1 | /*
|
---|
2 | * SVM.NET Library
|
---|
3 | * Copyright (C) 2008 Matthew Johnson
|
---|
4 | *
|
---|
5 | * This program is free software: you can redistribute it and/or modify
|
---|
6 | * it under the terms of the GNU General Public License as published by
|
---|
7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
8 | * (at your option) any later version.
|
---|
9 | *
|
---|
10 | * This program is distributed in the hope that it will be useful,
|
---|
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | * GNU General Public License for more details.
|
---|
14 | *
|
---|
15 | * You should have received a copy of the GNU General Public License
|
---|
16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
17 | */
|
---|
18 |
|
---|
19 |
|
---|
20 |
|
---|
21 | using System;
|
---|
22 | using System.IO;
|
---|
23 |
|
---|
24 | namespace SVM
|
---|
25 | {
|
---|
26 | /// <remarks>
|
---|
27 | /// Encapsulates an SVM Model.
|
---|
28 | /// </remarks>
|
---|
29 | [Serializable]
|
---|
30 | public class Model
|
---|
31 | {
|
---|
32 | private Parameter _parameter;
|
---|
33 | private int _numberOfClasses;
|
---|
34 | private int _supportVectorCount;
|
---|
35 | private Node[][] _supportVectors;
|
---|
36 | private double[][] _supportVectorCoefficients;
|
---|
37 | private double[] _rho;
|
---|
38 | private double[] _pairwiseProbabilityA;
|
---|
39 | private double[] _pairwiseProbabilityB;
|
---|
40 |
|
---|
41 | private int[] _classLabels;
|
---|
42 | private int[] _numberOfSVPerClass;
|
---|
43 |
|
---|
44 | internal Model()
|
---|
45 | {
|
---|
46 | }
|
---|
47 |
|
---|
48 | /// <summary>
|
---|
49 | /// Parameter object.
|
---|
50 | /// </summary>
|
---|
51 | public Parameter Parameter
|
---|
52 | {
|
---|
53 | get
|
---|
54 | {
|
---|
55 | return _parameter;
|
---|
56 | }
|
---|
57 | set
|
---|
58 | {
|
---|
59 | _parameter = value;
|
---|
60 | }
|
---|
61 | }
|
---|
62 |
|
---|
63 | /// <summary>
|
---|
64 | /// Number of classes in the model.
|
---|
65 | /// </summary>
|
---|
66 | public int NumberOfClasses
|
---|
67 | {
|
---|
68 | get
|
---|
69 | {
|
---|
70 | return _numberOfClasses;
|
---|
71 | }
|
---|
72 | set
|
---|
73 | {
|
---|
74 | _numberOfClasses = value;
|
---|
75 | }
|
---|
76 | }
|
---|
77 |
|
---|
78 | /// <summary>
|
---|
79 | /// Total number of support vectors.
|
---|
80 | /// </summary>
|
---|
81 | public int SupportVectorCount
|
---|
82 | {
|
---|
83 | get
|
---|
84 | {
|
---|
85 | return _supportVectorCount;
|
---|
86 | }
|
---|
87 | set
|
---|
88 | {
|
---|
89 | _supportVectorCount = value;
|
---|
90 | }
|
---|
91 | }
|
---|
92 |
|
---|
93 | /// <summary>
|
---|
94 | /// The support vectors.
|
---|
95 | /// </summary>
|
---|
96 | public Node[][] SupportVectors
|
---|
97 | {
|
---|
98 | get
|
---|
99 | {
|
---|
100 | return _supportVectors;
|
---|
101 | }
|
---|
102 | set
|
---|
103 | {
|
---|
104 | _supportVectors = value;
|
---|
105 | }
|
---|
106 | }
|
---|
107 |
|
---|
108 | /// <summary>
|
---|
109 | /// The coefficients for the support vectors.
