---|
| 784 | for (int i = 0; i < 10; i++) {
|
---|
[5653] | 785 | var clonedVc1 = (ParameterConfigurationTree)algorithmVc.Clone();
|
---|
| 786 | var clonedVc2 = (ParameterConfigurationTree)algorithmVc.Clone();
|
---|
[5023] | 787 |
|
---|
[5111] | 788 | GeneticAlgorithm first = (GeneticAlgorithm)baseLevelAlgorithm.Clone();
|
---|
| 789 | GeneticAlgorithm second = (GeneticAlgorithm)baseLevelAlgorithm.Clone();
|
---|
[5023] | 790 |
|
---|
[5009] | 791 | clonedVc1.Randomize(rand);
|
---|
[5023] | 792 | clonedVc1.Parameterize(first);
|
---|
[4997] | 793 |
|
---|
[5023] | 794 | clonedVc2.Randomize(rand);
|
---|
| 795 | clonedVc2.Parameterize(second);
|
---|
[4997] | 796 |
|
---|
| 797 | var popSizeBefore = first.PopulationSize.Value;
|
---|
| 798 | var mutRateBefore = first.MutationProbability.Value;
|
---|
[5009] | 799 | var mutOpBefore = first.Mutator;
|
---|
[5023] | 800 | var selOpBefore = first.Selector;
|
---|
[5111] | 801 | //var groupSizeBefore = ((TournamentSelector)first.Selector).GroupSizeParameter.Value.Value;
|
---|
[4997] | 802 |
|
---|
[5111] | 803 | //clonedVc1.Cross(clonedVc2, rand); todo
|
---|
[5277] | 804 |
|
---|
| 805 | ParameterConfigurationCrossover.Apply(rand, clonedVc1, clonedVc2, new DiscreteIntValueCrossover(), new AverageDoubleValueCrossover());
|
---|
[5023] | 806 | clonedVc1.Parameterize(first);
|
---|
[5009] | 807 |
|
---|
| 808 | Console.WriteLine(string.Format("PopSize: first: {0}, second: {1}, crossed: {2}", popSizeBefore, second.PopulationSize, first.PopulationSize));
|
---|
[4997] | 809 | Console.WriteLine(string.Format("MutRate: first: {0}, second: {1}, crossed: {2}", mutRateBefore, second.MutationProbability, first.MutationProbability));
|
---|
[5023] | 810 | Console.WriteLine(string.Format("MutOp: first: {0}, second: {1}, crossed: {2}", mutOpBefore, second.Mutator, first.Mutator));
|
---|
| 811 | Console.WriteLine(string.Format("SelOp: first: {0}, second: {1}, crossed: {2}", selOpBefore, second.Selector, first.Selector));
|
---|
[5111] | 812 | //Console.WriteLine(string.Format("GrSi: first: {0}, second: {1}, crossed: {2}", groupSizeBefore, ((TournamentSelector)second.Selector).GroupSizeParameter.Value, ((TournamentSelector)first.Selector).GroupSizeParameter.Value));
|
---|
[5023] | 813 | Console.WriteLine("---");
|
---|
[4997] | 814 | }
|
---|
[5023] | 815 | Console.WriteLine("=======================");
|
---|
[5009] | 816 | }
|
---|
[4997] | 817 |
|
---|
[5653] | 818 | private static void ConfigureMutationOperator(ParameterConfigurationTree algorithmVc) {
|
---|
[5665] | 819 | var mutationOperator = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "Mutator").SingleOrDefault();
|
---|
[5009] | 820 | mutationOperator.Optimize = true;
|
---|
| 821 |
|
---|
| 822 | // uncheck multiMutator to avoid Michalewicz issue
|
---|
[5927] | 823 | //var multiMutator = mutationOperator.ValueConfigurations.Where(x => x.ActualValue.Value != null && x.ActualValue.Value.ItemName.StartsWith("Multi")).SingleOrDefault();
|
---|
| 824 | //if (multiMutator != null) {
|
---|
| 825 | // mutationOperator.ValueConfigurations.SetItemCheckedState(multiMutator, false);
|
---|
| 826 | //}
|
---|
[5361] | 827 |
|
---|
[5653] | 828 | // add another normal - don't do this with 'new', because ActualNames will not be set correctly. It should be copied from an existing one
|
---|
