1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.ParameterConfigurationEncoding;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Problems.MetaOptimization {
|
---|
31 | public static class MetaOptimizationUtil {
|
---|
32 | /// <summary>
|
---|
33 | /// Removes those results from the run which are not declared in resultsToKeep
|
---|
34 | /// </summary>
|
---|
35 | public static void ClearResults(IRun run, IEnumerable<string> resultsToKeep) {
|
---|
36 | var resultsToRemove = new List<string>();
|
---|
37 | foreach (var result in run.Results) {
|
---|
38 | if (!resultsToKeep.Contains(result.Key))
|
---|
39 | resultsToRemove.Add(result.Key);
|
---|
40 | }
|
---|
41 | foreach (var result in resultsToRemove)
|
---|
42 | run.Results.Remove(result);
|
---|
43 | }
|
---|
44 |
|
---|
45 | /// <summary>
|
---|
46 | /// Removes those parameters from the run which are not declared in parametersToKeep
|
---|
47 | /// </summary>
|
---|
48 | public static void ClearParameters(IRun run, IEnumerable<string> parametersToKeep) {
|
---|
49 | var parametersToRemove = new List<string>();
|
---|
50 | foreach (var parameter in run.Parameters) {
|
---|
51 | if (!parametersToKeep.Contains(parameter.Key))
|
---|
52 | parametersToRemove.Add(parameter.Key);
|
---|
53 | }
|
---|
54 | foreach (var parameter in parametersToRemove)
|
---|
55 | run.Parameters.Remove(parameter);
|
---|
56 | }
|
---|
57 |
|
---|
58 | public static double Normalize(
|
---|
59 | ParameterConfigurationTree parameterConfigurationTree,
|
---|
60 | double[] referenceQualityAverages,
|
---|
61 | double[] referenceQualityDeviations,
|
---|
62 | double[] referenceEvaluatedSolutionAverages,
|
---|
63 | double qualityAveragesWeight,
|
---|
64 | double qualityDeviationsWeight,
|
---|
65 | double evaluatedSolutionsWeight,
|
---|
66 | bool maximization) {
|
---|
67 |
|
---|
68 | double[] qualityAveragesNormalized = new double[referenceQualityAverages.Length];
|
---|
69 | double[] qualityDeviationsNormalized = new double[referenceQualityDeviations.Length];
|
---|
70 | double[] evaluatedSolutionAveragesNormalized = new double[referenceEvaluatedSolutionAverages.Length];
|
---|
71 |
|
---|
72 | for (int i = 0; i < referenceQualityAverages.Length; i++) {
|
---|
73 | qualityAveragesNormalized[i] = parameterConfigurationTree.AverageQualities[i] / referenceQualityAverages[i];
|
---|
74 | qualityDeviationsNormalized[i] = parameterConfigurationTree.QualityStandardDeviations[i] / referenceQualityDeviations[i];
|
---|
75 | evaluatedSolutionAveragesNormalized[i] = parameterConfigurationTree.AverageEvaluatedSolutions[i] / referenceEvaluatedSolutionAverages[i];
|
---|
76 | if (double.IsNaN(evaluatedSolutionAveragesNormalized[i])) evaluatedSolutionAveragesNormalized[i] = 0.0;
|
---|
77 | }
|
---|
78 | parameterConfigurationTree.NormalizedQualityAverages = new DoubleArray(qualityAveragesNormalized);
|
---|
79 | parameterConfigurationTree.NormalizedQualityDeviations = new DoubleArray(qualityDeviationsNormalized);
|
---|
80 | parameterConfigurationTree.NormalizedEvaluatedSolutions = new DoubleArray(evaluatedSolutionAveragesNormalized);
|
---|
81 |
|
---|
82 | double qualityAveragesNormalizedValue = qualityAveragesNormalized.Average();
|
---|
83 | double qualityDeviationsNormalizedValue = qualityDeviationsNormalized.Average();
|
---|
84 | double evaluatedSolutionAveragesNormalizedValue = evaluatedSolutionAveragesNormalized.Average();
|
---|
85 |
|
---|
86 | // deviation and evaluatedSolutions are always minimization problems. so if maximization=true, flip the values around 1.0 (e.g. 1.15 -> 0.85)
|
---|
87 | if (maximization) {
|
---|
88 | qualityDeviationsNormalizedValue -= (qualityDeviationsNormalizedValue - 1) * 2;
|
---|
89 | evaluatedSolutionAveragesNormalizedValue -= (evaluatedSolutionAveragesNormalizedValue - 1) * 2;
|
---|
90 | }
|
---|
91 |
|
---|
92 | // apply weights
|
---|
93 | qualityAveragesNormalizedValue *= qualityAveragesWeight;
|
---|
94 | qualityDeviationsNormalizedValue *= qualityDeviationsWeight;
|
---|
95 | evaluatedSolutionAveragesNormalizedValue *= evaluatedSolutionsWeight;
|
---|
96 |
|
---|
97 | double weightSum = qualityAveragesWeight + qualityDeviationsWeight + evaluatedSolutionsWeight;
|
---|
98 | parameterConfigurationTree.Quality = new DoubleValue((qualityAveragesNormalizedValue + qualityDeviationsNormalizedValue + evaluatedSolutionAveragesNormalizedValue) / weightSum);
|
---|
99 |
|
---|
100 | return parameterConfigurationTree.Quality.Value;
|
---|
101 | }
|
---|
102 |
|
---|
103 | /// <summary>
|
---|
104 | /// Creates a new instance of algorithmType, sets the given problem and parameterizes it with the given configuration
|
---|
105 | /// </summary>
|
---|
106 | public static IAlgorithm CreateParameterizedAlgorithmInstance(ParameterConfigurationTree parameterConfigurationTree, Type algorithmType, IProblem problem, bool randomize = false, IRandom random = null) {
|
---|
107 | var algorithm = (IAlgorithm)Activator.CreateInstance(algorithmType);
|
---|
108 | algorithm.Problem = problem;
|
---|
109 | if (algorithm is EngineAlgorithm) {
|
---|
110 | ((EngineAlgorithm)algorithm).Engine = new SequentialEngine.SequentialEngine();
|
---|
111 | }
|
---|
112 | if (randomize) parameterConfigurationTree.Randomize(random);
|
---|
113 | parameterConfigurationTree.Parameterize(algorithm);
|
---|
114 | return algorithm;
|
---|
115 | }
|
---|
116 | }
|
---|
117 | }
|
---|