|
---|
110 | /// </summary>
|
---|
111 | public double[][] SupportVectorCoefficients
|
---|
112 | {
|
---|
113 | get
|
---|
114 | {
|
---|
115 | return _supportVectorCoefficients;
|
---|
116 | }
|
---|
117 | set
|
---|
118 | {
|
---|
119 | _supportVectorCoefficients = value;
|
---|
120 | }
|
---|
121 | }
|
---|
122 |
|
---|
123 | /// <summary>
|
---|
124 | /// Rho values.
|
---|
125 | /// </summary>
|
---|
126 | public double[] Rho
|
---|
127 | {
|
---|
128 | get
|
---|
129 | {
|
---|
130 | return _rho;
|
---|
131 | }
|
---|
132 | set
|
---|
133 | {
|
---|
134 | _rho = value;
|
---|
135 | }
|
---|
136 | }
|
---|
137 |
|
---|
138 | /// <summary>
|
---|
139 | /// First pairwise probability.
|
---|
140 | /// </summary>
|
---|
141 | public double[] PairwiseProbabilityA
|
---|
142 | {
|
---|
143 | get
|
---|
144 | {
|
---|
145 | return _pairwiseProbabilityA;
|
---|
146 | }
|
---|
147 | set
|
---|
148 | {
|
---|
149 | _pairwiseProbabilityA = value;
|
---|
150 | }
|
---|
151 | }
|
---|
152 |
|
---|
153 | /// <summary>
|
---|
154 | /// Second pairwise probability.
|
---|
155 | /// </summary>
|
---|
156 | public double[] PairwiseProbabilityB
|
---|
157 | {
|
---|
158 | get
|
---|
159 | {
|
---|
160 | return _pairwiseProbabilityB;
|
---|
161 | }
|
---|
162 | set
|
---|
163 | {
|
---|
164 | _pairwiseProbabilityB = value;
|
---|
165 | }
|
---|
166 | }
|
---|
167 |
|
---|
168 | // for classification only
|
---|
169 |
|
---|
170 | /// <summary>
|
---|
171 | /// Class labels.
|
---|
172 | /// </summary>
|
---|
173 | public int[] ClassLabels
|
---|
174 | {
|
---|
175 | get
|
---|
176 | {
|
---|
177 | return _classLabels;
|
---|
178 | }
|
---|
179 | set
|
---|
180 | {
|
---|
181 | _classLabels = value;
|
---|
182 | }
|
---|
183 | }
|
---|
184 |
|
---|
185 | /// <summary>
|
---|
186 | /// Number of support vectors per class.
|
---|
187 | /// </summary>
|
---|
188 | public int[] NumberOfSVPerClass
|
---|
189 | {
|
---|
190 | get
|
---|
191 | {
|
---|
192 | return _numberOfSVPerClass;
|
---|
193 | }
|
---|
194 | set
|
---|
195 | {
|
---|
196 | _numberOfSVPerClass = value;
|
---|
197 | }
|
---|
198 | }
|
---|
199 |
|
---|
200 | /// <summary>
|
---|
201 | /// Reads a Model from the provided file.
|
---|
202 | /// </summary>
|
---|
203 | /// <param name="filename">The name of the file containing the Model</param>
|
---|
204 | /// <returns>the Model</returns>
|
---|
205 | public static Model Read(string filename)
|
---|
206 | {
|
---|
207 | FileStream input = File.OpenRead(filename);
|
---|
208 | try
|
---|
209 | {
|
---|
210 | return Read(input);
|
---|
211 | }
|
---|
212 | finally
|
---|
213 | {
|
---|
214 | input.Close();
|
---|
215 | }
|
---|
216 | }
|
---|
217 |
|
---|
218 | /// <summary>
|
---|
219 | /// Reads a Model from the provided stream.
