Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Hive_Milestone2/sources/HeuristicLab.GP.StructureIdentification.TimeSeries/3.3/TheilInequalityCoefficientEvaluator.cs @ 5555

Last change on this file since 5555 was 1796, checked in by gkronber, 16 years ago

Refactored GP evaluation to make it possible to use different evaluators to interpret function trees. #615 (Evaluation of HL3 function trees should be equivalent to evaluation in HL2)

File size: 6.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.GP.StructureIdentification;
29using HeuristicLab.DataAnalysis;
30
31namespace HeuristicLab.GP.StructureIdentification.TimeSeries {
32  public class TheilInequalityCoefficientEvaluator : GPEvaluatorBase {
33    public override string Description {
34      get {
35        return @"Evaluates 'FunctionTree' for all samples of 'Dataset' and calculates
36the 'Theil inequality coefficient (Theil's U2 not U1!)' of estimated values vs. real values of 'TargetVariable'.
37
38U2 = Sqrt(1/N * Sum(P_t - A_t)^2 ) / Sqrt(1/N * Sum(A_t)^2 )
39
40where P_t is the predicted change of the target variable and A_t is the measured (original) change.
41(P_t = y'_t - y_(t-1), A_t = y_t - y_(t-1)).
42
43U2 is 0 for a perfect prediction and 1 for the naive model y'_t = y_(t-1). An U2 > 1 means the
44model is worse than the naive model (=> model is useless).";
45      }
46    }
47
48    public TheilInequalityCoefficientEvaluator()
49      : base() {
50      AddVariableInfo(new VariableInfo("TheilInequalityCoefficient", "Theil's inequality coefficient (U2) of the model", typeof(DoubleData), VariableKind.New));
51      AddVariableInfo(new VariableInfo("TheilInequalityCoefficientBias", "Bias proportion of Theil's inequality coefficient", typeof(DoubleData), VariableKind.New));
52      AddVariableInfo(new VariableInfo("TheilInequalityCoefficientVariance", "Variance proportion of Theil's inequality coefficient", typeof(DoubleData), VariableKind.New));
53      AddVariableInfo(new VariableInfo("TheilInequalityCoefficientCovariance", "Covariance proportion of Theil's inequality coefficient", typeof(DoubleData), VariableKind.New));
54    }
55
56    public override void Evaluate(IScope scope, ITreeEvaluator evaluator, IFunctionTree tree, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) {
57      #region create result variables
58      DoubleData theilInequaliy = GetVariableValue<DoubleData>("TheilInequalityCoefficient", scope, false, false);
59      if (theilInequaliy == null) {
60        theilInequaliy = new DoubleData();
61        scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TheilInequalityCoefficient"), theilInequaliy));
62      }
63      DoubleData uBias = GetVariableValue<DoubleData>("TheilInequalityCoefficientBias", scope, false, false);
64      if (uBias == null) {
65        uBias = new DoubleData();
66        scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TheilInequalityCoefficientBias"), uBias));
67      }
68      DoubleData uVariance = GetVariableValue<DoubleData>("TheilInequalityCoefficientVariance", scope, false, false);
69      if (uVariance == null) {
70        uVariance = new DoubleData();
71        scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TheilInequalityCoefficientVariance"), uVariance));
72      }
73      DoubleData uCovariance = GetVariableValue<DoubleData>("TheilInequalityCoefficientCovariance", scope, false, false);
74      if (uCovariance == null) {
75        uCovariance = new DoubleData();
76        scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TheilInequalityCoefficientCovariance"), uCovariance));
77      }
78      #endregion
79
80      double errorsSquaredSum = 0.0;
81      double originalSquaredSum = 0.0;
82      double[] estimatedChanges = new double[end - start];
83      double[] originalChanges = new double[end - start];
84      int nSamples = 0;
85      for (int sample = start; sample < end; sample++) {
86        double prevValue = dataset.GetValue(sample - 1, targetVariable);
87        double estimatedChange = evaluator.Evaluate(tree, sample) - prevValue;
88        double originalChange = dataset.GetValue(sample, targetVariable) - prevValue;
89        if (updateTargetValues) {
90          dataset.SetValue(sample, targetVariable, estimatedChange + prevValue);
91        }
92        if (!double.IsNaN(originalChange) && !double.IsInfinity(originalChange)) {
93          double error = estimatedChange - originalChange;
94          errorsSquaredSum += error * error;
95          originalSquaredSum += originalChange * originalChange;
96          estimatedChanges[sample - start] = estimatedChange;
97          originalChanges[sample - start] = originalChange;
98          nSamples++;
99        }
100      }
101      double quality = Math.Sqrt(errorsSquaredSum / nSamples) / Math.Sqrt(originalSquaredSum / nSamples);
102      if (double.IsNaN(quality) || double.IsInfinity(quality))
103        quality = double.MaxValue;
104      theilInequaliy.Data = quality; // U2
105
106      // decomposition into U_bias + U_variance + U_covariance parts
107      double bias = Statistics.Mean(estimatedChanges) - Statistics.Mean(originalChanges);
108      bias *= bias; // squared
109      uBias.Data = bias / (errorsSquaredSum / nSamples);
110
111      double variance = Statistics.StandardDeviation(estimatedChanges) - Statistics.StandardDeviation(originalChanges);
112      variance *= variance; // squared
113      uVariance.Data = variance / (errorsSquaredSum / nSamples);
114
115      // all parts add up to one so I don't have to calculate the correlation coefficient for the covariance proportion
116      uCovariance.Data = 1.0 - uBias.Data - uVariance.Data;
117    }
118  }
119}
Note: See TracBrowser for help on using the repository browser.