| 829 | // mutationOperator.ValueConfigurations.Add(new ParameterizedValueConfiguration(new NormalAllPositionsManipulator(), typeof(NormalAllPositionsManipulator)), true);
|
---|
[4997] | 830 | }
|
---|
| 831 |
|
---|
[5653] | 832 | private static void ConfigureSelectionOperator(ParameterConfigurationTree algorithmVc, bool configureTournamenSize) {
|
---|
[5665] | 833 | var selectionOperatorPc = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "Selector").SingleOrDefault();
|
---|
[5023] | 834 | selectionOperatorPc.Optimize = true;
|
---|
| 835 |
|
---|
| 836 | foreach (var vc in selectionOperatorPc.ValueConfigurations) {
|
---|
| 837 | if (vc.ActualValue.ValueDataType == typeof(TournamentSelector)) {
|
---|
| 838 | selectionOperatorPc.ValueConfigurations.SetItemCheckedState(vc, true);
|
---|
[5144] | 839 | if (configureTournamenSize) {
|
---|
| 840 | vc.Optimize = true;
|
---|
[5653] | 841 | ConfigureTournamentGroupSize((ParameterizedValueConfiguration)vc);
|
---|
[5144] | 842 | }
|
---|
[5087] | 843 | } else if (vc.ActualValue.ValueDataType == typeof(RandomSelector)) {
|
---|
| 844 | selectionOperatorPc.ValueConfigurations.SetItemCheckedState(vc, true);
|
---|
[5023] | 845 | } else {
|
---|
[5087] | 846 | selectionOperatorPc.ValueConfigurations.SetItemCheckedState(vc, true);
|
---|
[5023] | 847 | }
|
---|
| 848 | }
|
---|
| 849 | }
|
---|
| 850 |
|
---|
[5653] | 851 | private static void ConfigureTournamentGroupSize(ParameterizedValueConfiguration tournamentVc) {
|
---|
[5023] | 852 | var groupSizePc = tournamentVc.ParameterConfigurations.Where(x => x.ParameterName == "GroupSize").SingleOrDefault();
|
---|
| 853 | groupSizePc.Optimize = true;
|
---|
[5653] | 854 | var groupSizeVc = (RangeValueConfiguration)groupSizePc.ValueConfigurations.First();
|
---|
| 855 | groupSizeVc.Optimize = true;
|
---|
| 856 | groupSizeVc.RangeConstraint.LowerBound = new IntValue(0);
|
---|
| 857 | groupSizeVc.RangeConstraint.UpperBound = new IntValue(10);
|
---|
| 858 | groupSizeVc.RangeConstraint.StepSize = new IntValue(1);
|
---|
[5023] | 859 | }
|
---|
| 860 |
|
---|
[5665] | 861 | private static void ConfigurePopulationSize(ParameterConfigurationTree algorithmVc, int lower, int upper, int stepsize) {
|
---|
| 862 | var populationSizePc = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "PopulationSize").SingleOrDefault();
|
---|
[4997] | 863 | populationSizePc.Optimize = true;
|
---|
[5653] | 864 | var populationSizeVc = (RangeValueConfiguration)populationSizePc.ValueConfigurations.First();
|
---|
[4997] | 865 | populationSizeVc.Optimize = true;
|
---|
[5144] | 866 | populationSizeVc.RangeConstraint.LowerBound = new IntValue(lower);
|
---|
| 867 | populationSizeVc.RangeConstraint.UpperBound = new IntValue(upper);
|
---|
| 868 | populationSizeVc.RangeConstraint.StepSize = new IntValue(stepsize);
|
---|
[4997] | 869 | }
|
---|
| 870 |
|
---|
[5665] | 871 | private static void ConfigureMutationRate(ParameterConfigurationTree algorithmVc, double lower, double upper, double stepsize) {
|
---|
| 872 | var mutationRatePc = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "MutationProbability").SingleOrDefault();
|
---|
[4997] | 873 | mutationRatePc.Optimize = true;
|
---|
[5653] | 874 | var mutationRateVc = (RangeValueConfiguration)mutationRatePc.ValueConfigurations.First();
|
---|
[4997] | 875 | mutationRateVc.Optimize = true;
|