|
---|
220 | /// </summary>
|
---|
221 | /// <param name="stream">The stream from which to read the Model.</param>
|
---|
222 | /// <returns>the Model</returns>
|
---|
223 | public static Model Read(Stream stream)
|
---|
224 | {
|
---|
225 | StreamReader input = new StreamReader(stream);
|
---|
226 |
|
---|
227 | // read parameters
|
---|
228 |
|
---|
229 | Model model = new Model();
|
---|
230 | Parameter param = new Parameter();
|
---|
231 | model.Parameter = param;
|
---|
232 | model.Rho = null;
|
---|
233 | model.PairwiseProbabilityA = null;
|
---|
234 | model.PairwiseProbabilityB = null;
|
---|
235 | model.ClassLabels = null;
|
---|
236 | model.NumberOfSVPerClass = null;
|
---|
237 |
|
---|
238 | bool headerFinished = false;
|
---|
239 | while (!headerFinished)
|
---|
240 | {
|
---|
241 | string line = input.ReadLine();
|
---|
242 | string cmd, arg;
|
---|
243 | int splitIndex = line.IndexOf(' ');
|
---|
244 | if (splitIndex >= 0)
|
---|
245 | {
|
---|
246 | cmd = line.Substring(0, splitIndex);
|
---|
247 | arg = line.Substring(splitIndex + 1);
|
---|
248 | }
|
---|
249 | else
|
---|
250 | {
|
---|
251 | cmd = line;
|
---|
252 | arg = "";
|
---|
253 | }
|
---|
254 | arg = arg.ToLower();
|
---|
255 |
|
---|
256 | int i,n;
|
---|
257 | switch(cmd){
|
---|
258 | case "svm_type":
|
---|
259 | param.SvmType = (SvmType)Enum.Parse(typeof(SvmType), arg.ToUpper());
|
---|
260 | break;
|
---|
261 |
|
---|
262 | case "kernel_type":
|
---|
263 | param.KernelType = (KernelType)Enum.Parse(typeof(KernelType), arg.ToUpper());
|
---|
264 | break;
|
---|
265 |
|
---|
266 | case "degree":
|
---|
267 | param.Degree = int.Parse(arg);
|
---|
268 | break;
|
---|
269 |
|
---|
270 | case "gamma":
|
---|
271 | param.Gamma = double.Parse(arg);
|
---|
272 | break;
|
---|
273 |
|
---|
274 | case "coef0":
|
---|
275 | param.Coefficient0 = double.Parse(arg);
|
---|
276 | break;
|
---|
277 |
|
---|
278 | case "nr_class":
|
---|
279 | model.NumberOfClasses = int.Parse(arg);
|
---|
280 | break;
|
---|
281 |
|
---|
282 | case "total_sv":
|
---|
283 | model.SupportVectorCount = int.Parse(arg);
|
---|
284 | break;
|
---|
285 |
|
---|
286 | case "rho":
|
---|
287 | n = model.NumberOfClasses * (model.NumberOfClasses - 1) / 2;
|
---|
288 | model.Rho = new double[n];
|
---|
289 | string[] rhoParts = arg.Split();
|
---|
290 | for(i=0; i<n; i++)
|
---|
291 | model.Rho[i] = double.Parse(rhoParts[i]);
|
---|
292 | break;
|
---|
293 |
|
---|
294 | case "label":
|
---|
295 | n = model.NumberOfClasses;
|
---|
296 | model.ClassLabels = new int[n];
|
---|
297 | string[] labelParts = arg.Split();
|
---|
298 | for (i = 0; i < n; i++)
|
---|
299 | model.ClassLabels[i] = int.Parse(labelParts[i]);
|
---|
300 | break;
|
---|
301 |
|
---|
302 | case "probA":
|
---|
303 | n = model.NumberOfClasses * (model.NumberOfClasses - 1) / 2;
|
---|
304 | model.PairwiseProbabilityA = new double[n];
|
---|
305 | string[] probAParts = arg.Split();
