[8576] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Linq;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.Encodings.ParameterConfigurationEncoding;
|
---|
| 27 | using HeuristicLab.Operators;
|
---|
| 28 | using HeuristicLab.Optimization;
|
---|
| 29 | using HeuristicLab.Parameters;
|
---|
| 30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.Problems.MetaOptimization {
|
---|
| 33 | /// <summary>
|
---|
| 34 | /// TODO
|
---|
| 35 | /// </summary>
|
---|
| 36 | [Item("ReferenceQualityAnalyzer", "TODO")]
|
---|
| 37 | [StorableClass]
|
---|
| 38 | public sealed class ReferenceQualityAnalyzer : SingleSuccessorOperator, IAnalyzer {
|
---|
| 39 | public bool EnabledByDefault {
|
---|
| 40 | get { return true; }
|
---|
| 41 | }
|
---|
| 42 |
|
---|
| 43 | public ValueLookupParameter<ResultCollection> ResultsParameter {
|
---|
| 44 | get { return (ValueLookupParameter<ResultCollection>)Parameters["Results"]; }
|
---|
| 45 | }
|
---|
| 46 | public ScopeTreeLookupParameter<ParameterConfigurationTree> ParameterConfigurationParameter {
|
---|
| 47 | get { return (ScopeTreeLookupParameter<ParameterConfigurationTree>)Parameters["ParameterConfigurationTree"]; }
|
---|
| 48 | }
|
---|
| 49 | public ScopeTreeLookupParameter<DoubleValue> QualityParameter {
|
---|
| 50 | get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
| 51 | }
|
---|
| 52 | public LookupParameter<DoubleArray> ReferenceQualityAveragesParameter {
|
---|
| 53 | get { return (LookupParameter<DoubleArray>)Parameters["ReferenceQualityAverages"]; }
|
---|
| 54 | }
|
---|
| 55 | public LookupParameter<DoubleArray> ReferenceQualityDeviationsParameter {
|
---|
| 56 | get { return (LookupParameter<DoubleArray>)Parameters["ReferenceQualityDeviations"]; }
|
---|
| 57 | }
|
---|
| 58 | public LookupParameter<DoubleArray> ReferenceEvaluatedSolutionAveragesParameter {
|
---|
| 59 | get { return (LookupParameter<DoubleArray>)Parameters["ReferenceEvaluatedSolutionAverages"]; }
|
---|
| 60 | }
|
---|
| 61 | public LookupParameter<ConstrainedItemList<IProblem>> ProblemsParameter {
|
---|
| 62 | get { return (LookupParameter<ConstrainedItemList<IProblem>>)Parameters[MetaOptimizationProblem.ProblemsParameterName]; }
|
---|
| 63 | }
|
---|
| 64 | public LookupParameter<BoolValue> MaximizationParameter {
|
---|
| 65 | get { return (LookupParameter<BoolValue>)Parameters["Maximization"]; }
|
---|
| 66 | }
|
---|
| 67 | public LookupParameter<DoubleValue> QualityWeightParameter {
|
---|
| 68 | get { return (LookupParameter<DoubleValue>)Parameters[MetaOptimizationProblem.QualityWeightParameterName]; }
|
---|
| 69 | }
|
---|
| 70 | public LookupParameter<DoubleValue> StandardDeviationWeightParameter {
|
---|
| 71 | get { return (LookupParameter<DoubleValue>)Parameters[MetaOptimizationProblem.StandardDeviationWeightParameterName]; }
|
---|
| 72 | }
|
---|
| 73 | public LookupParameter<DoubleValue> EvaluatedSolutionsWeightParameter {
|
---|
| 74 | get { return (LookupParameter<DoubleValue>)Parameters[MetaOptimizationProblem.EvaluatedSolutionsWeightParameterName]; }
|
---|
| 75 | }
|
---|
| 76 |
|
---|
| 77 | #region Constructors and Cloning
|
---|
| 78 | public ReferenceQualityAnalyzer()
|
---|
| 79 | : base() {
|
---|
| 80 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", ""));
|
---|
| 81 | Parameters.Add(new ValueLookupParameter<ResultCollection>("Results", ""));
|
---|
| 82 | Parameters.Add(new ScopeTreeLookupParameter<ParameterConfigurationTree>("ParameterConfigurationTree", ""));
|
---|
| 83 | Parameters.Add(new LookupParameter<DoubleArray>("ReferenceQualityAverages", ""));
|
---|
