Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Hive_Milestone2/sources/HeuristicLab.GP.StructureIdentification/3.3/Evaluators/CoefficientOfDeterminationEvaluator.cs @ 3494

Last change on this file since 3494 was 1796, checked in by gkronber, 16 years ago

Refactored GP evaluation to make it possible to use different evaluators to interpret function trees. #615 (Evaluation of HL3 function trees should be equivalent to evaluation in HL2)

File size: 3.5 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Operators;
29
30namespace HeuristicLab.GP.StructureIdentification {
31  public class CoefficientOfDeterminationEvaluator : GPEvaluatorBase {
32    public override string Description {
33      get {
34        return @"Evaluates 'FunctionTree' for all samples of 'Dataset' and calculates
35the 'coefficient of determination' of estimated values vs. real values of 'TargetVariable'.";
36      }
37    }
38
39    public CoefficientOfDeterminationEvaluator()
40      : base() {
41      AddVariableInfo(new VariableInfo("R2", "The coefficient of determination of the model", typeof(DoubleData), VariableKind.New));
42    }
43
44    public override void Evaluate(IScope scope, ITreeEvaluator evaluator, IFunctionTree tree, HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) {
45      double errorsSquaredSum = 0.0;
46      double originalDeviationTotalSumOfSquares = 0.0;
47      double targetMean = dataset.GetMean(targetVariable, start, end);
48
49      double originalSum = 0.0;
50      int n = 0;
51      for (int sample = start; sample < end; sample++) {
52        double estimated = evaluator.Evaluate(tree, sample);
53        double original = dataset.GetValue(sample, targetVariable);
54        if (updateTargetValues) {
55          dataset.SetValue(sample, targetVariable, estimated);
56        }
57        if (!double.IsNaN(original) && !double.IsInfinity(original)) {
58          double error = estimated - original;
59          errorsSquaredSum += error * error;
60
61          originalSum += original;
62          n++;
63        }
64      }
65
66      double originalMean = originalSum / n;
67      for(int sample = start; sample < end; sample++){
68        double original = dataset.GetValue(sample, targetVariable);
69        if (!double.IsNaN(original) && !double.IsInfinity(original)) {
70          original = original - originalMean;
71          original = original * original;
72          originalDeviationTotalSumOfSquares += original;
73        }
74      }
75
76      double quality = 1 - errorsSquaredSum / originalDeviationTotalSumOfSquares;
77      if (quality > 1)
78        throw new InvalidProgramException();
79      if (double.IsNaN(quality) || double.IsInfinity(quality))
80        quality = double.MaxValue;
81
82      DoubleData r2 = GetVariableValue<DoubleData>("R2", scope, false, false);
83      if (r2 == null) {
84        r2 = new DoubleData();
85        scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("R2"), r2));
86      }
87
88      r2.Data = quality;
89    }
90  }
91}
Note: See TracBrowser for help on using the repository browser.