---|
[5144] | 876 | mutationRateVc.RangeConstraint.LowerBound = new PercentValue(lower);
|
---|
| 877 | mutationRateVc.RangeConstraint.UpperBound = new PercentValue(upper);
|
---|
| 878 | mutationRateVc.RangeConstraint.StepSize = new PercentValue(stepsize);
|
---|
[4997] | 879 | }
|
---|
| 880 |
|
---|
[5665] | 881 | private static void ConfigureElites(ParameterConfigurationTree algorithmVc, int from, int to, int stepSize) {
|
---|
| 882 | var elitesPc = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "Elites").SingleOrDefault();
|
---|
[5023] | 883 | elitesPc.Optimize = true;
|
---|
[5653] | 884 | var elitesVc = (RangeValueConfiguration)elitesPc.ValueConfigurations.First();
|
---|
[5023] | 885 | elitesVc.Optimize = true;
|
---|
[5184] | 886 | elitesVc.RangeConstraint.LowerBound = new IntValue(from);
|
---|
| 887 | elitesVc.RangeConstraint.UpperBound = new IntValue(to);
|
---|
| 888 | elitesVc.RangeConstraint.StepSize = new IntValue(stepSize);
|
---|
[5023] | 889 | }
|
---|
| 890 |
|
---|
[5087] | 891 | private static void TestOptimization(EngineAlgorithm metaLevelAlgorithm) {
|
---|
[5023] | 892 | string path = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "Results");
|
---|
[5087] | 893 | if (!Directory.Exists(path))
|
---|
[5023] | 894 | Directory.CreateDirectory(path);
|
---|
[5087] | 895 | string id = DateTime.Now.ToString("yyyy.MM.dd - HH;mm;ss,ffff");
|
---|
| 896 | string resultPath = Path.Combine(path, string.Format("{0} - Result.hl", id));
|
---|
| 897 | string outputPath = Path.Combine(path, string.Format("{0} - Console.txt", id));
|
---|
[5023] | 898 |
|
---|
| 899 | using (var sw = new StreamWriter(outputPath)) {
|
---|
[5087] | 900 | sw.AutoFlush = true;
|
---|
| 901 |
|
---|
| 902 | StringBuilder sb1 = new StringBuilder();
|
---|
[5207] | 903 | sb1.AppendFormat("Meta.PopulationSize: {0}\n", metaAlgorithmPopulationSize);
|
---|
| 904 | sb1.AppendFormat("Meta.MaxGenerations: {0}\n", metaAlgorithmMaxGenerations);
|
---|
| 905 | sb1.AppendFormat("Meta.Repetitions : {0}\n", metaProblemRepetitions);
|
---|
| 906 | sb1.AppendFormat("Meta.MutProb : {0}\n", ((GeneticAlgorithm)metaLevelAlgorithm).MutationProbability.Value);
|
---|
| 907 | sb1.AppendFormat("Base.MaxGenerations: {0}\n", baseAlgorithmMaxGenerations);
|
---|
| 908 | sb1.AppendLine("Problems:");
|
---|
| 909 | foreach (var prob in ((MetaOptimizationProblem)metaLevelAlgorithm.Problem).Problems) {
|
---|
| 910 | sb1.Append(prob.Name);
|
---|
| 911 | var sotf = prob as SingleObjectiveTestFunctionProblem;
|
---|
| 912 | if (sotf != null) {
|
---|
| 913 | sb1.AppendFormat(" {0}", sotf.ProblemSize.Value);
|
---|
| 914 | }
|
---|
| 915 | sb1.AppendLine();
|
---|
| 916 | }
|
---|
[5087] | 917 | sw.WriteLine(sb1.ToString());
|
---|
| 918 | Console.WriteLine(sb1.ToString());
|
---|
[5184] | 919 | metaLevelAlgorithm.Stopped += new EventHandler(metaLevelAlgorithm_Stopped);
|
---|
| 920 | metaLevelAlgorithm.Paused += new EventHandler(metaLevelAlgorithm_Paused);
|
---|
| 921 | metaLevelAlgorithm.ExceptionOccurred += new EventHandler<EventArgs<Exception>>(metaLevelAlgorithm_ExceptionOccurred);
|
---|
[5087] | 922 |
|
---|
[5023] | 923 | metaLevelAlgorithm.Start();
|
---|
| 924 | int i = 0;
|
---|
| 925 | int currentGeneration = -1;
|
---|
| 926 | do {
|
---|
[5277] | 927 | Thread.Sleep(1000);
|
---|