|
---|
306 | for (i = 0; i < n; i++)
|
---|
307 | model.PairwiseProbabilityA[i] = double.Parse(probAParts[i]);
|
---|
308 | break;
|
---|
309 |
|
---|
310 | case "probB":
|
---|
311 | n = model.NumberOfClasses * (model.NumberOfClasses - 1) / 2;
|
---|
312 | model.PairwiseProbabilityB = new double[n];
|
---|
313 | string[] probBParts = arg.Split();
|
---|
314 | for (i = 0; i < n; i++)
|
---|
315 | model.PairwiseProbabilityB[i] = double.Parse(probBParts[i]);
|
---|
316 | break;
|
---|
317 |
|
---|
318 | case "nr_sv":
|
---|
319 | n = model.NumberOfClasses;
|
---|
320 | model.NumberOfSVPerClass = new int[n];
|
---|
321 | string[] nrsvParts = arg.Split();
|
---|
322 | for (i = 0; i < n; i++)
|
---|
323 | model.NumberOfSVPerClass[i] = int.Parse(nrsvParts[i]);
|
---|
324 | break;
|
---|
325 |
|
---|
326 | case "SV":
|
---|
327 | headerFinished = true;
|
---|
328 | break;
|
---|
329 |
|
---|
330 | default:
|
---|
331 | throw new Exception("Unknown text in model file");
|
---|
332 | }
|
---|
333 | }
|
---|
334 |
|
---|
335 | // read sv_coef and SV
|
---|
336 |
|
---|
337 | int m = model.NumberOfClasses - 1;
|
---|
338 | int l = model.SupportVectorCount;
|
---|
339 | model.SupportVectorCoefficients = new double[m][];
|
---|
340 | for (int i = 0; i < m; i++)
|
---|
341 | {
|
---|
342 | model.SupportVectorCoefficients[i] = new double[l];
|
---|
343 | }
|
---|
344 | model.SupportVectors = new Node[l][];
|
---|
345 |
|
---|
346 | for (int i = 0; i < l; i++)
|
---|
347 | {
|
---|
348 | string[] parts = input.ReadLine().Trim().Split();
|
---|
349 |
|
---|
350 | for (int k = 0; k < m; k++)
|
---|
351 | model.SupportVectorCoefficients[k][i] = double.Parse(parts[k]);
|
---|
352 | int n = parts.Length-m;
|
---|
353 | model.SupportVectors[i] = new Node[n];
|
---|
354 | for (int j = 0; j < n; j++)
|
---|
355 | {
|
---|
356 | string[] nodeParts = parts[m + j].Split(':');
|
---|
357 | model.SupportVectors[i][j] = new Node();
|
---|
358 | model.SupportVectors[i][j].Index = int.Parse(nodeParts[0]);
|
---|
359 | model.SupportVectors[i][j].Value = double.Parse(nodeParts[1]);
|
---|
360 | }
|
---|
361 | }
|
---|
362 |
|
---|
363 | return model;
|
---|
364 | }
|
---|
365 |
|
---|
366 | /// <summary>
|
---|
367 | /// Writes a model to the provided filename. This will overwrite any previous data in the file.
|
---|
368 | /// </summary>
|
---|
369 | /// <param name="filename">The desired file</param>
|
---|
370 | /// <param name="model">The Model to write</param>
|
---|
371 | public static void Write(string filename, Model model)
|
---|
372 | {
|
---|
373 | FileStream stream = File.Open(filename, FileMode.Create);
|
---|
374 | try
|
---|
375 | {
|
---|
376 | Write(stream, model);
|
---|
377 | }
|
---|
378 | finally
|
---|
379 | {
|
---|
380 | stream.Close();
|
---|
381 | }
|
---|
382 | }
|
---|
383 |
|
---|
384 | /// <summary>
|
---|
385 | /// Writes a model to the provided stream.
