1 | /*
|
---|
2 | * SVM.NET Library
|
---|
3 | * Copyright (C) 2008 Matthew Johnson
|
---|
4 | *
|
---|
5 | * This program is free software: you can redistribute it and/or modify
|
---|
6 | * it under the terms of the GNU General Public License as published by
|
---|
7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
8 | * (at your option) any later version.
|
---|
9 | *
|
---|
10 | * This program is distributed in the hope that it will be useful,
|
---|
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | * GNU General Public License for more details.
|
---|
14 | *
|
---|
15 | * You should have received a copy of the GNU General Public License
|
---|
16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
17 | */
|
---|
18 |
|
---|
19 |
|
---|
20 | using System;
|
---|
21 | using System.Collections.Generic;
|
---|
22 | using System.IO;
|
---|
23 |
|
---|
24 | namespace SVM
|
---|
25 | {
|
---|
26 | /// <remarks>
|
---|
27 | /// This class contains routines which perform parameter selection for a model which uses C-SVC and
|
---|
28 | /// an RBF kernel.
|
---|
29 | /// </remarks>
|
---|
30 | public static class ParameterSelection
|
---|
31 | {
|
---|
32 | /// <summary>
|
---|
33 | /// Default number of times to divide the data.
|
---|
34 | /// </summary>
|
---|
35 | public const int NFOLD = 5;
|
---|
36 | /// <summary>
|
---|
37 | /// Default minimum power of 2 for the C value (-5)
|
---|
38 | /// </summary>
|
---|
39 | public const int MIN_C = -5;
|
---|
40 | /// <summary>
|
---|
41 | /// Default maximum power of 2 for the C value (15)
|
---|
42 | /// </summary>
|
---|
43 | public const int MAX_C = 15;
|
---|
44 | /// <summary>
|
---|
45 | /// Default power iteration step for the C value (2)
|
---|
46 | /// </summary>
|
---|
47 | public const int C_STEP = 2;
|
---|
48 | /// <summary>
|
---|
49 | /// Default minimum power of 2 for the Gamma value (-15)
|
---|
50 | /// </summary>
|
---|
51 | public const int MIN_G = -15;
|
---|
52 | /// <summary>
|
---|
53 | /// Default maximum power of 2 for the Gamma Value (3)
|
---|
54 | /// </summary>
|
---|
55 | public const int MAX_G = 3;
|
---|
56 | /// <summary>
|
---|
57 | /// Default power iteration step for the Gamma value (2)
|
---|
58 | /// </summary>
|
---|
59 | public const int G_STEP = 2;
|
---|
60 |
|
---|
61 | /// <summary>
|
---|
62 | /// Returns a logarithmic list of values from minimum power of 2 to the maximum power of 2 using the provided iteration size.
|
---|
63 | /// </summary>
|
---|
64 | /// <param name="minPower">The minimum power of 2</param>
|
---|
65 | /// <param name="maxPower">The maximum power of 2</param>
|
---|
66 | /// <param name="iteration">The iteration size to use in powers</param>
|
---|
67 | /// <returns></returns>
|
---|
68 | public static List<double> GetList(double minPower, double maxPower, double iteration)
|
---|
69 | {
|
---|
70 | List<double> list = new List<double>();
|
---|
71 | for (double d = minPower; d <= maxPower; d += iteration)
|
---|
72 | list.Add(Math.Pow(2, d));
|
---|
73 | return list;
|
---|
74 | }
|
---|
75 |
|
---|
76 | /// <summary>
|
---|
77 | /// Performs a Grid parameter selection, trying all possible combinations of the two lists and returning the
|
---|
78 | /// combination which performed best. The default ranges of C and Gamma values are used. Use this method if there is no validation data available, and it will
|
---|
79 | /// divide it 5 times to allow 5-fold validation (training on 4/5 and validating on 1/5, 5 times).