[5087] | 928 | if (metaLevelAlgorithm.Results.ContainsKey("Generations") && ((IntValue)metaLevelAlgorithm.Results["Generations"].Value).Value != currentGeneration) {
|
---|
[5281] | 929 | while (metaLevelAlgorithm.Results.Count < 6) Thread.Sleep(1000);
|
---|
[5087] | 930 | StringBuilder sb = new StringBuilder();
|
---|
| 931 | sb.AppendLine(DateTime.Now.ToLongTimeString());
|
---|
| 932 | sb.AppendLine("=================================");
|
---|
[5023] | 933 |
|
---|
[5111] | 934 | sb.AppendLine(metaLevelAlgorithm.ExecutionState.ToString());
|
---|
[5281] | 935 | ResultCollection rsClone = null;
|
---|
| 936 | while (rsClone == null) {
|
---|
| 937 | try {
|
---|
| 938 | rsClone = (ResultCollection)metaLevelAlgorithm.Results.Clone();
|
---|
| 939 | }
|
---|
| 940 | catch { }
|
---|
| 941 | }
|
---|
[5207] | 942 | foreach (var result in rsClone) {
|
---|
[5087] | 943 | sb.AppendLine(result.ToString());
|
---|
| 944 | if (result.Name == "Population") {
|
---|
| 945 | RunCollection rc = (RunCollection)result.Value;
|
---|
[5212] | 946 | var orderedRuns = rc.OrderBy(x => x.Results["AverageQualityNormalized"]);
|
---|
[5087] | 947 |
|
---|
[5927] | 948 | TableBuilder tb = new TableBuilder("QNorm", "Qualities"/*, "PoSi"*/ ,"MutRa" /*,"Eli", "SelOp"*/, "MutOp"/*, "NrSelSubScopes"*/);
|
---|
[5087] | 949 | foreach (IRun run in orderedRuns) {
|
---|
[5653] | 950 | //string selector;
|
---|
| 951 | //if (run.Parameters["Selector"] is TournamentSelector) {
|
---|
| 952 | // selector = string.Format("{0} ({1})", run.Parameters["Selector"].ToString(), ((TournamentSelector)run.Parameters["Selector"]).GroupSizeParameter.Value.ToString());
|
---|
| 953 | //} else {
|
---|
| 954 | // selector = string.Format("{0}", run.Parameters["Selector"].ToString());
|
---|
| 955 | //}
|
---|
[5087] | 956 |
|
---|
[5207] | 957 | tb.AppendRow(
|
---|
[5927] | 958 | ((DoubleValue)run.Results["AverageQualityNormalized"]).Value.ToString("#0.0000")
|
---|
| 959 | ,((DoubleArray)run.Results["RunsAverageQualities"]).ToString()
|
---|
| 960 | //,((IntValue)run.Parameters["PopulationSize"]).Value.ToString()
|
---|
| 961 | ,((DoubleValue)run.Parameters["MutationProbability"]).Value.ToString("0.0000")
|
---|
| 962 | //,((IntValue)run.Parameters["Elites"]).Value.ToString()
|
---|
| 963 | //,Shorten(selector, 20)
|
---|
| 964 | ,Shorten(run.Parameters.ContainsKey("Mutator") ? run.Parameters["Mutator"].ToString() : "null", 40)
|
---|
| 965 | //,((ISelector)run.Parameters["Selector"]).NumberOfSelectedSubScopesParameter.Value.ToString()
|
---|
[5653] | 966 | );
|
---|
[5023] | 967 | }
|
---|
[5207] | 968 | sb.AppendLine(tb.ToString());
|
---|
[5087] | 969 | }
|
---|
| 970 | } // foreach
|
---|
[5207] | 971 | //Console.Clear();
|
---|
[5087] | 972 | Console.WriteLine(sb.ToString());
|
---|
| 973 | sw.WriteLine(sb.ToString());
|
---|
| 974 | currentGeneration = ((IntValue)metaLevelAlgorithm.Results["Generations"].Value).Value;
|
---|
| 975 | } // if
|
---|
[5207] | 976 | //if (i % 30 == 0) GC.Collect();
|
---|
[5087] | 977 | i++;
|
---|
[5023] | 978 | } while (metaLevelAlgorithm.ExecutionState != ExecutionState.Stopped);
|
---|
| 979 | }
|
---|
[5009] | 980 |
|
---|
[5023] | 981 | Console.WriteLine();
|
---|
| 982 | Console.WriteLine("Storing...");
|
---|
| 983 |
|
---|
[5087] | 984 | ContentManager.Save((IStorableContent)metaLevelAlgorithm, resultPath, true);
|
---|