|
---|
386 | /// </summary>
|
---|
387 | /// <param name="stream">The output stream</param>
|
---|
388 | /// <param name="model">The model to write</param>
|
---|
389 | public static void Write(Stream stream, Model model)
|
---|
390 | {
|
---|
391 | StreamWriter output = new StreamWriter(stream);
|
---|
392 |
|
---|
393 | Parameter param = model.Parameter;
|
---|
394 |
|
---|
395 | output.Write("svm_type " + param.SvmType + "\n");
|
---|
396 | output.Write("kernel_type " + param.KernelType + "\n");
|
---|
397 |
|
---|
398 | if (param.KernelType == KernelType.POLY)
|
---|
399 | output.Write("degree " + param.Degree + "\n");
|
---|
400 |
|
---|
401 | if (param.KernelType == KernelType.POLY || param.KernelType == KernelType.RBF || param.KernelType == KernelType.SIGMOID)
|
---|
402 | output.Write("gamma " + param.Gamma + "\n");
|
---|
403 |
|
---|
404 | if (param.KernelType == KernelType.POLY || param.KernelType == KernelType.SIGMOID)
|
---|
405 | output.Write("coef0 " + param.Coefficient0 + "\n");
|
---|
406 |
|
---|
407 | int nr_class = model.NumberOfClasses;
|
---|
408 | int l = model.SupportVectorCount;
|
---|
409 | output.Write("nr_class " + nr_class + "\n");
|
---|
410 | output.Write("total_sv " + l + "\n");
|
---|
411 |
|
---|
412 | {
|
---|
413 | output.Write("rho");
|
---|
414 | for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++)
|
---|
415 | output.Write(" " + model.Rho[i]);
|
---|
416 | output.Write("\n");
|
---|
417 | }
|
---|
418 |
|
---|
419 | if (model.ClassLabels != null)
|
---|
420 | {
|
---|
421 | output.Write("label");
|
---|
422 | for (int i = 0; i < nr_class; i++)
|
---|
423 | output.Write(" " + model.ClassLabels[i]);
|
---|
424 | output.Write("\n");
|
---|
425 | }
|
---|
426 |
|
---|
427 | if (model.PairwiseProbabilityA != null)
|
---|
428 | // regression has probA only
|
---|
429 | {
|
---|
430 | output.Write("probA");
|
---|
431 | for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++)
|
---|
432 | output.Write(" " + model.PairwiseProbabilityA[i]);
|
---|
433 | output.Write("\n");
|
---|
434 | }
|
---|
435 | if (model.PairwiseProbabilityB != null)
|
---|
436 | {
|
---|
437 | output.Write("probB");
|
---|
438 | for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++)
|
---|
439 | output.Write(" " + model.PairwiseProbabilityB[i]);
|
---|
440 | output.Write("\n");
|
---|
441 | }
|
---|
442 |
|
---|
443 | if (model.NumberOfSVPerClass != null)
|
---|
444 | {
|
---|
445 | output.Write("nr_sv");
|
---|
446 | for (int i = 0; i < nr_class; i++)
|
---|
447 | output.Write(" " + model.NumberOfSVPerClass[i]);
|
---|
448 | output.Write("\n");
|
---|
449 | }
|
---|
450 |
|
---|
451 | output.Write("SV\n");
|
---|
452 | double[][] sv_coef = model.SupportVectorCoefficients;
|
---|
453 | Node[][] SV = model.SupportVectors;
|
---|
454 |
|
---|
455 | for (int i = 0; i < l; i++)
|
---|
456 | {
|
---|
457 | for (int j = 0; j < nr_class - 1; j++)
|
---|
458 | output.Write(sv_coef[j][i] + " ");
|
---|
459 |
|
---|
460 | Node[] p = SV[i];
|
---|
461 | if (p.Length == 0)
|
---|
462 | {
|
---|
463 | output.WriteLine();
|
---|
464 | continue;
|
---|
465 | }
|
---|
466 | if (param.KernelType == KernelType.PRECOMPUTED)
|
---|
467 | output.Write("0:{0}", (int)p[0].Value);
|
---|
468 | else
|
---|
469 | {
|
---|
470 | output.Write("{0}:{1}", p[0].Index, p[0].Value);
|
---|
471 | for (int j = 1; j < p.Length; j++)
|
---|
472 | output.Write(" {0}:{1}", p[j].Index, p[j].Value);
|
---|
473 | }
|
---|
474 | output.WriteLine();
|
---|
475 | }
|
---|
476 |
|
---|
477 | output.Flush();
|
---|
478 | }
|
---|
479 | }
|
---|
480 | } |
---|