|
---|
80 | /// </summary>
|
---|
81 | /// <param name="problem">The training data</param>
|
---|
82 | /// <param name="parameters">The parameters to use when optimizing</param>
|
---|
83 | /// <param name="outputFile">Output file for the parameter results.</param>
|
---|
84 | /// <param name="C">The optimal C value will be put into this variable</param>
|
---|
85 | /// <param name="Gamma">The optimal Gamma value will be put into this variable</param>
|
---|
86 | public static void Grid(
|
---|
87 | Problem problem,
|
---|
88 | Parameter parameters,
|
---|
89 | string outputFile,
|
---|
90 | out double C,
|
---|
91 | out double Gamma)
|
---|
92 | {
|
---|
93 | Grid(problem, parameters, GetList(MIN_C, MAX_C, C_STEP), GetList(MIN_G, MAX_G, G_STEP), outputFile, NFOLD, out C, out Gamma);
|
---|
94 | }
|
---|
95 | /// <summary>
|
---|
96 | /// Performs a Grid parameter selection, trying all possible combinations of the two lists and returning the
|
---|
97 | /// combination which performed best. Use this method if there is no validation data available, and it will
|
---|
98 | /// divide it 5 times to allow 5-fold validation (training on 4/5 and validating on 1/5, 5 times).
|
---|
99 | /// </summary>
|
---|
100 | /// <param name="problem">The training data</param>
|
---|
101 | /// <param name="parameters">The parameters to use when optimizing</param>
|
---|
102 | /// <param name="CValues">The set of C values to use</param>
|
---|
103 | /// <param name="GammaValues">The set of Gamma values to use</param>
|
---|
104 | /// <param name="outputFile">Output file for the parameter results.</param>
|
---|
105 | /// <param name="C">The optimal C value will be put into this variable</param>
|
---|
106 | /// <param name="Gamma">The optimal Gamma value will be put into this variable</param>
|
---|
107 | public static void Grid(
|
---|
108 | Problem problem,
|
---|
109 | Parameter parameters,
|
---|
110 | List<double> CValues,
|
---|
111 | List<double> GammaValues,
|
---|
112 | string outputFile,
|
---|
113 | out double C,
|
---|
114 | out double Gamma)
|
---|
115 | {
|
---|
116 | Grid(problem, parameters, CValues, GammaValues, outputFile, NFOLD, out C, out Gamma);
|
---|
117 | }
|
---|
118 | /// <summary>
|
---|
119 | /// Performs a Grid parameter selection, trying all possible combinations of the two lists and returning the
|
---|
120 | /// combination which performed best. Use this method if validation data isn't available, as it will
|
---|
121 | /// divide the training data and train on a portion of it and test on the rest.
|
---|
122 | /// </summary>
|
---|
123 | /// <param name="problem">The training data</param>
|
---|
124 | /// <param name="parameters">The parameters to use when optimizing</param>
|
---|
125 | /// <param name="CValues">The set of C values to use</param>
|
---|
126 | /// <param name="GammaValues">The set of Gamma values to use</param>
|
---|
127 | /// <param name="outputFile">Output file for the parameter results.</param>
|
---|
128 | /// <param name="nrfold">The number of times the data should be divided for validation</param>
|
---|
129 | /// <param name="C">The optimal C value will be placed in this variable</param>
|
---|
130 | /// <param name="Gamma">The optimal Gamma value will be placed in this variable</param>
|
---|
131 | public static void Grid(
|
---|
132 | Problem problem,
|
---|
133 | Parameter parameters,
|
---|
134 | List<double> CValues,
|
---|
135 | List<double> GammaValues,
|
---|
136 | string outputFile,
|
---|
137 | int nrfold,
|
---|
138 | out double C,
|
---|
139 | out double Gamma)
|
---|
140 | {
|
---|
141 | C = 0;
|
---|
142 | Gamma = 0;
|
---|
143 | double crossValidation = double.MinValue;
|
---|
144 | StreamWriter output = new StreamWriter("graph.txt");
|
---|
145 | for(int i=0; i<CValues.Count; i++)
|
---|
146 | for (int j = 0; j < GammaValues.Count; j++)
|
---|
147 | {
|
---|
148 | parameters.C = CValues[i];
|
---|
149 | parameters.Gamma = GammaValues[j];
|
---|
150 | double test = Training.PerformCrossValidation(problem, parameters, nrfold);
|
---|
151 | Console.Write("{0} {1} {2}", parameters.C, parameters.Gamma, test);
|
---|
152 | output.WriteLine("{0} {1} {2}", parameters.C, parameters.Gamma, test);
|
---|
153 | if (test > crossValidation)
|
---|
154 | {
|
---|
155 | C = parameters.C;
|
---|
156 | Gamma = parameters.Gamma;
|
---|
157 | crossValidation = test;
|
---|
158 | Console.WriteLine(" New Maximum!");
|
---|
159 | }
|
---|
160 | else Console.WriteLine();
|
---|
161 | }
|
---|
162 | output.Close();
|
---|
163 | }
|
---|
164 | /// <summary>
|
---|
165 | /// Performs a Grid parameter selection, trying all possible combinations of the two lists and returning the
|
---|
166 | /// combination which performed best. Uses the default values of C and Gamma.