[5009] | 985 | Console.WriteLine("Finished");
|
---|
| 986 | }
|
---|
| 987 |
|
---|
[5184] | 988 | private static void metaLevelAlgorithm_ExceptionOccurred(object sender, EventArgs<Exception> e) {
|
---|
| 989 | Console.WriteLine("metaLevelAlgorithm_ExceptionOccurred");
|
---|
[5212] | 990 | Console.WriteLine(e.Value.ToString());
|
---|
| 991 | if (e.Value.InnerException != null) {
|
---|
| 992 | Console.WriteLine(e.Value.InnerException.ToString());
|
---|
| 993 | }
|
---|
[5184] | 994 | }
|
---|
| 995 |
|
---|
| 996 | private static void metaLevelAlgorithm_Paused(object sender, EventArgs e) {
|
---|
| 997 | Console.WriteLine("metaLevelAlgorithm_Paused");
|
---|
| 998 | }
|
---|
| 999 |
|
---|
| 1000 | private static void metaLevelAlgorithm_Stopped(object sender, EventArgs e) {
|
---|
| 1001 | Console.WriteLine("metaLevelAlgorithm_Stopped");
|
---|
| 1002 | }
|
---|
| 1003 |
|
---|
[5087] | 1004 | private static void TestShorten() {
|
---|
| 1005 | int n = 8;
|
---|
| 1006 | Console.WriteLine(Shorten("1", n));
|
---|
| 1007 | Console.WriteLine(Shorten("12", n));
|
---|
| 1008 | Console.WriteLine(Shorten("123", n));
|
---|
| 1009 | Console.WriteLine(Shorten("1234", n));
|
---|
| 1010 | Console.WriteLine(Shorten("12345", n));
|
---|
| 1011 | Console.WriteLine(Shorten("123456", n));
|
---|
| 1012 | Console.WriteLine(Shorten("1234567", n));
|
---|
| 1013 | Console.WriteLine(Shorten("12345678", n));
|
---|
| 1014 | Console.WriteLine(Shorten("123456789", n));
|
---|
| 1015 | Console.WriteLine(Shorten("1234567890", n));
|
---|
| 1016 | Console.WriteLine(Shorten("12345678901", n));
|
---|
| 1017 | }
|
---|
| 1018 |
|
---|
| 1019 | private static string Shorten(string s, int n) {
|
---|
| 1020 | string placeholder = "..";
|
---|
| 1021 | if (s.Length <= n) return s;
|
---|
| 1022 | int len = n / 2 - placeholder.Length / 2;
|
---|
| 1023 | string start = s.Substring(0, len);
|
---|
| 1024 | string end = s.Substring(s.Length - len, len);
|
---|
| 1025 | return start + placeholder + end;
|
---|
| 1026 | }
|
---|
| 1027 |
|
---|
[4997] | 1028 | private static void TestIntSampling() {
|
---|
| 1029 | System.Random rand = new System.Random();
|
---|
| 1030 | int lower = 10;
|
---|
| 1031 | int upper = 20;
|
---|
[5207] | 1032 | int stepsize = 1;
|
---|
[4997] | 1033 | for (int i = 0; i < 100; i++) {
|
---|
| 1034 | int val;
|
---|
| 1035 | do {
|
---|
| 1036 | val = rand.Next(lower / stepsize, upper / stepsize + 1) * stepsize;
|
---|
| 1037 | } while (val < lower || val > upper);
|
---|
| 1038 | Console.WriteLine(val);
|
---|
| 1039 | }
|
---|
| 1040 | }
|
---|
| 1041 |
|
---|
| 1042 | private static void TestDoubleSampling() {
|
---|
| 1043 | System.Random rand = new System.Random();
|
---|
| 1044 | double lower = 2;
|
---|
| 1045 | double upper = 3;
|
---|
| 1046 | double stepsize = 0.6;
|
---|
| 1047 | for (int i = 0; i < 100; i++) {
|
---|
| 1048 | double val;
|
---|
| 1049 | do {
|
---|
| 1050 | val = Math.Round((rand.NextDouble() * (upper - lower) + lower) / stepsize, 0) * stepsize;
|
---|
| 1051 | } while (val < lower || val > upper);
|
---|
| 1052 | Console.WriteLine(val);
|
---|
| 1053 | }
|
---|
| 1054 | }
|
---|
| 1055 |
|
---|
| 1056 | private static IEnumerable<IItem> GetValidValues(IValueParameter valueParameter) {
|
---|
| 1057 | return ApplicationManager.Manager.GetInstances(valueParameter.DataType).Select(x => (IItem)x).OrderBy(x => x.ItemName);