| 84 | Parameters.Add(new LookupParameter<DoubleArray>("ReferenceQualityDeviations", ""));
|
---|
| 85 | Parameters.Add(new LookupParameter<DoubleArray>("ReferenceEvaluatedSolutionAverages", ""));
|
---|
| 86 | Parameters.Add(new LookupParameter<ConstrainedItemList<IProblem>>(MetaOptimizationProblem.ProblemsParameterName));
|
---|
| 87 | Parameters.Add(new LookupParameter<BoolValue>("Maximization", "Set to false if the problem should be minimized."));
|
---|
| 88 | Parameters.Add(new LookupParameter<DoubleValue>(MetaOptimizationProblem.QualityWeightParameterName));
|
---|
| 89 | Parameters.Add(new LookupParameter<DoubleValue>(MetaOptimizationProblem.StandardDeviationWeightParameterName));
|
---|
| 90 | Parameters.Add(new LookupParameter<DoubleValue>(MetaOptimizationProblem.EvaluatedSolutionsWeightParameterName));
|
---|
| 91 | }
|
---|
| 92 |
|
---|
| 93 | [StorableConstructor]
|
---|
| 94 | private ReferenceQualityAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
| 95 | private ReferenceQualityAnalyzer(ReferenceQualityAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
| 96 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 97 | return new ReferenceQualityAnalyzer(this, cloner);
|
---|
| 98 | }
|
---|
| 99 | #endregion
|
---|
| 100 |
|
---|
| 101 | public override IOperation Apply() {
|
---|
| 102 | ResultCollection results = ResultsParameter.ActualValue;
|
---|
| 103 | ItemArray<ParameterConfigurationTree> solutions = ParameterConfigurationParameter.ActualValue;
|
---|
| 104 | ItemArray<DoubleValue> qualities = QualityParameter.ActualValue;
|
---|
| 105 | bool maximization = MaximizationParameter.ActualValue.Value;
|
---|
| 106 | double qualityWeight = QualityWeightParameter.ActualValue.Value;
|
---|
| 107 | double standardDeviationWeight = StandardDeviationWeightParameter.ActualValue.Value;
|
---|
| 108 | double evaluatedSolutionsWeight = EvaluatedSolutionsWeightParameter.ActualValue.Value;
|
---|
| 109 |
|
---|
| 110 | if (ReferenceQualityAveragesParameter.ActualValue == null) {
|
---|
| 111 | // this is generation zero. calculate the reference values and apply them on population. in future generations `AlgorithmRunsAnalyzer` will do the nomalization
|
---|
| 112 | DoubleArray referenceQualityAverages = CalculateReferenceQualityAverages(solutions, maximization);
|
---|
| 113 | DoubleArray referenceQualityDeviations = CalculateReferenceQualityDeviations(solutions, maximization);
|
---|
| 114 | DoubleArray referenceEvaluatedSolutionAverages = CalculateReferenceEvaluatedSolutionAverages(solutions, maximization);
|
---|
| 115 |
|
---|
| 116 | ReferenceQualityAveragesParameter.ActualValue = referenceQualityAverages;
|
---|
| 117 | ReferenceQualityDeviationsParameter.ActualValue = referenceQualityDeviations;
|
---|
| 118 | ReferenceEvaluatedSolutionAveragesParameter.ActualValue = referenceEvaluatedSolutionAverages;
|
---|
| 119 |
|
---|
| 120 | NormalizePopulation(solutions, qualities, referenceQualityAverages, referenceQualityDeviations, referenceEvaluatedSolutionAverages, qualityWeight, standardDeviationWeight, evaluatedSolutionsWeight, maximization);
|
---|
| 121 |
|
---|
| 122 | results.Add(new Result("ReferenceQualities", referenceQualityAverages));
|
---|
| 123 | results.Add(new Result("ReferenceQualityDeviations", referenceQualityDeviations));
|
---|
| 124 | results.Add(new Result("ReferenceEvaluatedSolutionAverages", referenceEvaluatedSolutionAverages));
|
---|
| 125 | }
|
---|
| 126 |
|
---|
| 127 | return base.Apply();
|
---|
| 128 | }
|
---|
| 129 |
|
---|
| 130 | private DoubleArray CalculateReferenceQualityAverages(ItemArray<ParameterConfigurationTree> solutions, bool maximization) {