|
---|
167 | /// </summary>
|
---|
168 | /// <param name="problem">The training data</param>
|
---|
169 | /// <param name="validation">The validation data</param>
|
---|
170 | /// <param name="parameters">The parameters to use when optimizing</param>
|
---|
171 | /// <param name="outputFile">The output file for the parameter results</param>
|
---|
172 | /// <param name="C">The optimal C value will be placed in this variable</param>
|
---|
173 | /// <param name="Gamma">The optimal Gamma value will be placed in this variable</param>
|
---|
174 | public static void Grid(
|
---|
175 | Problem problem,
|
---|
176 | Problem validation,
|
---|
177 | Parameter parameters,
|
---|
178 | string outputFile,
|
---|
179 | out double C,
|
---|
180 | out double Gamma)
|
---|
181 | {
|
---|
182 | Grid(problem, validation, parameters, GetList(MIN_C, MAX_C, C_STEP), GetList(MIN_G, MAX_G, G_STEP), outputFile, out C, out Gamma);
|
---|
183 | }
|
---|
184 | /// <summary>
|
---|
185 | /// Performs a Grid parameter selection, trying all possible combinations of the two lists and returning the
|
---|
186 | /// combination which performed best.
|
---|
187 | /// </summary>
|
---|
188 | /// <param name="problem">The training data</param>
|
---|
189 | /// <param name="validation">The validation data</param>
|
---|
190 | /// <param name="parameters">The parameters to use when optimizing</param>
|
---|
191 | /// <param name="CValues">The C values to use</param>
|
---|
192 | /// <param name="GammaValues">The Gamma values to use</param>
|
---|
193 | /// <param name="outputFile">The output file for the parameter results</param>
|
---|
194 | /// <param name="C">The optimal C value will be placed in this variable</param>
|
---|
195 | /// <param name="Gamma">The optimal Gamma value will be placed in this variable</param>
|
---|
196 | public static void Grid(
|
---|
197 | Problem problem,
|
---|
198 | Problem validation,
|
---|
199 | Parameter parameters,
|
---|
200 | List<double> CValues,
|
---|
201 | List<double> GammaValues,
|
---|
202 | string outputFile,
|
---|
203 | out double C,
|
---|
204 | out double Gamma)
|
---|
205 | {
|
---|
206 | C = 0;
|
---|
207 | Gamma = 0;
|
---|
208 | double maxScore = double.MinValue;
|
---|
209 | StreamWriter output = new StreamWriter(outputFile);
|
---|
210 | for (int i = 0; i < CValues.Count; i++)
|
---|
211 | for (int j = 0; j < GammaValues.Count; j++)
|
---|
212 | {
|
---|
213 | parameters.C = CValues[i];
|
---|
214 | parameters.Gamma = GammaValues[j];
|
---|
215 | Model model = Training.Train(problem, parameters);
|
---|
216 | double test = Prediction.Predict(validation, "tmp.txt", model, false);
|
---|
217 | Console.Write("{0} {1} {2}", parameters.C, parameters.Gamma, test);
|
---|
218 | output.WriteLine("{0} {1} {2}", parameters.C, parameters.Gamma, test);
|
---|
219 | if (test > maxScore)
|
---|
220 | {
|
---|
221 | C = parameters.C;
|
---|
222 | Gamma = parameters.Gamma;
|
---|
223 | maxScore = test;
|
---|
224 | Console.WriteLine(" New Maximum!");
|
---|
225 | }
|
---|
226 | else Console.WriteLine();
|
---|
227 | }
|
---|
228 | output.Close();
|
---|
229 | }
|
---|
230 | }
|
---|
231 | }
|
---|