|
---|
| 1058 | }
|
---|
| 1059 | }
|
---|
[5144] | 1060 |
|
---|
| 1061 | public class Node {
|
---|
| 1062 | public string Name { get; set; }
|
---|
| 1063 | public int ActualValue { get; set; }
|
---|
| 1064 | public int[] PossibleValues { get; set; }
|
---|
| 1065 | public List<Node> ChildNodes { get; set; }
|
---|
| 1066 |
|
---|
| 1067 | public Node(string name) {
|
---|
| 1068 | this.Name = name;
|
---|
| 1069 | PossibleValues = new int[] { 1, 2, 3 };
|
---|
| 1070 | ChildNodes = new List<Node>();
|
---|
| 1071 | }
|
---|
| 1072 |
|
---|
| 1073 | public void Init() {
|
---|
| 1074 | this.ActualValue = PossibleValues.First();
|
---|
| 1075 | foreach (var child in ChildNodes) {
|
---|
| 1076 | child.Init();
|
---|
| 1077 | }
|
---|
| 1078 | }
|
---|
| 1079 |
|
---|
| 1080 | public override string ToString() {
|
---|
| 1081 | StringBuilder sb = new StringBuilder();
|
---|
| 1082 | sb.Append(string.Format("{0}:{1}", this.Name, this.ActualValue));
|
---|
| 1083 | if (this.ChildNodes.Count() > 0) {
|
---|
| 1084 | sb.Append(" (");
|
---|
| 1085 | var lst = new List<string>();
|
---|
| 1086 | foreach (Node child in ChildNodes) {
|
---|
| 1087 | lst.Add(child.ToString());
|
---|
| 1088 | }
|
---|
| 1089 | sb.Append(string.Join(", ", lst.ToArray()));
|
---|
| 1090 | sb.Append(")");
|
---|
| 1091 | }
|
---|
| 1092 |
|
---|
| 1093 | return sb.ToString();
|
---|
| 1094 | }
|
---|
| 1095 | }
|
---|
| 1096 |
|
---|
| 1097 | public class NodeEnumerator : IEnumerator<Node> {
|
---|
| 1098 | private Node node;
|
---|
| 1099 | private List<IEnumerator> enumerators;
|
---|
| 1100 |
|
---|
| 1101 | public NodeEnumerator(Node node) {
|
---|
| 1102 | this.node = node;
|
---|
| 1103 | this.enumerators = new List<IEnumerator>();
|
---|
| 1104 | }
|
---|
| 1105 |
|
---|
| 1106 | public Node Current {
|
---|
| 1107 | get { return node; }
|
---|
| 1108 | }
|
---|
| 1109 | object IEnumerator.Current {
|
---|
| 1110 | get { return Current; }
|
---|
| 1111 | }
|
---|
| 1112 |
|
---|
| 1113 | public void Dispose() { }
|
---|
| 1114 |
|
---|
| 1115 | public bool MoveNext() {
|
---|
| 1116 | int i = 0;
|
---|
| 1117 | bool ok = false;
|
---|
[5207] | 1118 | while (!ok && i < enumerators.Count) {
|
---|
| 1119 | if (enumerators[i].MoveNext()) {
|
---|
[5144] | 1120 | ok = true;
|
---|
| 1121 | } else {
|
---|
| 1122 | i++;
|
---|
| 1123 | }
|
---|
| 1124 | }
|
---|
| 1125 |
|
---|
| 1126 | if (ok) {
|
---|
[5207] | 1127 | for (int k = i - 1; k >= 0; k--) {
|
---|
[5144] | 1128 | enumerators[k].Reset();
|
---|
| 1129 | enumerators[k].MoveNext();
|
---|
| 1130 | }
|
---|
| 1131 | } else {
|
---|
| 1132 | return false;
|
---|
| 1133 | }
|
---|
| 1134 |
|
---|
| 1135 | node.ActualValue = (int)enumerators[0].Current;
|
---|
| 1136 | return true;
|
---|
| 1137 | }
|
---|
| 1138 |
|
---|
| 1139 | public void Reset() {
|
---|
| 1140 | enumerators.Clear();
|
---|
| 1141 | enumerators.Add(node.PossibleValues.GetEnumerator());
|
---|
| 1142 | enumerators[0].Reset();
|
---|
| 1143 |
|
---|
| 1144 | foreach (var child in node.ChildNodes) {
|
---|
| 1145 | var enumerator = new NodeEnumerator(child);
|
---|
| 1146 | enumerator.Reset();
|
---|
| 1147 | enumerator.MoveNext();
|
---|
| 1148 | enumerators.Add(enumerator);
|
---|
| 1149 | }
|
---|
| 1150 | }
|
---|
| 1151 | }
|
---|
[4997] | 1152 | }
|
---|