|
---|
| 131 | DoubleArray references = new DoubleArray(ProblemsParameter.ActualValue.Count);
|
---|
| 132 | for (int pi = 0; pi < ProblemsParameter.ActualValue.Count; pi++) {
|
---|
| 133 | if (maximization)
|
---|
| 134 | references[pi] = solutions.Where(x => x.AverageQualities != null).Select(x => x.AverageQualities[pi]).Max();
|
---|
| 135 | else
|
---|
| 136 | references[pi] = solutions.Where(x => x.AverageQualities != null).Select(x => x.AverageQualities[pi]).Min();
|
---|
| 137 | }
|
---|
| 138 | return references;
|
---|
| 139 | }
|
---|
| 140 |
|
---|
| 141 | private DoubleArray CalculateReferenceQualityDeviations(ItemArray<ParameterConfigurationTree> solutions, bool maximization) {
|
---|
| 142 | DoubleArray references = new DoubleArray(ProblemsParameter.ActualValue.Count);
|
---|
| 143 | for (int pi = 0; pi < ProblemsParameter.ActualValue.Count; pi++) {
|
---|
| 144 | if (maximization)
|
---|
| 145 | references[pi] = solutions.Where(x => x.QualityStandardDeviations != null).Select(x => x.QualityStandardDeviations[pi]).Max();
|
---|
| 146 | else
|
---|
| 147 | references[pi] = solutions.Where(x => x.QualityStandardDeviations != null).Select(x => x.QualityStandardDeviations[pi]).Min();
|
---|
| 148 | }
|
---|
| 149 | return references;
|
---|
| 150 | }
|
---|
| 151 |
|
---|
| 152 | private DoubleArray CalculateReferenceEvaluatedSolutionAverages(ItemArray<ParameterConfigurationTree> solutions, bool maximization) {
|
---|
| 153 | DoubleArray references = new DoubleArray(ProblemsParameter.ActualValue.Count);
|
---|
| 154 | for (int pi = 0; pi < ProblemsParameter.ActualValue.Count; pi++) {
|
---|
| 155 | if (maximization)
|
---|
| 156 | references[pi] = solutions.Where(x => x.AverageEvaluatedSolutions != null).Select(x => x.AverageEvaluatedSolutions[pi]).Max();
|
---|
| 157 | else
|
---|
| 158 | references[pi] = solutions.Where(x => x.AverageEvaluatedSolutions != null).Select(x => x.AverageEvaluatedSolutions[pi]).Min();
|
---|
| 159 | }
|
---|
| 160 | return references;
|
---|
| 161 | }
|
---|
| 162 |
|
---|
| 163 | private void NormalizePopulation(ItemArray<ParameterConfigurationTree> solutions, ItemArray<DoubleValue> qualities,
|
---|
| 164 | DoubleArray referenceQualityAverages,
|
---|
| 165 | DoubleArray referenceQualityDeviations,
|
---|
| 166 | DoubleArray referenceEvaluatedSolutionAverages,
|
---|
| 167 | double qualityAveragesWeight,
|
---|
| 168 | double qualityDeviationsWeight,
|
---|
| 169 | double evaluatedSolutionsWeight,
|
---|
| 170 | bool maximization) {
|
---|
| 171 | for (int i = 0; i < solutions.Length; i++) {
|
---|
| 172 | if (solutions[i].AverageQualities == null || solutions[i].QualityStandardDeviations == null || solutions[i].AverageEvaluatedSolutions == null) {
|
---|
| 173 | // this parameterConfigurationTree has not been evaluated correctly (due to a faulty configuration, which led to an exception)
|
---|
| 174 | // since we are in generation zero, there is no WorstQuality available for a penalty value
|
---|
| 175 | double penaltyValue = maximization ? double.MinValue : double.MaxValue;
|
---|
| 176 | qualities[i].Value = penaltyValue;
|
---|
| 177 | } else {
|
---|
| 178 | qualities[i].Value = MetaOptimizationUtil.Normalize(solutions[i],
|
---|
| 179 | referenceQualityAverages.ToArray(),
|
---|
| 180 | referenceQualityDeviations.ToArray(),
|
---|
| 181 | referenceEvaluatedSolutionAverages.ToArray(),
|
---|
| 182 | qualityAveragesWeight,
|
---|
| 183 | qualityDeviationsWeight,
|
---|
| 184 | evaluatedSolutionsWeight,
|
---|
| 185 | maximization);
|
---|
| 186 | }
|
---|
| 187 | }
|
---|
| 188 | }
|
---|
| 189 | }
|
---|
| 190 | }
|
---|